code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def __lowerCamelCase ( *_A ,**_A ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __UpperCamelCase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ObjectDetectionPipeline(model=_A ,image_processor=_A ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' ,threshold=0.0 ) self.assertGreater(len(_A ) ,0 ) for detected_object in outputs: self.assertEqual( _A ,{ 'score': ANY(_A ), 'label': ANY(_A ), 'box': {'xmin': ANY(_A ), 'ymin': ANY(_A ), 'xmax': ANY(_A ), 'ymax': ANY(_A )}, } ,) import datasets _lowerCAmelCase : List[Any] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' ,'image' ,split='test' ) _lowerCAmelCase : Optional[int] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _lowerCAmelCase : Dict = object_detector(_A ,threshold=0.0 ) self.assertEqual(len(_A ) ,len(_A ) ) for outputs in batch_outputs: self.assertGreater(len(_A ) ,0 ) for detected_object in outputs: self.assertEqual( _A ,{ 'score': ANY(_A ), 'label': ANY(_A ), 'box': {'xmin': ANY(_A ), 'ymin': ANY(_A ), 'xmax': ANY(_A ), 'ymax': ANY(_A )}, } ,) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = 'hf-internal-testing/tiny-detr-mobilenetsv3' _lowerCAmelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_A ) _lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained(_A ) _lowerCAmelCase : Tuple = ObjectDetectionPipeline(model=_A ,feature_extractor=_A ) _lowerCAmelCase : str = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=0.0 ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] ,) _lowerCAmelCase : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] ,) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'facebook/detr-resnet-50' _lowerCAmelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_A ) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(_A ) _lowerCAmelCase : List[str] = ObjectDetectionPipeline(model=_A ,feature_extractor=_A ) _lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _lowerCAmelCase : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'facebook/detr-resnet-50' _lowerCAmelCase : Dict = pipeline('object-detection' ,model=_A ) _lowerCAmelCase : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _lowerCAmelCase : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0.9_9_8_5 _lowerCAmelCase : str = 'facebook/detr-resnet-50' _lowerCAmelCase : Optional[int] = pipeline('object-detection' ,model=_A ) _lowerCAmelCase : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=_A ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'Narsil/layoutlmv3-finetuned-funsd' _lowerCAmelCase : Tuple = 0.9_9_9_3 _lowerCAmelCase : str = pipeline('object-detection' ,model=_A ,threshold=_A ) _lowerCAmelCase : Any = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] ,)
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 while number > 0: _lowerCAmelCase : Optional[int] = number % 10 sum_of_digits += last_digit _lowerCAmelCase : int = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase__ ( _lowerCamelCase = 100 ): '''simple docstring''' _lowerCAmelCase : List[Any] = factorial(_lowerCamelCase ) _lowerCAmelCase : List[Any] = split_and_add(_lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import math from collections.abc import Callable def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : float = xa _lowerCAmelCase : float = xa while True: if x_n == x_na or function(_lowerCamelCase ) == function(_lowerCamelCase ): raise ZeroDivisionError('float division by zero, could not find root' ) _lowerCAmelCase : float = x_na - ( function(_lowerCamelCase ) / ((function(_lowerCamelCase ) - function(_lowerCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase : Tuple = x_na _lowerCAmelCase : int = x_na def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return math.pow(_lowerCamelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _lowerCAmelCase : Tuple = DetaConfig( backbone_config=_lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels _lowerCAmelCase : Optional[int] = 'huggingface/label-files' if "o365" in model_name: _lowerCAmelCase : int = 366 _lowerCAmelCase : Tuple = 'object365-id2label.json' else: _lowerCAmelCase : List[Any] = 91 _lowerCAmelCase : str = 'coco-detection-id2label.json' _lowerCAmelCase : Any = num_labels _lowerCAmelCase : int = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = val def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _lowerCAmelCase : Union[str, Any] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCAmelCase : List[str] = in_proj_bias[: dim] _lowerCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase : List[str] = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCAmelCase : Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _lowerCAmelCase : Any = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Union[str, Any] = in_proj_weight[:hidden_size, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[:hidden_size] _lowerCAmelCase : List[str] = in_proj_weight[ hidden_size : hidden_size * 2, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCAmelCase : Union[str, Any] = in_proj_weight[-hidden_size:, :] _lowerCAmelCase : List[Any] = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": _lowerCAmelCase : List[str] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _lowerCAmelCase : Tuple = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys _lowerCAmelCase : str = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val if "input_proj" in key: _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _lowerCAmelCase : Any = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : int = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : List[str] = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() _lowerCAmelCase : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_lowerCamelCase ) # load image processor _lowerCAmelCase : int = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : str = processor(images=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase : str = encoding['pixel_values'] _lowerCAmelCase : str = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _lowerCAmelCase : int = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) _lowerCAmelCase : Optional[int] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) _lowerCAmelCase : int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowerCAmelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {} state_dict.pop('pixel_mean' , _lowerCamelCase ) state_dict.pop('pixel_std' , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase : Optional[int] = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(2 ) ) if layer_nb == 0: _lowerCAmelCase : List[str] = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: _lowerCAmelCase : List[str] = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: _lowerCAmelCase : Dict = key.replace('layers.2' , 'proj_out' ) _lowerCAmelCase : Tuple = value _lowerCAmelCase : int = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="ybelkada/segment-anything" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hf_hub_download(_lowerCamelCase , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: _lowerCAmelCase : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: _lowerCAmelCase : Any = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _lowerCAmelCase : Union[str, Any] = SamConfig( vision_config=_lowerCamelCase , ) elif "sam_vit_h" in model_name: _lowerCAmelCase : Any = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _lowerCAmelCase : str = SamConfig( vision_config=_lowerCamelCase , ) _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase , map_location='cpu' ) _lowerCAmelCase : Optional[Any] = replace_keys(_lowerCamelCase ) _lowerCAmelCase : Dict = SamImageProcessor() _lowerCAmelCase : Optional[Any] = SamProcessor(image_processor=_lowerCamelCase ) _lowerCAmelCase : List[str] = SamModel(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = hf_model.to('cuda' ) _lowerCAmelCase : List[Any] = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _lowerCAmelCase : Any = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert('RGB' ) _lowerCAmelCase : Optional[int] = [[[400, 650]]] _lowerCAmelCase : Union[str, Any] = [[1]] _lowerCAmelCase : Optional[int] = processor(images=np.array(_lowerCamelCase ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = hf_model(**_lowerCamelCase ) _lowerCAmelCase : Tuple = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 _lowerCAmelCase : List[Any] = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = hf_model(**_lowerCamelCase ) _lowerCAmelCase : int = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 _lowerCAmelCase : List[str] = ((75, 275, 1725, 850),) _lowerCAmelCase : List[Any] = processor(images=np.array(_lowerCamelCase ) , input_boxes=_lowerCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _lowerCAmelCase : Tuple = hf_model(**_lowerCamelCase ) _lowerCAmelCase : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. _lowerCAmelCase : Any = [[[400, 650], [800, 650]]] _lowerCAmelCase : Dict = [[1, 1]] _lowerCAmelCase : str = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _lowerCAmelCase : str = hf_model(**_lowerCamelCase ) _lowerCAmelCase : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() _lowerCAmelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) _lowerCAmelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' if name is None: _lowerCAmelCase : Optional[Any] = None else: _lowerCAmelCase : List[str] = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' _lowerCAmelCase : Dict = fmt.format(_lowerCamelCase ) # Print and recurse (if needed). if isinstance(_lowerCamelCase , _lowerCamelCase ): if msg is not None: print(_lowerCamelCase ) for k in val.keys(): recursive_print(_lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(_lowerCamelCase , torch.Tensor ): print(_lowerCamelCase , ':' , val.size() ) else: print(_lowerCamelCase , ':' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCAmelCase : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCAmelCase : List[str] = param.view(*_lowerCamelCase ) _lowerCAmelCase : int = param.transpose(0 , 2 ) _lowerCAmelCase : List[str] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCAmelCase : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCAmelCase : Tuple = param.view(*_lowerCamelCase ) _lowerCAmelCase : Optional[int] = param.transpose(0 , 1 ).contiguous() _lowerCAmelCase : str = param.view(*_lowerCamelCase ) return param def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = {} # old versions did not store training args _lowerCAmelCase : Optional[int] = input_state_dict.get('args' , _lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCAmelCase : Any = ds_args.padded_vocab_size _lowerCAmelCase : List[str] = ds_args.max_position_embeddings _lowerCAmelCase : Union[str, Any] = ds_args.hidden_size _lowerCAmelCase : Any = ds_args.num_layers _lowerCAmelCase : str = ds_args.num_attention_heads _lowerCAmelCase : Tuple = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCAmelCase : List[str] = config.n_head # The hidden_size per head. _lowerCAmelCase : int = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCAmelCase : str = input_state_dict['checkpoint_version'] else: _lowerCAmelCase : Tuple = 0.0 # The model. _lowerCAmelCase : List[str] = input_state_dict['model'] # The language model. _lowerCAmelCase : int = model['language_model'] # The embeddings. _lowerCAmelCase : int = lm['embedding'] # The word embeddings. _lowerCAmelCase : List[Any] = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. _lowerCAmelCase : int = word_embeddings[: config.vocab_size, :] _lowerCAmelCase : List[Any] = word_embeddings # The position embeddings. _lowerCAmelCase : Dict = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCAmelCase : int = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. _lowerCAmelCase : List[Any] = pos_embeddings # The transformer. _lowerCAmelCase : Dict = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. _lowerCAmelCase : Any = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. _lowerCAmelCase : Tuple = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCAmelCase : Optional[int] = layer_re.match(_lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCAmelCase : Any = int(m.group(1 ) ) # The name of the operation. _lowerCAmelCase : int = m.group(2 ) # Is it a weight or a bias? _lowerCAmelCase : Optional[Any] = m.group(3 ) # The name of the layer. _lowerCAmelCase : Any = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): _lowerCAmelCase : List[Any] = 'ln_1' if op_name.startswith('input' ) else 'ln_2' _lowerCAmelCase : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCAmelCase : Union[str, Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCAmelCase : int = torch.tensor(-1e4 , dtype=torch.floataa ) _lowerCAmelCase : Union[str, Any] = masked_bias _lowerCAmelCase : Optional[int] = fix_query_key_value_ordering(_lowerCamelCase , _lowerCamelCase , 3 , _lowerCamelCase , _lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCAmelCase : Any = out_val.transpose(0 , 1 ).contiguous() # Store. _lowerCAmelCase : Union[str, Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCAmelCase : Union[str, Any] = fix_query_key_value_ordering(_lowerCamelCase , _lowerCamelCase , 3 , _lowerCamelCase , _lowerCamelCase ) # Store. No change of shape. _lowerCAmelCase : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCAmelCase : Union[str, Any] = megatron_to_transformers[op_name] _lowerCAmelCase : List[str] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCAmelCase : List[str] = megatron_to_transformers[op_name] _lowerCAmelCase : Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCAmelCase : Any = transformer['final_layernorm.weight'] _lowerCAmelCase : Dict = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCAmelCase : Tuple = word_embeddings # It should be done! return output_state_dict def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=_lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=_lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) _lowerCAmelCase : int = parser.parse_args() # Extract the basename. _lowerCAmelCase : Union[str, Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location='cpu' ) else: _lowerCAmelCase : int = torch.load(args.path_to_checkpoint , map_location='cpu' ) _lowerCAmelCase : str = input_state_dict.get('args' , _lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCAmelCase : str = 'gelu_fast' elif ds_args.openai_gelu: _lowerCAmelCase : int = 'gelu_new' else: _lowerCAmelCase : Dict = 'gelu' else: # in the very early days this used to be "gelu_new" _lowerCAmelCase : str = 'gelu_new' # Spell out all parameters in case the defaults change. _lowerCAmelCase : List[Any] = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_lowerCamelCase , summary_activation=_lowerCamelCase , summary_proj_to_labels=_lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: _lowerCAmelCase : Optional[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCAmelCase : Any = ['GPT2LMHeadModel'] # Convert. print('Converting' ) _lowerCAmelCase : Any = convert_megatron_checkpoint(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase , _lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCAmelCase : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCAmelCase : Any = 'gpt2' elif tokenizer_type == "PretrainedFromHF": _lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: _lowerCAmelCase : List[str] = 'gpt2' _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = type(_lowerCamelCase ).__name__ _lowerCAmelCase : str = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(_lowerCamelCase ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_lowerCamelCase ) # Store the state_dict to file. _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , 'pytorch_model.bin' ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = " " ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[Any] = 0 for index, char in enumerate(_lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) _lowerCAmelCase : str = index + 1 elif index + 1 == len(_lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=False ,_A=True ,_A="None" ,_A=3 ,_A=4 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : List[str] = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Optional[Any] = use_input_mask _lowerCAmelCase : str = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Dict = num_labels _lowerCAmelCase : Union[str, Any] = num_choices _lowerCAmelCase : Optional[Any] = relative_attention _lowerCAmelCase : Tuple = position_biased_input _lowerCAmelCase : Any = pos_att_type _lowerCAmelCase : List[Any] = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _lowerCAmelCase : Optional[int] = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = DebertaVaModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model(_A ,attention_mask=_A ,token_type_ids=_A )[0] _lowerCAmelCase : Tuple = model(_A ,token_type_ids=_A )[0] _lowerCAmelCase : Union[str, Any] = model(_A )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = DebertaVaForMaskedLM(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : List[Any] = DebertaVaForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = self.num_labels _lowerCAmelCase : Dict = DebertaVaForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = DebertaVaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : str = model( _A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = DebertaVaForMultipleChoice(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : Dict = model( _A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : Tuple = config_and_inputs _lowerCAmelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = DebertaVaModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = DebertaVaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _lowerCAmelCase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _lowerCAmelCase : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A )[0] # compare the actual values for a slice. _lowerCAmelCase : Optional[Any] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_A ,atol=1E-4 ) ,F"""{output[:, 1:4, 1:4]}""" )
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ,return_dict=_A ).to(_A ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('google/mt5-small' ) _lowerCAmelCase : List[Any] = tokenizer('Hello there' ,return_tensors='pt' ).input_ids _lowerCAmelCase : Any = tokenizer('Hi I am' ,return_tensors='pt' ).input_ids _lowerCAmelCase : int = model(input_ids.to(_A ) ,labels=labels.to(_A ) ).loss _lowerCAmelCase : str = -(labels.shape[-1] * loss.item()) _lowerCAmelCase : str = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=4 ,): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Dict = use_attention_mask _lowerCAmelCase : str = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Tuple = num_choices def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_attention_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : List[str] = AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_A ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) _lowerCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A ) @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) _lowerCAmelCase : Any = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase : Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCAmelCase : List[Any] = model(_A ,attention_mask=_A )[0] _lowerCAmelCase : List[Any] = (1, 11, 768) self.assertEqual(output.shape ,_A ) _lowerCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,_A ,atol=1E-4 ) )
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = KandinskyVaaControlnetPipeline _UpperCAmelCase = ["image_embeds", "negative_image_embeds", "hint"] _UpperCAmelCase = ["image_embeds", "negative_image_embeds", "hint"] _UpperCAmelCase = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase = False @property def __lowerCamelCase ( self ): '''simple docstring''' return 32 @property def __lowerCamelCase ( self ): '''simple docstring''' return 32 @property def __lowerCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def __lowerCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): '''simple docstring''' return 100 @property def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : int = UNetaDConditionModel(**_A ) return model @property def __lowerCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.dummy_unet _lowerCAmelCase : int = self.dummy_movq _lowerCAmelCase : str = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule='linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,clip_sample=_A ,set_alpha_to_one=_A ,steps_offset=1 ,prediction_type='epsilon' ,thresholding=_A ,) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(_A ) ).to(_A ) _lowerCAmelCase : Any = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( _A ) # create hint _lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('mps' ): _lowerCAmelCase : List[Any] = torch.manual_seed(_A ) else: _lowerCAmelCase : str = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : str = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'cpu' _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : List[Any] = self.pipeline_class(**_A ) _lowerCAmelCase : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : int = pipe(**self.get_dummy_inputs(_A ) ) _lowerCAmelCase : Any = output.images _lowerCAmelCase : List[str] = pipe( **self.get_dummy_inputs(_A ) ,return_dict=_A ,)[0] _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : int = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _lowerCAmelCase : Optional[int] = torch.from_numpy(np.array(_A ) ).float() / 2_5_5.0 _lowerCAmelCase : Tuple = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) _lowerCAmelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' ,torch_dtype=torch.floataa ) pipe_prior.to(_A ) _lowerCAmelCase : Any = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' ,torch_dtype=torch.floataa ) _lowerCAmelCase : int = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[str] = 'A robot, 4k photo' _lowerCAmelCase : Optional[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) _lowerCAmelCase, _lowerCAmelCase : Tuple = pipe_prior( _A ,generator=_A ,num_inference_steps=5 ,negative_prompt='' ,).to_tuple() _lowerCAmelCase : Any = torch.Generator(device='cuda' ).manual_seed(0 ) _lowerCAmelCase : List[Any] = pipeline( image_embeds=_A ,negative_image_embeds=_A ,hint=_A ,generator=_A ,num_inference_steps=100 ,output_type='np' ,) _lowerCAmelCase : Dict = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A ,_A )
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=24 ,_A=2 ,_A=6 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=None ,_A=1000 ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Dict = seq_length _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Any = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : List[str] = scope _lowerCAmelCase : Optional[int] = range_bbox def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Union[str, Any] = bbox[i, j, 3] _lowerCAmelCase : str = bbox[i, j, 1] _lowerCAmelCase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : Optional[Any] = bbox[i, j, 0] _lowerCAmelCase : List[str] = t _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : Any = LiltModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[str] = model(_A ,bbox=_A ,attention_mask=_A ,token_type_ids=_A ) _lowerCAmelCase : Tuple = model(_A ,bbox=_A ,token_type_ids=_A ) _lowerCAmelCase : Optional[int] = model(_A ,bbox=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_labels _lowerCAmelCase : List[str] = LiltForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model( _A ,bbox=_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : int = LiltForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model( _A ,bbox=_A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : List[Any] = config_and_inputs _lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' return True def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = LiltModelTester(self ) _lowerCAmelCase : str = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = LiltModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_A ) _lowerCAmelCase : Dict = torch.tensor([[1, 2]] ,device=_A ) _lowerCAmelCase : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(input_ids=_A ,bbox=_A ) _lowerCAmelCase : Tuple = torch.Size([1, 2, 768] ) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] ,device=_A ,) self.assertTrue(outputs.last_hidden_state.shape ,_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,_A ,atol=1E-3 ) )
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [0] * len(_lowerCamelCase ) _lowerCAmelCase : Any = [] _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCamelCase ) ): if indegree[i] == 0: queue.append(_lowerCamelCase ) while queue: _lowerCAmelCase : Any = queue.pop(0 ) cnt += 1 topo.append(_lowerCamelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCamelCase ) if cnt != len(_lowerCamelCase ): print('Cycle exists' ) else: print(_lowerCamelCase ) # Adjacency List of Graph _lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "swin2sr" _UpperCAmelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,_A=64 ,_A=1 ,_A=3 ,_A=180 ,_A=[6, 6, 6, 6, 6, 6] ,_A=[6, 6, 6, 6, 6, 6] ,_A=8 ,_A=2.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=2 ,_A=1.0 ,_A="1conv" ,_A="pixelshuffle" ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : int = embed_dim _lowerCAmelCase : List[Any] = depths _lowerCAmelCase : List[Any] = len(_A ) _lowerCAmelCase : Optional[int] = num_heads _lowerCAmelCase : Dict = window_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = drop_path_rate _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Dict = use_absolute_embeddings _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Tuple = upscale _lowerCAmelCase : Tuple = img_range _lowerCAmelCase : Optional[Any] = resi_connection _lowerCAmelCase : Optional[Any] = upsampler
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" from math import isclose, sqrt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = point_y / 4 / point_x _lowerCAmelCase : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _lowerCAmelCase : Dict = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _lowerCAmelCase : Any = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _lowerCAmelCase : Tuple = outgoing_gradient**2 + 4 _lowerCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _lowerCAmelCase : List[str] = (point_y - outgoing_gradient * point_x) ** 2 - 100 _lowerCAmelCase : int = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _lowerCAmelCase : str = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _lowerCAmelCase : Dict = x_minus if isclose(_lowerCamelCase , _lowerCamelCase ) else x_plus _lowerCAmelCase : Dict = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase__ ( _lowerCamelCase = 1.4 , _lowerCamelCase = -9.6 ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : float = first_x_coord _lowerCAmelCase : float = first_y_coord _lowerCAmelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = next_point(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase = get_tests_dir("""fixtures""") _lowerCAmelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _lowerCAmelCase = get_tests_dir("""fixtures/dummy-config.json""") class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = 0 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : int = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(_A ).to_dict() config_dict.pop('feature_extractor_type' ) _lowerCAmelCase : str = WavaVecaFeatureExtractor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) _lowerCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained(_A ) # make sure private variable is not incorrectly saved _lowerCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( _A ,'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained('bert-base' ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( _A ,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ,revision='aaaaaa' ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaisesRegex( _A ,'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' ,): _lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def __lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(_A ): _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): _lowerCAmelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A ) _lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) _lowerCAmelCase : str = AutoFeatureExtractor.from_pretrained(_A ,trust_remote_code=_A ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) def __lowerCamelCase ( self ): '''simple docstring''' try: AutoConfig.register('custom' ,_A ) AutoFeatureExtractor.register(_A ,_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoFeatureExtractor.register(_A ,_A ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase : Tuple = CustomFeatureExtractor.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A ) _lowerCAmelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): '''simple docstring''' class __UpperCamelCase ( a__ ): _UpperCAmelCase = True try: AutoConfig.register('custom' ,_A ) AutoFeatureExtractor.register(_A ,_A ) # If remote code is not set, the default is to use local _lowerCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _lowerCAmelCase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ,trust_remote_code=_A ) self.assertEqual(feature_extractor.__class__.__name__ ,'NewFeatureExtractor' ) self.assertTrue(not hasattr(_A ,'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCAmelCase : Any = model_type_to_module_name(_lowerCamelCase ) _lowerCAmelCase : int = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(_lowerCamelCase , _lowerCamelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowerCamelCase , '__name__' , _lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCAmelCase : Optional[int] = importlib.import_module('transformers' ) if hasattr(_lowerCamelCase , _lowerCamelCase ): return getattr(_lowerCamelCase , _lowerCamelCase ) return None def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Tuple = get_file_from_repo( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_lowerCamelCase , encoding='utf-8' ) as reader: return json.load(_lowerCamelCase ) class __UpperCamelCase : def __init__( self ): '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_A ) def __lowerCamelCase ( cls ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : int = kwargs.pop('config' ,_A ) _lowerCAmelCase : Dict = kwargs.pop('trust_remote_code' ,_A ) _lowerCAmelCase : str = True _lowerCAmelCase, _lowerCAmelCase : str = FeatureExtractionMixin.get_feature_extractor_dict(_A ,**_A ) _lowerCAmelCase : List[Any] = config_dict.get('feature_extractor_type' ,_A ) _lowerCAmelCase : Tuple = None if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _lowerCAmelCase : Union[str, Any] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_A ,_A ): _lowerCAmelCase : Any = AutoConfig.from_pretrained(_A ,**_A ) # It could be in `config.feature_extractor_type`` _lowerCAmelCase : Optional[int] = getattr(_A ,'feature_extractor_type' ,_A ) if hasattr(_A ,'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: _lowerCAmelCase : Optional[Any] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: _lowerCAmelCase : Optional[Any] = feature_extractor_class_from_name(_A ) _lowerCAmelCase : Optional[int] = feature_extractor_auto_map is not None _lowerCAmelCase : str = feature_extractor_class is not None or type(_A ) in FEATURE_EXTRACTOR_MAPPING _lowerCAmelCase : Tuple = resolve_trust_remote_code( _A ,_A ,_A ,_A ) if has_remote_code and trust_remote_code: _lowerCAmelCase : List[Any] = get_class_from_dynamic_module( _A ,_A ,**_A ) _lowerCAmelCase : List[Any] = kwargs.pop('code_revision' ,_A ) if os.path.isdir(_A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_A ,**_A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_A ,**_A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_A ) in FEATURE_EXTRACTOR_MAPPING: _lowerCAmelCase : List[str] = FEATURE_EXTRACTOR_MAPPING[type(_A )] return feature_extractor_class.from_dict(_A ,**_A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCamelCase ( _A ,_A ): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(_A ,_A )
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """▁""" _lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowerCAmelCase = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _lowerCAmelCase = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _lowerCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = len(self.sp_model ) + self.fairseq_offset _lowerCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : Any = self.__dict__.copy() _lowerCAmelCase : List[Any] = None _lowerCAmelCase : str = self.sp_model.serialized_model_proto() return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : int = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.encode(_A ,out_type=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Any = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self ,_A ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Optional[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "blenderbot-small" _UpperCAmelCase = ["past_key_values"] _UpperCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self ,_A=5_0265 ,_A=512 ,_A=8 ,_A=2048 ,_A=16 ,_A=8 ,_A=2048 ,_A=16 ,_A=0.0 ,_A=0.0 ,_A=True ,_A=True ,_A="gelu" ,_A=512 ,_A=0.1 ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1 ,_A=False ,_A=0 ,_A=1 ,_A=2 ,_A=2 ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[str] = d_model _lowerCAmelCase : List[Any] = encoder_ffn_dim _lowerCAmelCase : int = encoder_layers _lowerCAmelCase : List[str] = encoder_attention_heads _lowerCAmelCase : List[Any] = decoder_ffn_dim _lowerCAmelCase : Dict = decoder_layers _lowerCAmelCase : Tuple = decoder_attention_heads _lowerCAmelCase : str = dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : str = activation_dropout _lowerCAmelCase : Dict = activation_function _lowerCAmelCase : Optional[Any] = init_std _lowerCAmelCase : Optional[Any] = encoder_layerdrop _lowerCAmelCase : Tuple = decoder_layerdrop _lowerCAmelCase : List[str] = use_cache _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,is_encoder_decoder=_A ,decoder_start_token_id=_A ,forced_eos_token_id=_A ,**_A ,) class __UpperCamelCase ( a__ ): @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCAmelCase : str = {0: 'batch'} _lowerCAmelCase : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCAmelCase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} _lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_A ,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCAmelCase, _lowerCAmelCase : Any = self.num_layers for i in range(_A ): _lowerCAmelCase : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCAmelCase : int = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowerCAmelCase : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Union[str, Any] = super().outputs else: _lowerCAmelCase : Optional[int] = super(_A ,self ).outputs if self.use_past: _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self.num_layers for i in range(_A ): _lowerCAmelCase : Any = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCAmelCase : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,_A ,_A ,_A ,_A ) # Generate decoder inputs _lowerCAmelCase : List[str] = seq_length if not self.use_past else 1 _lowerCAmelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,_A ,_A ,_A ,_A ) _lowerCAmelCase : str = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase : Optional[int] = dict(**_A ,**_A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase, _lowerCAmelCase : str = common_inputs['input_ids'].shape _lowerCAmelCase : Tuple = common_inputs['decoder_input_ids'].shape[1] _lowerCAmelCase, _lowerCAmelCase : int = self.num_attention_heads _lowerCAmelCase : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : List[Any] = decoder_seq_length + 3 _lowerCAmelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase : Optional[Any] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_A ,_A )] ,dim=1 ) _lowerCAmelCase : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self.num_layers _lowerCAmelCase : List[Any] = min(_A ,_A ) _lowerCAmelCase : str = max(_A ,_A ) - min_num_layers _lowerCAmelCase : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. _lowerCAmelCase : Dict = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_A ,_A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,_A ,_A ,_A ,_A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase, _lowerCAmelCase : List[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase : str = seqlen + 2 _lowerCAmelCase, _lowerCAmelCase : Dict = self.num_layers _lowerCAmelCase, _lowerCAmelCase : Any = self.num_attention_heads _lowerCAmelCase : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : Optional[int] = common_inputs['attention_mask'].dtype _lowerCAmelCase : Dict = torch.cat( [common_inputs['attention_mask'], torch.ones(_A ,_A ,dtype=_A )] ,dim=1 ) _lowerCAmelCase : str = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : str = compute_effective_axis_dimension( _A ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase : Optional[int] = tokenizer.num_special_tokens_to_add(_A ) _lowerCAmelCase : str = compute_effective_axis_dimension( _A ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase : Tuple = dict(tokenizer(_A ,return_tensors=_A ) ) return common_inputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) elif self.task == "causal-lm": _lowerCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) else: _lowerCAmelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) return common_inputs def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Optional[Any] = super()._flatten_past_key_values_(_A ,_A ,_A ,_A ) else: _lowerCAmelCase : str = super(_A ,self )._flatten_past_key_values_( _A ,_A ,_A ,_A )
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "xlnet" _UpperCAmelCase = ["mems"] _UpperCAmelCase = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,_A=3_2000 ,_A=1024 ,_A=24 ,_A=16 ,_A=4096 ,_A="gelu" ,_A=True ,_A="bi" ,_A=0.0_2 ,_A=1E-12 ,_A=0.1 ,_A=512 ,_A=None ,_A=True ,_A=False ,_A=False ,_A=-1 ,_A=False ,_A="last" ,_A=True ,_A="tanh" ,_A=0.1 ,_A=5 ,_A=5 ,_A=5 ,_A=1 ,_A=2 ,**_A ,): '''simple docstring''' _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Optional[int] = d_model _lowerCAmelCase : Dict = n_layer _lowerCAmelCase : int = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) _lowerCAmelCase : List[Any] = d_model // n_head _lowerCAmelCase : List[Any] = ff_activation _lowerCAmelCase : List[str] = d_inner _lowerCAmelCase : int = untie_r _lowerCAmelCase : int = attn_type _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Optional[Any] = dropout _lowerCAmelCase : Any = mem_len _lowerCAmelCase : List[str] = reuse_len _lowerCAmelCase : List[str] = bi_data _lowerCAmelCase : Any = clamp_len _lowerCAmelCase : Dict = same_length _lowerCAmelCase : List[str] = summary_type _lowerCAmelCase : Optional[Any] = summary_use_proj _lowerCAmelCase : int = summary_activation _lowerCAmelCase : str = summary_last_dropout _lowerCAmelCase : Any = start_n_top _lowerCAmelCase : List[Any] = end_n_top _lowerCAmelCase : Dict = bos_token_id _lowerCAmelCase : List[Any] = pad_token_id _lowerCAmelCase : Any = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' ,_A ,) _lowerCAmelCase : List[Any] = kwargs['use_cache'] _lowerCAmelCase : str = use_mems_eval _lowerCAmelCase : Optional[int] = use_mems_train super().__init__(pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,**_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __lowerCamelCase ( self ,_A ): '''simple docstring''' raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations _lowerCAmelCase = list[tuple[int, int]] _lowerCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCAmelCase = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __UpperCamelCase : def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = pos_x _lowerCAmelCase : int = pos_y _lowerCAmelCase : Union[str, Any] = (pos_y, pos_x) _lowerCAmelCase : List[str] = goal_x _lowerCAmelCase : Optional[Any] = goal_y _lowerCAmelCase : Optional[Any] = g_cost _lowerCAmelCase : str = parent _lowerCAmelCase : Dict = self.calculate_heuristic() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = abs(self.pos_x - self.goal_x ) _lowerCAmelCase : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self ,_A ): '''simple docstring''' return self.f_cost < other.f_cost class __UpperCamelCase : def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_A ) _lowerCAmelCase : int = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_9999 ,_A ) _lowerCAmelCase : List[str] = [self.start] _lowerCAmelCase : list[Node] = [] _lowerCAmelCase : Union[str, Any] = False def __lowerCamelCase ( self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : List[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCAmelCase : Any = True return self.retrace_path(_A ) self.closed_nodes.append(_A ) _lowerCAmelCase : Dict = self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path _lowerCAmelCase : Any = self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) if not self.reached: return [self.start.pos] return None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for action in delta: _lowerCAmelCase : List[str] = parent.pos_x + action[1] _lowerCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A ,_A ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_A ,) ) return successors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = node _lowerCAmelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : Any = current_node.parent path.reverse() return path if __name__ == "__main__": _lowerCAmelCase = (0, 0) _lowerCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") _lowerCAmelCase = GreedyBestFirst(init, goal) _lowerCAmelCase = greedy_bf.search() if path: for pos_x, pos_y in path: _lowerCAmelCase = 2 for elem in grid: print(elem)
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCAmelCase = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _lowerCAmelCase = dataset.iloc[:, 1:2].values _lowerCAmelCase = dataset.iloc[:, 2].values _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCAmelCase = PolynomialFeatures(degree=4) _lowerCAmelCase = poly_reg.fit_transform(X) _lowerCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def lowerCamelCase__ ( ): '''simple docstring''' plt.scatter(_lowerCamelCase , _lowerCamelCase , color='red' ) plt.plot(_lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(_lowerCamelCase ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowerCAmelCase = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } _lowerCAmelCase = { """camembert-base""": 5_1_2, } _lowerCAmelCase = """▁""" class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=["<s>NOTUSED", "</s>NOTUSED"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : int = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _lowerCAmelCase : Tuple = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _lowerCAmelCase : Optional[int] = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} _lowerCAmelCase : List[str] = len(self.fairseq_tokens_to_ids ) _lowerCAmelCase : Union[str, Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _lowerCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] _lowerCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.encode(_A ,out_type=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = '' _lowerCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(_A ) _lowerCAmelCase : Union[str, Any] = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : int = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" _lowerCAmelCase = 8.31_4462 # Unit - J mol-1 K-1 def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if index == len(_lowerCamelCase ): return True # Recursive Step for i in range(_lowerCamelCase ): if valid_coloring(graph[index] , _lowerCamelCase , _lowerCamelCase ): # Color current vertex _lowerCAmelCase : Any = i # Validate coloring if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index + 1 ): return True # Backtrack _lowerCAmelCase : int = -1 return False def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [-1] * len(_lowerCamelCase ) if util_color(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , 0 ): return colored_vertices return []
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" from math import ceil, sqrt def lowerCamelCase__ ( _lowerCamelCase = 1000000 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCAmelCase : List[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCAmelCase : List[Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = None if token is not None: _lowerCAmelCase : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} _lowerCAmelCase : List[str] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _lowerCAmelCase : List[Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() _lowerCAmelCase : int = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) _lowerCAmelCase : Union[str, Any] = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCamelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Dict = None if token is not None: _lowerCAmelCase : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} _lowerCAmelCase : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _lowerCAmelCase : List[Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase ).json() _lowerCAmelCase : Union[str, Any] = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) _lowerCAmelCase : int = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_lowerCamelCase ): _lowerCAmelCase : str = requests.get(url + f"""&page={i + 2}""" , headers=_lowerCamelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = None if token is not None: _lowerCAmelCase : List[Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} _lowerCAmelCase : Union[str, Any] = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = result.headers['Location'] _lowerCAmelCase : Optional[Any] = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase ) _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , f"""{artifact_name}.zip""" ) with open(_lowerCamelCase , 'wb' ) as fp: fp.write(response.content ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Any = [] _lowerCAmelCase : Dict = [] _lowerCAmelCase : Union[str, Any] = None with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCamelCase ) as f: for line in f: _lowerCAmelCase : Any = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase : Any = line[: line.index(': ' )] _lowerCAmelCase : List[str] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed _lowerCAmelCase : List[Any] = line[len('FAILED ' ) :] failed_tests.append(_lowerCamelCase ) elif filename == "job_name.txt": _lowerCAmelCase : List[str] = line if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase )} for `errors` """ f"""and {len(_lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) _lowerCAmelCase : Dict = None if job_name and job_links: _lowerCAmelCase : Tuple = job_links.get(_lowerCamelCase , _lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase : List[str] = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase )] return result def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase ) ) return errors def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Tuple = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase : Optional[Any] = counter.most_common() _lowerCAmelCase : Optional[int] = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase : Optional[int] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase : List[Any] = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = test.split('::' )[0] if test.startswith('tests/models/' ): _lowerCAmelCase : List[str] = test.split('/' )[2] else: _lowerCAmelCase : Tuple = None return test def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase : List[Any] = [x for x in logs if x[2] is not None] _lowerCAmelCase : Optional[Any] = {x[2] for x in logs} _lowerCAmelCase : Optional[Any] = {} for test in tests: _lowerCAmelCase : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase : List[str] = counter.most_common() _lowerCAmelCase : str = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase : Dict = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase : Union[str, Any] = {'count': n_errors, 'errors': error_counts} _lowerCAmelCase : Optional[Any] = dict(sorted(r.items() , key=lambda _lowerCamelCase : item[1]["count"] , reverse=_lowerCamelCase ) ) return r def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = '| no. | error | status |' _lowerCAmelCase : Any = '|-:|:-|:-|' _lowerCAmelCase : Dict = [header, sep] for error in reduced_by_error: _lowerCAmelCase : Optional[Any] = reduced_by_error[error]['count'] _lowerCAmelCase : Any = f"""| {count} | {error[:100]} | |""" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = '| model | no. of errors | major error | count |' _lowerCAmelCase : Dict = '|-:|-:|-:|-:|' _lowerCAmelCase : str = [header, sep] for model in reduced_by_model: _lowerCAmelCase : Dict = reduced_by_model[model]['count'] _lowerCAmelCase, _lowerCAmelCase : Tuple = list(reduced_by_model[model]['errors'].items() )[0] _lowerCAmelCase : Union[str, Any] = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(_lowerCamelCase ) return "\n".join(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _lowerCAmelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowerCAmelCase = get_job_links(args.workflow_run_id, token=args.token) _lowerCAmelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowerCAmelCase = k.find(""" / """) _lowerCAmelCase = k[index + len(""" / """) :] _lowerCAmelCase = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowerCAmelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowerCAmelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowerCAmelCase = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowerCAmelCase = reduce_by_error(errors) _lowerCAmelCase = reduce_by_model(errors) _lowerCAmelCase = make_github_table(reduced_by_error) _lowerCAmelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=13 ,_A=30 ,_A=2 ,_A=3 ,_A=True ,_A=True ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=10 ,_A=0.0_2 ,): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_A ,initializer_range=self.initializer_range ,) return config, pixel_values def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = FlaxViTModel(config=_A ) _lowerCAmelCase : str = model(_A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : str = (self.image_size, self.image_size) _lowerCAmelCase : Optional[Any] = (self.patch_size, self.patch_size) _lowerCAmelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = self.type_sequence_label_size _lowerCAmelCase : Optional[Any] = FlaxViTForImageClassification(config=_A ) _lowerCAmelCase : str = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : Tuple = FlaxViTForImageClassification(_A ) _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = model(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = FlaxViTModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(_A ) _lowerCAmelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : List[str] = self._prepare_for_class(_A ,_A ) _lowerCAmelCase : Optional[Any] = model_class(_A ) @jax.jit def model_jitted(_A ,**_A ): return model(pixel_values=_A ,**_A ) with self.subTest('JIT Enabled' ): _lowerCAmelCase : Any = model_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCAmelCase : Dict = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) ,len(_A ) ) for jitted_output, output in zip(_A ,_A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Any = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _lowerCAmelCase : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_A )
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "swin" _UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,_A=224 ,_A=4 ,_A=3 ,_A=96 ,_A=[2, 2, 6, 2] ,_A=[3, 6, 12, 24] ,_A=7 ,_A=4.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=32 ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : str = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Optional[Any] = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : Any = len(_A ) _lowerCAmelCase : Union[str, Any] = num_heads _lowerCAmelCase : Dict = window_size _lowerCAmelCase : Dict = mlp_ratio _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : int = drop_path_rate _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(_A ) - 1) ) _lowerCAmelCase : Optional[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase, _lowerCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" import os def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = os.path.join(os.path.dirname(_lowerCamelCase ) , 'num.txt' ) with open(_lowerCamelCase ) as file_hand: return str(sum(int(_lowerCamelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from itertools import product def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = sides_number _lowerCAmelCase : Optional[Any] = max_face_number * dice_number _lowerCAmelCase : List[str] = [0] * (max_total + 1) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Any = range(_lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(_lowerCamelCase , repeat=_lowerCamelCase ): _lowerCAmelCase : Any = sum(_lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCAmelCase : Dict = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[int] = 9 _lowerCAmelCase : Optional[Any] = 4 * 9 _lowerCAmelCase : Dict = 6 for peter_total in range(_lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCAmelCase : Tuple = (4**9) * (6**6) _lowerCAmelCase : Union[str, Any] = peter_wins_count / total_games_number _lowerCAmelCase : Any = round(_lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from collections import deque from .hash_table import HashTable class __UpperCamelCase ( a__ ): def __init__( self ,*_A ,**_A ): '''simple docstring''' super().__init__(*_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_A ) _lowerCAmelCase : Optional[int] = self.values[key] def __lowerCamelCase ( self ): '''simple docstring''' return ( sum(self.charge_factor - len(_A ) for slot in self.values ) / self.size_table * self.charge_factor ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_A ) == 0 ): return key return super()._collision_resolution(_A ,_A )
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "camembert" def __init__( self ,_A=3_0522 ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=2 ,_A=0.0_2 ,_A=1E-12 ,_A=1 ,_A=0 ,_A=2 ,_A="absolute" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__(pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,**_A ) _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Dict = use_cache _lowerCAmelCase : int = classifier_dropout class __UpperCamelCase ( a__ ): @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" from datetime import datetime as dt import os from github import Github _lowerCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Github(os.environ['GITHUB_TOKEN'] ) _lowerCAmelCase : Union[str, Any] = g.get_repo('huggingface/transformers' ) _lowerCAmelCase : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _lowerCAmelCase : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase : i.created_at , reverse=_lowerCamelCase ) _lowerCAmelCase : Tuple = comments[0] if len(_lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCAmelCase = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if "://" in dataset_path: _lowerCAmelCase : int = dataset_path.split('://' )[1] return dataset_path def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = not is_remote_filesystem(_lowerCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_lowerCamelCase ) , fs._strip_protocol(_lowerCamelCase ) ) else: fs.mv(_lowerCamelCase , _lowerCamelCase , recursive=_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[str] = None _lowerCAmelCase : Optional[int] = threading.Lock()
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TapasConfig.from_json_file(_lowerCamelCase ) # set absolute/relative position embeddings parameter _lowerCAmelCase : Optional[int] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _lowerCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCamelCase ) elif task == "WTQ": # run_task_main.py hparams _lowerCAmelCase : Any = 4 _lowerCAmelCase : Optional[int] = True # hparam_utils.py hparams _lowerCAmelCase : Any = 0.664694 _lowerCAmelCase : str = 0.207951 _lowerCAmelCase : List[Any] = 0.121194 _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : str = 0.0352513 _lowerCAmelCase : int = TapasForQuestionAnswering(config=_lowerCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _lowerCAmelCase : Tuple = 4 _lowerCAmelCase : Any = False # hparam_utils.py hparams _lowerCAmelCase : List[Any] = 36.4519 _lowerCAmelCase : List[Any] = 0.903421 _lowerCAmelCase : int = 222.088 _lowerCAmelCase : Dict = True _lowerCAmelCase : Tuple = True _lowerCAmelCase : List[str] = True _lowerCAmelCase : Tuple = 0.763141 _lowerCAmelCase : Optional[int] = TapasForQuestionAnswering(config=_lowerCamelCase ) elif task == "TABFACT": _lowerCAmelCase : Optional[Any] = TapasForSequenceClassification(config=_lowerCamelCase ) elif task == "MLM": _lowerCAmelCase : Union[str, Any] = TapasForMaskedLM(config=_lowerCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": _lowerCAmelCase : List[Any] = TapasModel(config=_lowerCamelCase ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCamelCase ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) _lowerCAmelCase : List[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(_lowerCamelCase ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=_A ,) assert hasattr(self ,'env' ) def __lowerCamelCase ( self ,_A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"""{self.env.base_job_name}-single""" ,instance_count=_A ,instance_type=self.instance_type ,debugger_hook_config=_A ,hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,py_version='py36' ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.create_estimator() # run training estimator.fit() # result dataframe _lowerCAmelCase : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowerCAmelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,_A )
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import numpy as np def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return vector * sigmoid(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if rng is None: _lowerCAmelCase : List[Any] = random.Random() _lowerCAmelCase : Dict = 1 for dim in shape: total_dims *= dim _lowerCAmelCase : Optional[Any] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCAmelCase : int = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Tuple = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCAmelCase : str = 1 return attn_mask @require_flax class __UpperCamelCase : _UpperCAmelCase = None _UpperCAmelCase = () def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : Union[str, Any] = inputs['input_ids'].shape[-1] // 2 _lowerCAmelCase : Tuple = inputs['input_ids'][:max_batch_size, :sequence_length] _lowerCAmelCase : int = jnp.ones_like(_A ) _lowerCAmelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCAmelCase : List[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCAmelCase : Union[str, Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self._get_input_ids_and_config() _lowerCAmelCase : Dict = False _lowerCAmelCase : Dict = max_length _lowerCAmelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Dict = model_class(_A ) _lowerCAmelCase : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase : List[str] = getattr(_A ,_A ) _lowerCAmelCase : Union[str, Any] = pt_model_class(_A ).eval() _lowerCAmelCase : Tuple = load_flax_weights_in_pytorch_model(_A ,flax_model.params ) _lowerCAmelCase : Union[str, Any] = flax_model.generate(_A ).sequences _lowerCAmelCase : str = pt_model.generate(torch.tensor(_A ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCAmelCase : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() _lowerCAmelCase : str = False _lowerCAmelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(_A ) _lowerCAmelCase : Union[str, Any] = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : Any = jit(model.generate ) _lowerCAmelCase : Dict = jit_generate(_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Any = self._get_input_ids_and_config() _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Tuple = model_class(_A ) _lowerCAmelCase : Any = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : Optional[Any] = jit(model.generate ) _lowerCAmelCase : Tuple = jit_generate(_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self._get_input_ids_and_config() _lowerCAmelCase : str = False _lowerCAmelCase : List[str] = max_length _lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(_A ) _lowerCAmelCase : Tuple = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : Optional[Any] = jit_generate(_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() _lowerCAmelCase : int = False _lowerCAmelCase : Dict = max_length _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : List[str] = 2 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(_A ) _lowerCAmelCase : str = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Any = self._get_input_ids_and_config() _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : int = max_length _lowerCAmelCase : str = 0.8 _lowerCAmelCase : List[Any] = 10 _lowerCAmelCase : Any = 0.3 _lowerCAmelCase : int = 1 _lowerCAmelCase : int = 8 _lowerCAmelCase : Tuple = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(_A ) _lowerCAmelCase : Any = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : Any = jit(model.generate ) _lowerCAmelCase : Optional[int] = jit_generate(_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCAmelCase : Dict = max_length _lowerCAmelCase : int = 1 _lowerCAmelCase : str = 8 _lowerCAmelCase : Optional[int] = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : str = jit(model.generate ) _lowerCAmelCase : Union[str, Any] = jit_generate(_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = self._get_input_ids_and_config() _lowerCAmelCase : Optional[Any] = max_length _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : List[Any] = 8 _lowerCAmelCase : List[str] = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[str] = model_class(_A ) _lowerCAmelCase : List[Any] = model.generate(_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : str = jit(model.generate ) _lowerCAmelCase : str = jit_generate(_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : Union[str, Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[str] = model_class(_A ) _lowerCAmelCase : Optional[int] = model.generate(_A ,attention_mask=_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : Optional[int] = jit(model.generate ) _lowerCAmelCase : Optional[Any] = jit_generate(_A ,attention_mask=_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : Dict = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : str = model_class(_A ) _lowerCAmelCase : Any = model.generate(_A ,attention_mask=_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : Any = jit(model.generate ) _lowerCAmelCase : Dict = jit_generate(_A ,attention_mask=_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : Optional[int] = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(_A ) _lowerCAmelCase : Union[str, Any] = model.generate(_A ,attention_mask=_A ).sequences self.assertEqual(generation_outputs.shape[-1] ,_A ) _lowerCAmelCase : Any = jit(model.generate ) _lowerCAmelCase : Any = jit_generate(_A ,attention_mask=_A ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) _lowerCAmelCase : List[Any] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _lowerCAmelCase : Any = 'Hello world' _lowerCAmelCase : Tuple = tokenizer(_A ,return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_A ,'do_samples' ): model.generate(_A ,do_samples=_A ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_A ,'foo' ): _lowerCAmelCase : List[Any] = {'foo': 'bar'} model.generate(_A ,**_A )
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCAmelCase : Dict = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _lowerCAmelCase : Dict = value else: _lowerCAmelCase : Any = value return new_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = '' if is_panoptic: _lowerCAmelCase : Optional[Any] = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Tuple = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : List[Any] = in_proj_bias[:256] _lowerCAmelCase : Dict = in_proj_weight[256:512, :] _lowerCAmelCase : Union[str, Any] = in_proj_bias[256:512] _lowerCAmelCase : Any = in_proj_weight[-256:, :] _lowerCAmelCase : Any = in_proj_bias[-256:] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _lowerCAmelCase : Dict = 'resnet101' if "dc5" in model_name: _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Dict = 'panoptic' in model_name if is_panoptic: _lowerCAmelCase : List[str] = 250 else: _lowerCAmelCase : str = 91 _lowerCAmelCase : Any = 'huggingface/label-files' _lowerCAmelCase : List[str] = 'coco-detection-id2label.json' _lowerCAmelCase : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Union[str, Any] = idalabel _lowerCAmelCase : Any = {v: k for k, v in idalabel.items()} # load image processor _lowerCAmelCase : Optional[int] = 'coco_panoptic' if is_panoptic else 'coco_detection' _lowerCAmelCase : str = ConditionalDetrImageProcessor(format=_lowerCamelCase ) # prepare image _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : int = image_processor(images=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase : Dict = encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub _lowerCAmelCase : Any = torch.hub.load('DeppMeng/ConditionalDETR' , _lowerCamelCase , pretrained=_lowerCamelCase ).eval() _lowerCAmelCase : Union[str, Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _lowerCAmelCase : Optional[Any] = 'conditional_detr.' + src rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = rename_backbone_keys(_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase , is_panoptic=_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Dict = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _lowerCAmelCase : List[Any] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCAmelCase : Any = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Dict = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _lowerCAmelCase : str = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : List[str] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : str = ConditionalDetrForSegmentation(_lowerCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() model.push_to_hub(repo_id=_lowerCamelCase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion _lowerCAmelCase : List[Any] = conditional_detr(_lowerCamelCase ) _lowerCAmelCase : Dict = model(_lowerCamelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _lowerCAmelCase = getLogger(__name__) _lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 8 , _lowerCamelCase = DEFAULT_DEVICE , _lowerCamelCase=False , _lowerCamelCase="summarization" , _lowerCamelCase=None , **_lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = Path(_lowerCamelCase ).open('w' , encoding='utf-8' ) _lowerCAmelCase : int = str(_lowerCamelCase ) _lowerCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if fpaa: _lowerCAmelCase : List[Any] = model.half() _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowerCAmelCase : Optional[Any] = time.time() # update config with task specific params use_task_specific_params(_lowerCamelCase , _lowerCamelCase ) if prefix is None: _lowerCAmelCase : Optional[Any] = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_lowerCamelCase , _lowerCamelCase ) ) ): _lowerCAmelCase : Union[str, Any] = [prefix + text for text in examples_chunk] _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , return_tensors='pt' , truncation=_lowerCamelCase , padding='longest' ).to(_lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCamelCase , ) _lowerCAmelCase : int = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowerCAmelCase : str = int(time.time() - start_time ) # seconds _lowerCAmelCase : Tuple = len(_lowerCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ): '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowerCamelCase__ ( _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument('model_name' , type=_lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_lowerCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_lowerCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_lowerCamelCase , required=_lowerCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_lowerCamelCase , required=_lowerCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_lowerCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_lowerCamelCase , default=8 , required=_lowerCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_lowerCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowerCAmelCase, _lowerCAmelCase : Any = parser.parse_known_args() _lowerCAmelCase : Optional[Any] = parse_numeric_n_bool_cl_kwargs(_lowerCamelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _lowerCAmelCase : List[Any] = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowerCAmelCase : Dict = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowerCAmelCase : str = generate_summaries_or_translations( _lowerCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCamelCase , ) if args.reference_path is None: return {} # Compute scores _lowerCAmelCase : Dict = calculate_bleu if 'translation' in args.task else calculate_rouge _lowerCAmelCase : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] _lowerCAmelCase : List[str] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCamelCase )] _lowerCAmelCase : dict = score_fn(_lowerCamelCase , _lowerCamelCase ) scores.update(_lowerCamelCase ) if args.dump_args: scores.update(_lowerCamelCase ) if args.info: _lowerCAmelCase : Any = args.info if verbose: print(_lowerCamelCase ) if args.score_path is not None: json.dump(_lowerCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError('String lengths must match!' ) _lowerCAmelCase : int = 0 for chara, chara in zip(_lowerCamelCase , _lowerCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "resnet" _UpperCAmelCase = ["basic", "bottleneck"] def __init__( self ,_A=3 ,_A=64 ,_A=[256, 512, 1024, 2048] ,_A=[3, 4, 6, 3] ,_A="bottleneck" ,_A="relu" ,_A=False ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Optional[int] = embedding_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : int = depths _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Any = downsample_in_first_stage _lowerCAmelCase : Union[str, Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase, _lowerCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-3
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = BertJapaneseTokenizer _UpperCAmelCase = False _UpperCAmelCase = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : Tuple = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] _lowerCAmelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = 'こんにちは、世界。 \nこんばんは、世界。' _lowerCAmelCase : List[str] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.get_input_output_texts(_A ) _lowerCAmelCase : List[str] = tokenizer.encode(_A ,add_special_tokens=_A ) _lowerCAmelCase : Optional[Any] = tokenizer.decode(_A ,clean_up_tokenization_spaces=_A ) return text, ids def __lowerCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __lowerCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __lowerCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase : Tuple = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_A ,['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='mecab' ) self.assertIsNotNone(_A ) _lowerCAmelCase : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(_A ) self.assertListEqual(_A ,['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname ,'tokenizer.bin' ) with open(_A ,'wb' ) as handle: pickle.dump(_A ,_A ) with open(_A ,'rb' ) as handle: _lowerCAmelCase : Optional[int] = pickle.load(_A ) _lowerCAmelCase : Optional[int] = tokenizer_new.tokenize(_A ) self.assertListEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] ,) def __lowerCamelCase ( self ): '''simple docstring''' try: _lowerCAmelCase : Any = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] ,) def __lowerCamelCase ( self ): '''simple docstring''' try: _lowerCAmelCase : int = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = MecabTokenizer(do_lower_case=_A ,mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] ,) def __lowerCamelCase ( self ): '''simple docstring''' try: _lowerCAmelCase : List[str] = MecabTokenizer( do_lower_case=_A ,normalize_text=_A ,mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = MecabTokenizer(normalize_text=_A ,mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] ,) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='sudachi' ) self.assertIsNotNone(_A ) _lowerCAmelCase : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' _lowerCAmelCase : str = tokenizer.tokenize(_A ) self.assertListEqual(_A ,['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname ,'tokenizer.bin' ) with open(_A ,'wb' ) as handle: pickle.dump(_A ,_A ) with open(_A ,'rb' ) as handle: _lowerCAmelCase : Any = pickle.load(_A ) _lowerCAmelCase : Tuple = tokenizer_new.tokenize(_A ) self.assertListEqual(_A ,_A ) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,[' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] ,) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = SudachiTokenizer(sudachi_dict_type='core' ,sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) ,['外国', '人', '参政', '権'] ) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = SudachiTokenizer(sudachi_dict_type='core' ,sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) ,['外国人', '参政権'] ) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = SudachiTokenizer(sudachi_dict_type='core' ,sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) ,['外国人参政権'] ) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SudachiTokenizer(do_lower_case=_A ,sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,[' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] ,) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = SudachiTokenizer(normalize_text=_A ,sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,[' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] ,) @require_sudachi def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = SudachiTokenizer(trim_whitespace=_A ,sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] ,) @require_jumanpp def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_A ) _lowerCAmelCase : Dict = 'こんにちは、世界。\nこんばんは、世界。' _lowerCAmelCase : List[Any] = tokenizer.tokenize(_A ) self.assertListEqual(_A ,['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname ,'tokenizer.bin' ) with open(_A ,'wb' ) as handle: pickle.dump(_A ,_A ) with open(_A ,'rb' ) as handle: _lowerCAmelCase : str = pickle.load(_A ) _lowerCAmelCase : List[str] = tokenizer_new.tokenize(_A ) self.assertListEqual(_A ,_A ) @require_jumanpp def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] ,) @require_jumanpp def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = JumanppTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] ,) @require_jumanpp def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = JumanppTokenizer(normalize_text=_A ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] ,) @require_jumanpp def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = JumanppTokenizer(trim_whitespace=_A ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) ,['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] ,) @require_jumanpp def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) ,['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] _lowerCAmelCase : Any = {} for i, token in enumerate(_A ): _lowerCAmelCase : int = i _lowerCAmelCase : Tuple = WordpieceTokenizer(vocab=_A ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) ,['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) ,['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) ,['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _lowerCAmelCase : int = tokenizer.subword_tokenizer _lowerCAmelCase : Optional[Any] = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_A ,['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _lowerCAmelCase : Union[str, Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_A ,['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _lowerCAmelCase : List[str] = tokenizer.encode('ありがとう。' ,add_special_tokens=_A ) _lowerCAmelCase : Optional[Any] = tokenizer.encode('どういたしまして。' ,add_special_tokens=_A ) _lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_A ) _lowerCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(_A ,_A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = BertJapaneseTokenizer _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _lowerCAmelCase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type='character' ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'こんにちは、世界。 \nこんばんは、世界。' _lowerCAmelCase : int = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __lowerCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __lowerCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type='character' ) _lowerCAmelCase : Any = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _A ,['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _lowerCAmelCase : Tuple = {} for i, token in enumerate(_A ): _lowerCAmelCase : int = i _lowerCAmelCase : Dict = CharacterTokenizer(vocab=_A ,unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) ,[] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) ,['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) ,['こ', 'ん', 'に', 'ち', '[UNK]'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _lowerCAmelCase : List[str] = tokenizer.encode('ありがとう。' ,add_special_tokens=_A ) _lowerCAmelCase : Dict = tokenizer.encode('どういたしまして。' ,add_special_tokens=_A ) _lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(_A ) _lowerCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(_A ,_A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cl-tohoku/bert-base-japanese' _lowerCAmelCase : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A ,_A ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' ,level='WARNING' ) as cm: BertTokenizer.from_pretrained(_A ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _lowerCAmelCase : Tuple = 'bert-base-cased' with self.assertLogs('transformers' ,level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_A ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" from math import ceil def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = list(range(0 , _lowerCamelCase ) ) _lowerCAmelCase : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _lowerCAmelCase : Tuple = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCamelCase ) # Missing blocks _lowerCAmelCase : Optional[int] = [i for i in blocks if i not in device_map_blocks] _lowerCAmelCase : int = [i for i in device_map_blocks if i not in blocks] if len(_lowerCamelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = list(range(_lowerCamelCase ) ) _lowerCAmelCase : Dict = int(ceil(n_layers / len(_lowerCamelCase ) ) ) _lowerCAmelCase : List[str] = [layers[i : i + n_blocks] for i in range(0 , _lowerCamelCase , _lowerCamelCase )] return dict(zip(_lowerCamelCase , _lowerCamelCase ) )
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : str = 250 _lowerCAmelCase : str = ids_tensor((batch_size, length) ,_A ) _lowerCAmelCase : Optional[int] = torch.ones((batch_size, length) ,device=_A ,dtype=torch.float ) / length return input_ids, scores def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Any = self._get_tensors(5 ) _lowerCAmelCase : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase, _lowerCAmelCase : Dict = self._get_tensors(9 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase, _lowerCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = MaxLengthCriteria(max_length=10 ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = self._get_tensors(5 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase, _lowerCAmelCase : Any = self._get_tensors(9 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase, _lowerCAmelCase : int = self._get_tensors(10 ) self.assertTrue(criteria(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5 ) _lowerCAmelCase, _lowerCAmelCase : str = self._get_tensors(5 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase, _lowerCAmelCase : Dict = self._get_tensors(10 ) self.assertTrue(criteria(_A ,_A ) ) _lowerCAmelCase : List[Any] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length ,10 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_tensors(5 ) _lowerCAmelCase : int = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A ,_A ) ) _lowerCAmelCase : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,11 ) _lowerCAmelCase : List[Any] = validate_stopping_criteria(StoppingCriteriaList() ,11 ) self.assertEqual(len(_A ) ,1 )
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowerCAmelCase = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(4_2) _lowerCAmelCase = """sshleifer/student_marian_en_ro_6_1""" _lowerCAmelCase = """sshleifer/tiny-mbart""" @require_torch class __UpperCamelCase ( a__ ): def __lowerCamelCase ( self ,_A=False ,_A=None ,_A=True ,_A=True ,_A=True ,_A=True ,): '''simple docstring''' _lowerCAmelCase : Any = self.run_trainer( eval_steps=1 ,max_len=12 ,model_name=_A ,num_train_epochs=1 ,distributed=_A ,extra_args_str=_A ,predict_with_generate=_A ,do_train=_A ,do_eval=_A ,do_predict=_A ,) _lowerCAmelCase : Optional[Any] = TrainerState.load_from_json(os.path.join(_A ,'trainer_state.json' ) ).log_history if not do_eval: return _lowerCAmelCase : Tuple = [log for log in logs if 'eval_loss' in log.keys()] _lowerCAmelCase : Union[str, Any] = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _lowerCAmelCase : List[str] = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] ,_A ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=_A ) @require_torch_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=_A ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=_A ,extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=_A ,extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=_A ,extra_args_str='--sharded_ddp zero_dp_2' ,predict_with_generate=_A ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick( distributed=_A ,extra_args_str='--sharded_ddp zero_dp_2 --fp16' ,predict_with_generate=_A ) @require_apex @require_torch_gpu def __lowerCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=_A ,extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_A ,extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } _lowerCAmelCase : int = experiments[experiment_id] _lowerCAmelCase : List[Any] = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} _lowerCAmelCase : Tuple = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**_A ,extra_args_str=data['extra_args_str'] ) _lowerCAmelCase : int = len(re.findall(_A ,cl.err ) ) self.assertEqual(_A ,data['n_matches'] ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.run_trainer( eval_steps=2 ,max_len=128 ,model_name=_A ,learning_rate=3E-4 ,num_train_epochs=10 ,distributed=_A ,) # Check metrics _lowerCAmelCase : Tuple = TrainerState.load_from_json(os.path.join(_A ,'trainer_state.json' ) ).log_history _lowerCAmelCase : Union[str, Any] = [log for log in logs if 'eval_loss' in log.keys()] _lowerCAmelCase : int = eval_metrics[0] _lowerCAmelCase : List[str] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] ,_A ) # test if do_predict saves generations and metrics _lowerCAmelCase : str = os.listdir(_A ) _lowerCAmelCase : Dict = {os.path.basename(_A ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCamelCase ( self ): '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(_A ) -> Tuple[int, float]: _lowerCAmelCase : List[str] = '--skip_memory_metrics 0' _lowerCAmelCase : str = self.run_trainer( max_len=128 ,model_name=_A ,learning_rate=3E-4 ,num_train_epochs=1 ,optim=_A ,distributed=_A ,extra_args_str=_A ,do_eval=_A ,do_predict=_A ,n_gpus_to_use=1 ,) # Check metrics _lowerCAmelCase : str = TrainerState.load_from_json(Path(_A ,'trainer_state.json' ) ).log_history _lowerCAmelCase : List[Any] = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 ) _lowerCAmelCase : List[str] = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 ) _lowerCAmelCase : Optional[Any] = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _lowerCAmelCase : Union[str, Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _lowerCAmelCase : List[str] = gpu_peak_mem_orig + gpu_alloc_mem_orig _lowerCAmelCase : List[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _lowerCAmelCase : List[str] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _lowerCAmelCase : Any = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _A ,_A ,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" ,) self.assertGreater( _A ,_A ,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" ,) self.assertEqual( _A ,_A ,F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = 3E-3 ,_A = "adafactor" ,_A = False ,_A = None ,_A = 0 ,_A = True ,_A = True ,_A = True ,_A = True ,_A = None ,): '''simple docstring''' _lowerCAmelCase : int = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = F""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(_A )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(_A )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() _lowerCAmelCase : Dict = F""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(_A )} """.split() _lowerCAmelCase : List[str] = '\n --do_predict\n '.split() _lowerCAmelCase : int = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _lowerCAmelCase : List[Any] = get_gpu_count() _lowerCAmelCase : List[str] = get_torch_dist_unique_port() _lowerCAmelCase : Tuple = F""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() _lowerCAmelCase : Optional[int] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_A ,env=self.get_env() ) else: _lowerCAmelCase : Optional[Any] = ['run_translation.py'] + args with patch.object(_A ,'argv' ,_A ): main() return output_dir
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = BertConfig.from_json_file(_lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) _lowerCAmelCase : List[Any] = BertForPreTraining(_lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=_A ,) assert hasattr(self ,'env' ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = { 'enabled': True, 'processes_per_host': 8, } _lowerCAmelCase : Dict = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _lowerCAmelCase : List[str] = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _lowerCAmelCase : Dict = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" ,instance_count=_A ,instance_type=self.instance_type ,debugger_hook_config=_A ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } ,metric_definitions=self.env.metric_definitions ,distribution=_A ,py_version='py36' ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = self.create_estimator(_A ) # run training estimator.fit() # result dataframe _lowerCAmelCase : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,_A )
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCAmelCase = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,'schedulers/' ) ) _lowerCAmelCase : Optional[Any] = self.diffusers_dir shutil.copy( os.path.join(A__ ,'src/diffusers/schedulers/scheduling_ddpm.py' ) ,os.path.join(self.diffusers_dir ,'schedulers/scheduling_ddpm.py' ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _lowerCAmelCase : Union[str, Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _lowerCAmelCase : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) _lowerCAmelCase : List[str] = black.format_str(A__ ,mode=A__ ) _lowerCAmelCase : int = os.path.join(self.diffusers_dir ,'new_code.py' ) with open(A__ ,'w' ,newline='\n' ) as f: f.write(A__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=A__ ) with open(A__ ,'r' ) as f: self.assertTrue(f.read() ,A__ ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(A__ ,A__ ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' ,'DDPMSchedulerOutput' ,REFERENCE_CODE + '\n' ,) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' ,'DDPMSchedulerOutput' ,A__ ,) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' ,'TestSchedulerOutput' ,re.sub('DDPM' ,'Test' ,A__ ) ,) # Copy consistency with a really long name _lowerCAmelCase : str = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" ,F"""{long_class_name}SchedulerOutput""" ,re.sub('Bert' ,A__ ,A__ ) ,) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' ,'TestSchedulerOutput' ,A__ ,overwrite_result=re.sub('DDPM' ,'Test' ,A__ ) ,)
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.load(__A , map_location='cpu' ) _lowerCAmelCase : List[Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository _lowerCAmelCase : int = {} for k, v in state_dict.items(): if "pred_layer" in k: _lowerCAmelCase : Optional[int] = v else: _lowerCAmelCase : List[Any] = v _lowerCAmelCase : Tuple = chkpt['params'] _lowerCAmelCase : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__A , (torch.FloatTensor, numpy.ndarray) )} _lowerCAmelCase : List[str] = chkpt['dico_word2id'] _lowerCAmelCase : List[Any] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model _lowerCAmelCase : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCAmelCase : Any = pytorch_dump_folder_path + '/' + CONFIG_NAME _lowerCAmelCase : Optional[Any] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__A , __A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__A , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__A , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__A , indent=2 ) + '\n' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import argparse import os import re import packaging.version _lowerCAmelCase = 'examples/' _lowerCAmelCase = { 'examples': (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), 'release = "VERSION"\n'), } _lowerCAmelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } _lowerCAmelCase = 'README.md' def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : Tuple = f.read() _lowerCAmelCase, _lowerCAmelCase : Tuple = REPLACE_PATTERNS[pattern] _lowerCAmelCase : Tuple = replace.replace('VERSION' , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase : str = re_pattern.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(_SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , pattern='examples' ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = '🤗 Transformers currently provides the following architectures' _lowerCAmelCase : List[str] = '1. Want to contribute a new model?' with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : int = f.readlines() # Find the start of the list. _lowerCAmelCase : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _lowerCAmelCase : Union[str, Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: _lowerCAmelCase : Tuple = f.read() _lowerCAmelCase : Tuple = REPLACE_PATTERNS['init'][0].search(_SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _lowerCAmelCase : str = default_version.base_version elif patch: _lowerCAmelCase : Dict = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _lowerCAmelCase : Tuple = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _lowerCAmelCase : int = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: _lowerCAmelCase : Dict = default_version print(f"""Updating version to {version}.""" ) global_version_update(_SCREAMING_SNAKE_CASE , patch=_SCREAMING_SNAKE_CASE ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = get_version() _lowerCAmelCase : str = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _lowerCAmelCase : List[str] = current_version.base_version # Check with the user we got that right. _lowerCAmelCase : str = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: _lowerCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_SCREAMING_SNAKE_CASE ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowerCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" from __future__ import annotations import bisect def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : List[str] = len(_lowerCamelCase ) while lo < hi: _lowerCAmelCase : Union[str, Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCAmelCase : Optional[int] = mid + 1 else: _lowerCAmelCase : Dict = mid return lo def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : int = len(_lowerCamelCase ) while lo < hi: _lowerCAmelCase : List[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCAmelCase : Tuple = mid + 1 else: _lowerCAmelCase : Union[str, Any] = mid return lo def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Tuple = len(_lowerCamelCase ) - 1 while left <= right: _lowerCAmelCase : str = left + (right - left) // 2 _lowerCAmelCase : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCAmelCase : int = midpoint - 1 else: _lowerCAmelCase : Union[str, Any] = midpoint + 1 return None def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase ) if index != len(_lowerCamelCase ) and sorted_collection[index] == item: return index return None def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if right < left: return None _lowerCAmelCase : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = input("""Enter numbers separated by comma:\n""").strip() _lowerCAmelCase = sorted(int(item) for item in user_input.split(""",""")) _lowerCAmelCase = int(input("""Enter a single number to be found in the list:\n""")) _lowerCAmelCase = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] _lowerCAmelCase : Tuple = DisjunctiveConstraint(UpperCamelCase_ ) self.assertTrue(isinstance(dc.token_ids ,UpperCamelCase_ ) ) with self.assertRaises(UpperCamelCase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(UpperCamelCase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCamelCase_ ): DisjunctiveConstraint(UpperCamelCase_ ) # fails here def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [[1, 2, 3], [1, 2, 4]] _lowerCAmelCase : Optional[int] = DisjunctiveConstraint(UpperCamelCase_ ) _lowerCAmelCase : Any = dc.update(1 ) _lowerCAmelCase : Dict = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase : Dict = dc.update(2 ) _lowerCAmelCase : int = stepped is True and completed is False and reset is False self.assertTrue(UpperCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase : Optional[int] = dc.update(3 ) _lowerCAmelCase : str = stepped is True and completed is True and reset is False self.assertTrue(UpperCamelCase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] _lowerCAmelCase : Union[str, Any] = DisjunctiveConstraint(UpperCamelCase_ ) _lowerCAmelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase : int = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) _lowerCAmelCase : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() _lowerCAmelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) _lowerCAmelCase : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) _lowerCAmelCase : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __UpperCamelCase ( lowercase__ ): _UpperCAmelCase = "decision_transformer" _UpperCAmelCase = ["past_key_values"] _UpperCAmelCase = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,_A=17 ,_A=4 ,_A=128 ,_A=4096 ,_A=True ,_A=1 ,_A=1024 ,_A=3 ,_A=1 ,_A=None ,_A="relu" ,_A=0.1 ,_A=0.1 ,_A=0.1 ,_A=1E-5 ,_A=0.0_2 ,_A=True ,_A=True ,_A=5_0256 ,_A=5_0256 ,_A=False ,_A=False ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = state_dim _lowerCAmelCase : Optional[Any] = act_dim _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Optional[int] = max_ep_len _lowerCAmelCase : List[Any] = action_tanh _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : Any = n_positions _lowerCAmelCase : Optional[int] = n_layer _lowerCAmelCase : int = n_head _lowerCAmelCase : Dict = n_inner _lowerCAmelCase : List[Any] = activation_function _lowerCAmelCase : List[Any] = resid_pdrop _lowerCAmelCase : Dict = embd_pdrop _lowerCAmelCase : Any = attn_pdrop _lowerCAmelCase : List[str] = layer_norm_epsilon _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : int = scale_attn_weights _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = scale_attn_by_inverse_layer_idx _lowerCAmelCase : int = reorder_and_upcast_attn _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : Tuple = eos_token_id super().__init__(bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } _lowerCAmelCase = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _lowerCAmelCase : str = 'lm_head' _lowerCAmelCase : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: _lowerCAmelCase : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: _lowerCAmelCase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": _lowerCAmelCase : List[Any] = value elif weight_type == "bias": _lowerCAmelCase : Any = value else: _lowerCAmelCase : Optional[int] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : int = fairseq_model.state_dict() _lowerCAmelCase : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCAmelCase : List[Any] = True else: for key, mapped_key in MAPPING.items(): _lowerCAmelCase : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCAmelCase : Any = True if "*" in mapped_key: _lowerCAmelCase : Any = name.split(lowerCamelCase_ )[0].split('.' )[-2] _lowerCAmelCase : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_ ) if "weight_g" in name: _lowerCAmelCase : int = 'weight_g' elif "weight_v" in name: _lowerCAmelCase : Any = 'weight_v' elif "bias" in name: _lowerCAmelCase : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : Any = 'weight' else: _lowerCAmelCase : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = full_name.split('conv_layers.' )[-1] _lowerCAmelCase : List[Any] = name.split('.' ) _lowerCAmelCase : Any = int(items[0] ) _lowerCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCAmelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowerCAmelCase : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCAmelCase : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ): '''simple docstring''' if config_path is not None: _lowerCAmelCase : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_ ) else: _lowerCAmelCase : int = UniSpeechConfig() if is_finetuned: if dict_path: _lowerCAmelCase : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowerCAmelCase : List[Any] = target_dict.pad_index _lowerCAmelCase : Dict = target_dict.bos_index _lowerCAmelCase : Union[str, Any] = target_dict.eos_index _lowerCAmelCase : Tuple = len(target_dict.symbols ) _lowerCAmelCase : Dict = os.path.join(lowerCamelCase_ , 'vocab.json' ) if not os.path.isdir(lowerCamelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_ ) ) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched _lowerCAmelCase : Any = 42 _lowerCAmelCase : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) _lowerCAmelCase : Optional[Any] = True if config.feat_extract_norm == 'layer' else False _lowerCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) _lowerCAmelCase : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) _lowerCAmelCase : Dict = UniSpeechForCTC(lowerCamelCase_ ) else: _lowerCAmelCase : List[Any] = UniSpeechForPreTraining(lowerCamelCase_ ) if is_finetuned: _lowerCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: _lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowerCAmelCase : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) hf_unispeech.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowerCAmelCase = None _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } _lowerCAmelCase = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off _lowerCAmelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class __UpperCamelCase ( UpperCAmelCase_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = ['input_ids', 'attention_mask'] _UpperCAmelCase = MBartTokenizer _UpperCAmelCase = [] _UpperCAmelCase = [] def __init__( self ,_A=None ,_A=None ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=None ,_A=None ,_A=None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AddedToken(_lowercase ,lstrip=_lowercase ,rstrip=_lowercase ) if isinstance(_lowercase ,_lowercase ) else mask_token super().__init__( vocab_file=_lowercase ,tokenizer_file=_lowercase ,bos_token=_lowercase ,eos_token=_lowercase ,sep_token=_lowercase ,cls_token=_lowercase ,unk_token=_lowercase ,pad_token=_lowercase ,mask_token=_lowercase ,src_lang=_lowercase ,tgt_lang=_lowercase ,additional_special_tokens=_lowercase ,**_lowercase ,) _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : List[Any] = False if not self.vocab_file else True _lowerCAmelCase : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Tuple = { lang_code: self.convert_tokens_to_ids(_lowercase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'en_XX' _lowerCAmelCase : int = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,**_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : int = src_lang _lowerCAmelCase : Any = self(_lowercase ,add_special_tokens=_lowercase ,return_tensors=_lowercase ,**_lowercase ) _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(_lowercase ) _lowerCAmelCase : Optional[int] = tgt_lang_id return inputs def __lowerCamelCase ( self ,_A ,_A = "en_XX" ,_A = None ,_A = "ro_RO" ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[int] = src_lang _lowerCAmelCase : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(_lowercase ,_lowercase ,**_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(_lowercase ) _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] _lowerCAmelCase : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.convert_tokens_to_ids(_lowercase ) _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] _lowerCAmelCase : Any = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str ,pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return _lowerCAmelCase : Tuple = os.path.join( _lowercase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file ,_lowercase ) return (out_vocab_file,)
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase = get_tests_dir("""fixtures""") class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = mock.Mock() _lowerCAmelCase : Dict = 500 _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[int] = HTTPError _lowerCAmelCase : List[Any] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' ,return_value=_A ) as mock_head: _lowerCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' _lowerCAmelCase : Any = TOKEN HfFolder.save_token(_A ) @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(_A ) feature_extractor.push_to_hub('test-feature-extractor' ,use_auth_token=self._token ) _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A ,getattr(_A ,_A ) ) # Reset repo delete_repo(token=self._token ,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _A ,repo_id='test-feature-extractor' ,push_to_hub=_A ,use_auth_token=self._token ) _lowerCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A ,getattr(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(_A ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' ,use_auth_token=self._token ) _lowerCAmelCase : int = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A ,getattr(_A ,_A ) ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _A ,repo_id='valid_org/test-feature-extractor-org' ,push_to_hub=_A ,use_auth_token=self._token ) _lowerCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A ,getattr(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() _lowerCAmelCase : List[str] = CustomFeatureExtractor.from_pretrained(_A ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' ,use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map ,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} ,) _lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" ,trust_remote_code=_A ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ ,'CustomFeatureExtractor' )
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = 'pytorch_model.bin' @dataclasses.dataclass class __UpperCamelCase : _UpperCAmelCase = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class __UpperCamelCase : _UpperCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) _UpperCAmelCase = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "A csv or a json file containing the validation data."} ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "The name of the task to train on."} , ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __UpperCamelCase : _UpperCAmelCase = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) _UpperCAmelCase = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) _UpperCAmelCase = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) _UpperCAmelCase = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) _UpperCAmelCase = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) _UpperCAmelCase = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) _UpperCAmelCase = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) _UpperCAmelCase = dataclasses.field( default=a__ , metadata={"help": "Random seed for initialization."} , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _lowerCAmelCase : Optional[Any] = dataset.filter(lambda _lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _lowerCAmelCase : Optional[int] = int(eval_result * len(__lowerCAmelCase ) ) print(__lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = dataset.sort('probability' , reverse=__lowerCAmelCase ) _lowerCAmelCase : Optional[int] = dataset.select(range(__lowerCAmelCase ) ) _lowerCAmelCase : Any = dataset.remove_columns(['label', 'probability'] ) _lowerCAmelCase : int = dataset.rename_column('prediction' , 'label' ) _lowerCAmelCase : List[str] = dataset.map(lambda _lowerCamelCase : {"label": idalabel[example["label"]]} ) _lowerCAmelCase : Dict = dataset.shuffle(seed=args.seed ) _lowerCAmelCase : Union[str, Any] = os.path.join(__lowerCAmelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCAmelCase , index=__lowerCAmelCase ) else: dataset.to_json(__lowerCAmelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _lowerCAmelCase : List[str] = STModelArguments(model_name_or_path=__lowerCAmelCase ) _lowerCAmelCase : int = STDataArguments(train_file=__lowerCAmelCase , infer_file=__lowerCAmelCase ) _lowerCAmelCase : Any = STTrainingArguments(output_dir=__lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCAmelCase ).items(): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for key, value in kwargs.items(): if hasattr(__lowerCAmelCase , __lowerCAmelCase ): setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Sanity checks _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Dict = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _lowerCAmelCase : List[Any] = args.train_file _lowerCAmelCase : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _lowerCAmelCase : Union[str, Any] = args.eval_file for key in data_files: _lowerCAmelCase : Tuple = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _lowerCAmelCase : List[str] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) _lowerCAmelCase : Tuple = f"""{args.output_dir}/self-train_iter-{{}}""".format _lowerCAmelCase : str = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) accelerator.wait_for_everyone() _lowerCAmelCase : Tuple = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Any = False # Show the progress bar _lowerCAmelCase : Dict = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _lowerCAmelCase : Tuple = data_dir_format(__lowerCAmelCase ) assert os.path.exists(__lowerCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _lowerCAmelCase : Optional[int] = os.path.join(__lowerCAmelCase , 'stage-1' ) _lowerCAmelCase : List[Any] = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCAmelCase , __lowerCAmelCase ): arguments_dict.update({key: value} ) _lowerCAmelCase : Tuple = os.path.join(__lowerCAmelCase , 'best-checkpoint' , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , __lowerCAmelCase , __lowerCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , __lowerCAmelCase ) finetune(**__lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCAmelCase ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , __lowerCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _lowerCAmelCase : Tuple = os.path.join(__lowerCAmelCase , 'best-checkpoint' ) _lowerCAmelCase : Tuple = os.path.join(__lowerCAmelCase , 'stage-2' ) # Update arguments_dict _lowerCAmelCase : Dict = model_path _lowerCAmelCase : Optional[int] = data_files['train'] _lowerCAmelCase : Union[str, Any] = current_output_dir _lowerCAmelCase : Optional[int] = os.path.join(__lowerCAmelCase , 'best-checkpoint' , __lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , __lowerCAmelCase , __lowerCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , __lowerCAmelCase ) finetune(**__lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCAmelCase ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , __lowerCAmelCase ) _lowerCAmelCase : int = iteration _lowerCAmelCase : Dict = data_dir_format(iteration + 1 ) _lowerCAmelCase : int = AutoConfig.from_pretrained(os.path.join(__lowerCAmelCase , 'best-checkpoint' ) ) _lowerCAmelCase : List[Any] = config.idalabel _lowerCAmelCase : Dict = os.path.join(__lowerCAmelCase , 'eval_results_best-checkpoint.json' ) _lowerCAmelCase : str = os.path.join(__lowerCAmelCase , 'test_results_best-checkpoint.json' ) assert os.path.exists(__lowerCAmelCase ) with open(__lowerCAmelCase , 'r' ) as f: _lowerCAmelCase : List[str] = float(json.load(__lowerCAmelCase )[args.eval_metric] ) _lowerCAmelCase : int = os.path.join(__lowerCAmelCase , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(__lowerCAmelCase ) # Loading the dataset from local csv or json files. _lowerCAmelCase : int = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] _lowerCAmelCase : Optional[int] = load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCAmelCase ): shutil.copy(__lowerCAmelCase , os.path.join(__lowerCAmelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) accelerator.wait_for_everyone() _lowerCAmelCase : Union[str, Any] = os.path.join(__lowerCAmelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _lowerCAmelCase : Tuple = eval_result if best_iteration is None: _lowerCAmelCase : Any = new_iteration _lowerCAmelCase : Any = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _lowerCAmelCase : Tuple = new_iteration _lowerCAmelCase : List[str] = new_eval_result _lowerCAmelCase : List[Any] = 0 else: if new_eval_result == best_eval_result: _lowerCAmelCase : Optional[Any] = new_iteration _lowerCAmelCase : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _lowerCAmelCase : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , __lowerCAmelCase ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , __lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCAmelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCAmelCase , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , __lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCAmelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCAmelCase , 'eval_results_best-iteration.json' ) , )
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def get_masked_lm_array(_lowerCamelCase ): _lowerCAmelCase : str = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowerCAmelCase : Union[str, Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: _lowerCAmelCase : Any = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_array(_lowerCamelCase ): _lowerCAmelCase : Any = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowerCAmelCase : Tuple = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: _lowerCAmelCase : str = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_layer_array(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[Any] = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowerCAmelCase : Union[str, Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) if "kernel" in name: _lowerCAmelCase : str = array.transpose() return torch.from_numpy(lowerCamelCase__ ) def get_encoder_attention_layer_array(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : str = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _lowerCAmelCase : Optional[Any] = tf.train.load_variable(lowerCamelCase__ , lowerCamelCase__ ) _lowerCAmelCase : Tuple = array.reshape(lowerCamelCase__ ) if "kernel" in name: _lowerCAmelCase : int = array.transpose() return torch.from_numpy(lowerCamelCase__ ) print(f"""Loading model based on config from {config_path}...""" ) _lowerCAmelCase : Union[str, Any] = BertConfig.from_json_file(lowerCamelCase__ ) _lowerCAmelCase : Optional[Any] = BertForMaskedLM(lowerCamelCase__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowerCAmelCase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention _lowerCAmelCase : BertSelfAttention = layer.attention.self _lowerCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( lowerCamelCase__ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) _lowerCAmelCase : Dict = get_encoder_attention_layer_array( lowerCamelCase__ , '_query_dense/bias' , self_attn.query.bias.data.shape ) _lowerCAmelCase : Tuple = get_encoder_attention_layer_array( lowerCamelCase__ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) _lowerCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( lowerCamelCase__ , '_key_dense/bias' , self_attn.key.bias.data.shape ) _lowerCAmelCase : List[str] = get_encoder_attention_layer_array( lowerCamelCase__ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) _lowerCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( lowerCamelCase__ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output _lowerCAmelCase : BertSelfOutput = layer.attention.output _lowerCAmelCase : Any = get_encoder_attention_layer_array( lowerCamelCase__ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) _lowerCAmelCase : str = get_encoder_attention_layer_array( lowerCamelCase__ , '_output_dense/bias' , self_output.dense.bias.data.shape ) _lowerCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , '_attention_layer_norm/gamma' ) _lowerCAmelCase : Tuple = get_encoder_layer_array(lowerCamelCase__ , '_attention_layer_norm/beta' ) # Intermediate _lowerCAmelCase : BertIntermediate = layer.intermediate _lowerCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase__ , '_intermediate_dense/kernel' ) _lowerCAmelCase : Any = get_encoder_layer_array(lowerCamelCase__ , '_intermediate_dense/bias' ) # Output _lowerCAmelCase : BertOutput = layer.output _lowerCAmelCase : Union[str, Any] = get_encoder_layer_array(lowerCamelCase__ , '_output_dense/kernel' ) _lowerCAmelCase : Optional[int] = get_encoder_layer_array(lowerCamelCase__ , '_output_dense/bias' ) _lowerCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , '_output_layer_norm/gamma' ) _lowerCAmelCase : List[str] = get_encoder_layer_array(lowerCamelCase__ , '_output_layer_norm/beta' ) # Embeddings _lowerCAmelCase : int = get_encoder_array('_position_embedding_layer/embeddings' ) _lowerCAmelCase : Optional[Any] = get_encoder_array('_type_embedding_layer/embeddings' ) _lowerCAmelCase : Any = get_encoder_array('_embedding_norm_layer/gamma' ) _lowerCAmelCase : List[str] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head _lowerCAmelCase : List[Any] = model.cls.predictions.transform _lowerCAmelCase : List[Any] = get_masked_lm_array('dense/kernel' ) _lowerCAmelCase : Optional[Any] = get_masked_lm_array('dense/bias' ) _lowerCAmelCase : Optional[int] = get_masked_lm_array('layer_norm/gamma' ) _lowerCAmelCase : int = get_masked_lm_array('layer_norm/beta' ) _lowerCAmelCase : List[str] = get_masked_lm_array('embedding_table' ) # Pooling _lowerCAmelCase : Union[str, Any] = BertPooler(config=lowerCamelCase__ ) _lowerCAmelCase : BertPooler = get_encoder_array('_pooler_layer/kernel' ) _lowerCAmelCase : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(lowerCamelCase__ ) # Integration test - should load without any errors ;) _lowerCAmelCase : Optional[int] = BertForMaskedLM.from_pretrained(lowerCamelCase__ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) _lowerCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
710
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCAmelCase = logging.get_logger(__name__) @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self ,**_A ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _lowerCAmelCase : Tuple = deprecated_arg[3:] _lowerCAmelCase : Tuple = not kwargs.pop(__A ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) _lowerCAmelCase : Dict = kwargs.pop('tpu_name' ,self.tpu_name ) _lowerCAmelCase : List[Any] = kwargs.pop('device_idx' ,self.device_idx ) _lowerCAmelCase : Optional[int] = kwargs.pop('eager_mode' ,self.eager_mode ) _lowerCAmelCase : Optional[Any] = kwargs.pop('use_xla' ,self.use_xla ) super().__init__(**__A ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Name of TPU"} , ) _UpperCAmelCase = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCAmelCase = field(default=a__ , metadata={"help": "Benchmark models in eager model."} ) _UpperCAmelCase = field( default=a__ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) _lowerCAmelCase : Any = None if self.tpu: try: if self.tpu_name: _lowerCAmelCase : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _lowerCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _lowerCAmelCase : Tuple = None return tpu @cached_property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _lowerCAmelCase : int = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,'GPU' ) _lowerCAmelCase : Tuple = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] ,'GPU' ) # disable GPU _lowerCAmelCase : Optional[int] = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) return self._setup_tpu is not None @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) return self._setup_strategy @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __lowerCamelCase ( self ): '''simple docstring''' requires_backends(self ,['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __lowerCamelCase ( self ): '''simple docstring''' return self.n_gpu > 0
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
import glob import os import random from string import ascii_lowercase, digits import cva _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = "" _lowerCAmelCase = 1 # (0 is vertical, 1 is horizontal) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : int = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) print('Processing...' ) _lowerCAmelCase : Any = update_image_and_anno(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for index, image in enumerate(__lowerCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase : Tuple = random_chars(32 ) _lowerCAmelCase : int = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase : int = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__lowerCAmelCase )} with {file_name}""" ) _lowerCAmelCase : Optional[int] = [] for anno in new_annos[index]: _lowerCAmelCase : List[Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__lowerCAmelCase ) with open(f"""/{file_root}.txt""" , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : int = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '*.txt' ) ): _lowerCAmelCase : Any = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__lowerCAmelCase ) as in_file: _lowerCAmelCase : Tuple = in_file.readlines() _lowerCAmelCase : str = os.path.join(__lowerCAmelCase , f"""{label_name}.jpg""" ) _lowerCAmelCase : Union[str, Any] = [] for obj_list in obj_lists: _lowerCAmelCase : Any = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = [] for idx in range(len(__lowerCAmelCase ) ): _lowerCAmelCase : str = [] _lowerCAmelCase : int = img_list[idx] path_list.append(__lowerCAmelCase ) _lowerCAmelCase : Any = anno_list[idx] _lowerCAmelCase : Optional[int] = cva.imread(__lowerCAmelCase ) if flip_type == 1: _lowerCAmelCase : Optional[int] = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _lowerCAmelCase : Union[str, Any] = cva.flip(__lowerCAmelCase , __lowerCAmelCase ) for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowerCAmelCase ) new_imgs_list.append(__lowerCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowerCamelCase__ ( _lowerCamelCase = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase : List[str] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def wrapper(*_lowerCamelCase , **_lowerCamelCase ): _lowerCAmelCase : List[Any] = timeit.default_timer() _lowerCAmelCase : Tuple = func(*__UpperCAmelCase , **__UpperCAmelCase ) _lowerCAmelCase : Dict = timeit.default_timer() - starttime return delta _lowerCAmelCase : List[str] = func.__name__ return wrapper def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Any = seq_shapes or {} for i in range(__UpperCAmelCase ): _lowerCAmelCase : str = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): _lowerCAmelCase : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": _lowerCAmelCase : Optional[int] = 'The small grey turtle was surprisingly fast when challenged.' else: _lowerCAmelCase : Tuple = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): _lowerCAmelCase : int = v.feature _lowerCAmelCase : Union[str, Any] = seq_shapes[k] _lowerCAmelCase : List[str] = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) _lowerCAmelCase : int = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=100 , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: _lowerCAmelCase : str = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) _lowerCAmelCase, _lowerCAmelCase : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _lowerCAmelCase : Dict = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
713
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(lowerCAmelCase__ ) as metadata_file: _lowerCAmelCase : List[Any] = json.load(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _lowerCAmelCase : List[str] = torch.load(lowerCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file _lowerCAmelCase : Tuple = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] _lowerCAmelCase : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowerCAmelCase : int = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase : Optional[Any] = AddedToken('<ent>' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) _lowerCAmelCase : List[str] = AddedToken('<ent2>' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: _lowerCAmelCase : Union[str, Any] = json.load(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = 'MLukeTokenizer' with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCAmelCase : Any = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens _lowerCAmelCase : Any = tokenizer.convert_tokens_to_ids(['@'] )[0] _lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(['#'] )[0] _lowerCAmelCase : int = state_dict['embeddings.word_embeddings.weight'] _lowerCAmelCase : Any = word_emb[ent_init_index].unsqueeze(0 ) _lowerCAmelCase : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) _lowerCAmelCase : Optional[Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowerCAmelCase : str = state_dict[bias_name] _lowerCAmelCase : Dict = decoder_bias[ent_init_index].unsqueeze(0 ) _lowerCAmelCase : Any = decoder_bias[enta_init_index].unsqueeze(0 ) _lowerCAmelCase : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase : Dict = f"""encoder.layer.{layer_index}.attention.self.""" _lowerCAmelCase : Tuple = state_dict[prefix + matrix_name] _lowerCAmelCase : Tuple = state_dict[prefix + matrix_name] _lowerCAmelCase : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase : str = state_dict['entity_embeddings.entity_embeddings.weight'] _lowerCAmelCase : Tuple = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) _lowerCAmelCase : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowerCAmelCase : List[Any] = state_dict['entity_predictions.bias'] _lowerCAmelCase : int = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) _lowerCAmelCase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowerCAmelCase : Dict = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) _lowerCAmelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): _lowerCAmelCase : List[str] = state_dict[key] else: _lowerCAmelCase : str = state_dict[key] _lowerCAmelCase, _lowerCAmelCase : List[Any] = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowerCAmelCase : int = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task='entity_classification' ) _lowerCAmelCase : int = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' _lowerCAmelCase : List[str] = (0, 9) _lowerCAmelCase : int = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) _lowerCAmelCase : List[Any] = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase : List[str] = torch.Size((1, 33, 768) ) _lowerCAmelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowerCAmelCase : str = torch.Size((1, 1, 768) ) _lowerCAmelCase : int = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _lowerCAmelCase : Optional[Any] = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = 'Tokyo is the capital of <mask>.' _lowerCAmelCase : Dict = (24, 30) _lowerCAmelCase : Dict = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) _lowerCAmelCase : Dict = model(**lowerCAmelCase__ ) _lowerCAmelCase : Dict = encoding['input_ids'][0].tolist() _lowerCAmelCase : str = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) _lowerCAmelCase : int = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = outputs.entity_logits[0][0].argmax().item() _lowerCAmelCase : Dict = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ['[MASK]', '[PAD]', '[UNK]'] _lowerCAmelCase : str = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] _lowerCAmelCase : Optional[int] = {} for entry in data: _lowerCAmelCase : Dict = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowerCAmelCase : Dict = entity_id break _lowerCAmelCase : Dict = f"""{language}:{entity_name}""" _lowerCAmelCase : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _lowerCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
714
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig _lowerCAmelCase = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class __UpperCamelCase ( __lowerCAmelCase ): _UpperCAmelCase = "tapas" def __init__( self ,_A=3_0522 ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=1024 ,_A=[3, 256, 256, 2, 256, 256, 10] ,_A=0.0_2 ,_A=1E-12 ,_A=0 ,_A=10.0 ,_A=0 ,_A=1.0 ,_A=None ,_A=1.0 ,_A=False ,_A=None ,_A=1.0 ,_A=1.0 ,_A=False ,_A=False ,_A="ratio" ,_A=None ,_A=None ,_A=64 ,_A=32 ,_A=False ,_A=True ,_A=False ,_A=False ,_A=True ,_A=False ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_sizes _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps # Fine-tuning task hyperparameters _lowerCAmelCase : List[Any] = positive_label_weight _lowerCAmelCase : int = num_aggregation_labels _lowerCAmelCase : Any = aggregation_loss_weight _lowerCAmelCase : str = use_answer_as_supervision _lowerCAmelCase : int = answer_loss_importance _lowerCAmelCase : List[Any] = use_normalized_answer_loss _lowerCAmelCase : int = huber_loss_delta _lowerCAmelCase : Dict = temperature _lowerCAmelCase : List[str] = aggregation_temperature _lowerCAmelCase : Tuple = use_gumbel_for_cells _lowerCAmelCase : Optional[int] = use_gumbel_for_aggregation _lowerCAmelCase : Optional[int] = average_approximation_function _lowerCAmelCase : Optional[Any] = cell_selection_preference _lowerCAmelCase : Optional[Any] = answer_loss_cutoff _lowerCAmelCase : List[str] = max_num_rows _lowerCAmelCase : Optional[int] = max_num_columns _lowerCAmelCase : List[Any] = average_logits_per_cell _lowerCAmelCase : Dict = select_one_column _lowerCAmelCase : Optional[int] = allow_empty_column_selection _lowerCAmelCase : List[Any] = init_cell_selection_weights_to_zero _lowerCAmelCase : List[Any] = reset_position_index_per_cell _lowerCAmelCase : Tuple = disable_per_token_loss # Aggregation hyperparameters _lowerCAmelCase : Optional[int] = aggregation_labels _lowerCAmelCase : Any = no_aggregation_label_index if isinstance(self.aggregation_labels ,_UpperCamelCase ): _lowerCAmelCase : int = {int(_UpperCamelCase ): v for k, v in aggregation_labels.items()}
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __UpperCamelCase : _UpperCAmelCase = 42 # setable values _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = None @classmethod def __lowerCamelCase ( cls ,_A ,_A ,_A ): '''simple docstring''' return cls(common=__lowerCamelCase ,init_noise_sigma=__lowerCamelCase ,timesteps=__lowerCamelCase ) @dataclass class __UpperCamelCase ( _A ): _UpperCAmelCase = 42 class __UpperCamelCase ( _A , _A ): _UpperCAmelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] _UpperCAmelCase = 42 @property def __lowerCamelCase ( self ): '''simple docstring''' return True @register_to_config def __init__( self ,_A = 1000 ,_A = 0.0_0_0_1 ,_A = 0.0_2 ,_A = "linear" ,_A = None ,_A = "fixed_small" ,_A = True ,_A = "epsilon" ,_A = jnp.floataa ,): '''simple docstring''' _lowerCAmelCase : str = dtype def __lowerCamelCase ( self ,_A = None ): '''simple docstring''' if common is None: _lowerCAmelCase : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _lowerCAmelCase : Tuple = jnp.array(1.0 ,dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = jnp.arange(0 ,self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCamelCase ,init_noise_sigma=__lowerCamelCase ,timesteps=__lowerCamelCase ,) def __lowerCamelCase ( self ,_A ,_A ,_A = None ): '''simple docstring''' return sample def __lowerCamelCase ( self ,_A ,_A ,_A = () ): '''simple docstring''' _lowerCAmelCase : List[str] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _lowerCAmelCase : int = (jnp.arange(0 ,__lowerCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCamelCase ,timesteps=__lowerCamelCase ,) def __lowerCamelCase ( self ,_A ,_A ,_A=None ,_A=None ): '''simple docstring''' _lowerCAmelCase : str = state.common.alphas_cumprod[t] _lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 ,state.common.alphas_cumprod[t - 1] ,jnp.array(1.0 ,dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowerCAmelCase : str = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _lowerCAmelCase : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _lowerCAmelCase : str = jnp.clip(__lowerCamelCase ,a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _lowerCAmelCase : str = jnp.log(jnp.clip(__lowerCamelCase ,a_min=1E-20 ) ) elif variance_type == "fixed_large": _lowerCAmelCase : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _lowerCAmelCase : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _lowerCAmelCase : Optional[Any] = variance _lowerCAmelCase : str = state.common.betas[t] _lowerCAmelCase : Optional[int] = (predicted_variance + 1) / 2 _lowerCAmelCase : int = frac * max_log + (1 - frac) * min_log return variance def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = timestep if key is None: _lowerCAmelCase : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _lowerCAmelCase : Any = jnp.split(__lowerCamelCase ,sample.shape[1] ,axis=1 ) else: _lowerCAmelCase : Tuple = None # 1. compute alphas, betas _lowerCAmelCase : Dict = state.common.alphas_cumprod[t] _lowerCAmelCase : Tuple = jnp.where(t > 0 ,state.common.alphas_cumprod[t - 1] ,jnp.array(1.0 ,dtype=self.dtype ) ) _lowerCAmelCase : Any = 1 - alpha_prod_t _lowerCAmelCase : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowerCAmelCase : Union[str, Any] = model_output elif self.config.prediction_type == "v_prediction": _lowerCAmelCase : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowerCAmelCase : Dict = jnp.clip(__lowerCamelCase ,-1 ,1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : Optional[int] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _lowerCAmelCase : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowerCAmelCase : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _lowerCAmelCase : str = jax.random.split(__lowerCamelCase ,num=1 ) _lowerCAmelCase : Any = jax.random.normal(__lowerCamelCase ,shape=model_output.shape ,dtype=self.dtype ) return (self._get_variance(__lowerCamelCase ,__lowerCamelCase ,predicted_variance=__lowerCamelCase ) ** 0.5) * noise _lowerCAmelCase : List[Any] = jnp.where(t > 0 ,random_variance() ,jnp.zeros(model_output.shape ,dtype=self.dtype ) ) _lowerCAmelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCamelCase ,state=__lowerCamelCase ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' return add_noise_common(state.common ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' return get_velocity_common(state.common ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
716
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ): '''simple docstring''' _lowerCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( _UpperCAmelCase ): def __init__( self ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,movq=lowerCamelCase_ ,) _lowerCAmelCase : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' if latents is None: _lowerCAmelCase : List[Any] = randn_tensor(lowerCamelCase_ ,generator=lowerCamelCase_ ,device=lowerCamelCase_ ,dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) _lowerCAmelCase : int = latents.to(lowerCamelCase_ ) _lowerCAmelCase : List[str] = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self ,_A=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCAmelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) _lowerCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ ,lowerCamelCase_ ) def __lowerCamelCase ( self ,_A=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _lowerCAmelCase : Optional[int] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase : List[Any] = cpu_offload_with_hook(lowerCamelCase_ ,lowerCamelCase_ ,prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. _lowerCAmelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self ,_A ,_A ,_A ,_A = 512 ,_A = 512 ,_A = 100 ,_A = 4.0 ,_A = 1 ,_A = None ,_A = None ,_A = "pil" ,_A = True ,): '''simple docstring''' _lowerCAmelCase : Tuple = self._execution_device _lowerCAmelCase : List[Any] = guidance_scale > 1.0 if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): _lowerCAmelCase : str = torch.cat(lowerCamelCase_ ,dim=0 ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): _lowerCAmelCase : Optional[Any] = torch.cat(lowerCamelCase_ ,dim=0 ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): _lowerCAmelCase : Union[str, Any] = torch.cat(lowerCamelCase_ ,dim=0 ) _lowerCAmelCase : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCAmelCase : Tuple = image_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) _lowerCAmelCase : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase_ ,dim=0 ) _lowerCAmelCase : Tuple = hint.repeat_interleave(lowerCamelCase_ ,dim=0 ) _lowerCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=lowerCamelCase_ ) _lowerCAmelCase : List[Any] = torch.cat([hint, hint] ,dim=0 ).to(dtype=self.unet.dtype ,device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ ,device=lowerCamelCase_ ) _lowerCAmelCase : Dict = self.scheduler.timesteps _lowerCAmelCase : List[str] = self.movq.config.latent_channels _lowerCAmelCase : Any = downscale_height_and_width(lowerCamelCase_ ,lowerCamelCase_ ,self.movq_scale_factor ) # create initial latent _lowerCAmelCase : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,image_embeds.dtype ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : Any = {'''image_embeds''': image_embeds, '''hint''': hint} _lowerCAmelCase : Dict = self.unet( sample=lowerCamelCase_ ,timestep=lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,added_cond_kwargs=lowerCamelCase_ ,return_dict=lowerCamelCase_ ,)[0] if do_classifier_free_guidance: _lowerCAmelCase : Any = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCAmelCase : str = noise_pred.chunk(2 ) _lowerCAmelCase : List[Any] = variance_pred.chunk(2 ) _lowerCAmelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : str = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase : int = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : str = self.scheduler.step( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,generator=lowerCamelCase_ ,)[0] # post-processing _lowerCAmelCase : int = self.movq.decode(lowerCamelCase_ ,force_not_quantize=lowerCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCAmelCase : Optional[Any] = image * 0.5 + 0.5 _lowerCAmelCase : Optional[Any] = image.clamp(0 ,1 ) _lowerCAmelCase : str = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : Optional[int] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __UpperCamelCase ( _UpperCAmelCase ): _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = u for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = temp * (u - i) return temp def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = int(input('enter the numbers of values: ' ) ) _lowerCAmelCase : Optional[Any] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) _lowerCAmelCase : str = 0 print('enter the values of parameters in a list: ' ) _lowerCAmelCase : str = list(map(_lowerCamelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = float(input() ) _lowerCAmelCase : Union[str, Any] = int(input('enter the value to interpolate: ' ) ) _lowerCAmelCase : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): _lowerCAmelCase : Optional[int] = y[j + 1][i - 1] - y[j][i - 1] _lowerCAmelCase : Union[str, Any] = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=100 ,_A=13 ,_A=30 ,_A=2 ,_A=3 ,_A=True ,_A=True ,_A=32 ,_A=4 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=10 ,_A=0.0_2 ,_A=3 ,_A=None ,_A=[0, 1, 2, 3] ,): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : str = 100 _lowerCAmelCase : str = batch_size _lowerCAmelCase : Dict = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[str] = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : Dict = out_indices _lowerCAmelCase : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : int = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCamelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowercase ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = BeitModel(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = BeitForMaskedImageModeling(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase : Dict = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : int = model(_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Tuple = BeitForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Any = BeitForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Optional[int] = model(_lowercase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _lowerCAmelCase : List[Any] = model(_lowercase ,labels=_lowercase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = BeitModelTester(self ) _lowerCAmelCase : str = ConfigTester(self ,config_class=_lowercase ,has_text_modality=_lowercase ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase ,nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(_lowercase ) _lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling]: continue _lowerCAmelCase : Optional[int] = model_class(_lowercase ) model.to(_lowercase ) model.train() _lowerCAmelCase : Tuple = self._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) _lowerCAmelCase : str = model(**_lowercase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase : Dict = False _lowerCAmelCase : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowercase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _lowerCAmelCase : int = model_class(_lowercase ) model.gradient_checkpointing_enable() model.to(_lowercase ) model.train() _lowerCAmelCase : List[Any] = self._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) _lowerCAmelCase : List[Any] = model(**_lowercase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(config=_lowercase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = BeitModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(_lowercase ) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Optional[int] = image_processor(images=_lowercase ,return_tensors='pt' ).pixel_values.to(_lowercase ) # prepare bool_masked_pos _lowerCAmelCase : Optional[Any] = torch.ones((1, 196) ,dtype=torch.bool ).to(_lowercase ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(pixel_values=_lowercase ,bool_masked_pos=_lowercase ) _lowerCAmelCase : str = outputs.logits # verify the logits _lowerCAmelCase : str = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,_lowercase ) _lowerCAmelCase : int = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,_lowercase ,atol=1E-2 ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(_lowercase ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : Dict = image_processor(images=_lowercase ,return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**_lowercase ) _lowerCAmelCase : Dict = outputs.logits # verify the logits _lowerCAmelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(logits.shape ,_lowercase ) _lowerCAmelCase : Any = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] ,_lowercase ,atol=1E-4 ) ) _lowerCAmelCase : int = 281 self.assertEqual(logits.argmax(-1 ).item() ,_lowercase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( _lowercase ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : int = prepare_img() _lowerCAmelCase : Union[str, Any] = image_processor(images=_lowercase ,return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): _lowerCAmelCase : Any = model(**_lowercase ) _lowerCAmelCase : str = outputs.logits # verify the logits _lowerCAmelCase : List[str] = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape ,_lowercase ) _lowerCAmelCase : Union[str, Any] = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(_lowercase ) self.assertTrue(torch.allclose(logits[0, :3] ,_lowercase ,atol=1E-4 ) ) _lowerCAmelCase : Dict = 2396 self.assertEqual(logits.argmax(-1 ).item() ,_lowercase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _lowerCAmelCase : int = model.to(_lowercase ) _lowerCAmelCase : Any = BeitImageProcessor(do_resize=_lowercase ,size=640 ,do_center_crop=_lowercase ) _lowerCAmelCase : List[str] = load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) _lowerCAmelCase : Tuple = Image.open(ds[0]['file'] ) _lowerCAmelCase : Any = image_processor(images=_lowercase ,return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): _lowerCAmelCase : List[str] = model(**_lowercase ) _lowerCAmelCase : str = outputs.logits # verify the logits _lowerCAmelCase : Optional[Any] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,_lowercase ) _lowerCAmelCase : int = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: _lowerCAmelCase : Dict = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] ,device=_lowercase ,) else: _lowerCAmelCase : List[str] = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] ,device=_lowercase ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_lowercase ,atol=1E-4 ) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _lowerCAmelCase : Optional[Any] = model.to(_lowercase ) _lowerCAmelCase : List[Any] = BeitImageProcessor(do_resize=_lowercase ,size=640 ,do_center_crop=_lowercase ) _lowerCAmelCase : Tuple = load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) _lowerCAmelCase : Any = Image.open(ds[0]['file'] ) _lowerCAmelCase : Optional[int] = image_processor(images=_lowercase ,return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**_lowercase ) _lowerCAmelCase : str = outputs.logits.detach().cpu() _lowerCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowercase ,target_sizes=[(500, 300)] ) _lowerCAmelCase : int = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,_lowercase ) _lowerCAmelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowercase ) _lowerCAmelCase : Optional[Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,_lowercase )
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if num <= 0: _lowerCAmelCase : Dict = f"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(snake_case__ ) _lowerCAmelCase : Optional[int] = [True] * (num + 1) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : int = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: _lowerCAmelCase : int = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __UpperCamelCase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_MASKED_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,top_k=2 ,framework='tf' ) _lowerCAmelCase : Any = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ {'sequence': 'My name is grouped', 'score': 2.1E-05, 'token': 3_8015, 'token_str': ' grouped'}, {'sequence': 'My name is accuser', 'score': 2.1E-05, 'token': 2_5506, 'token_str': ' accuser'}, ] ,) _lowerCAmelCase : List[Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ { 'sequence': 'The largest city in France is grouped', 'score': 2.1E-05, 'token': 3_8015, 'token_str': ' grouped', }, { 'sequence': 'The largest city in France is accuser', 'score': 2.1E-05, 'token': 2_5506, 'token_str': ' accuser', }, ] ,) _lowerCAmelCase : Optional[int] = unmasker('My name is <mask>' ,targets=[' Patrick', ' Clara', ' Teven'] ,top_k=3 ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 1_3606, 'token_str': ' Clara'}, {'sequence': 'My name is Patrick', 'score': 2E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 1.9E-05, 'token': 2941, 'token_str': ' Te'}, ] ,) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,top_k=2 ,framework='pt' ) _lowerCAmelCase : int = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ {'sequence': 'My name is Maul', 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul'}, {'sequence': 'My name isELS', 'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS'}, ] ,) _lowerCAmelCase : Union[str, Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ { 'sequence': 'The largest city in France is Maul', 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul', }, {'sequence': 'The largest city in France isELS', 'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS'}, ] ,) _lowerCAmelCase : Tuple = unmasker('My name is <mask>' ,targets=[' Patrick', ' Clara', ' Teven'] ,top_k=3 ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ {'sequence': 'My name is Patrick', 'score': 2.1E-05, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Te', 'score': 2E-05, 'token': 2941, 'token_str': ' Te'}, {'sequence': 'My name is Clara', 'score': 2E-05, 'token': 1_3606, 'token_str': ' Clara'}, ] ,) _lowerCAmelCase : int = unmasker('My name is <mask> <mask>' ,top_k=2 ) self.assertEqual( nested_simplify(_A ,decimals=6 ) ,[ [ { 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul', 'sequence': '<s>My name is Maul<mask></s>', }, {'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'}, ], [ { 'score': 2.2E-05, 'token': 3_5676, 'token_str': ' Maul', 'sequence': '<s>My name is<mask> Maul</s>', }, {'score': 2.2E-05, 'token': 1_6416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'}, ], ] ,) @require_torch_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline('fill-mask' ,model='hf-internal-testing/tiny-random-distilbert' ,device=0 ,framework='pt' ) # convert model to fp16 pipe.model.half() _lowerCAmelCase : Tuple = pipe('Paris is the [MASK] of France.' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_A ,_A ) @slow @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = pipeline(task='fill-mask' ,model='distilroberta-base' ,top_k=2 ,framework='pt' ) self.run_large_test(_A ) @slow @require_tf def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = pipeline(task='fill-mask' ,model='distilroberta-base' ,top_k=2 ,framework='tf' ) self.run_large_test(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = unmasker('My name is <mask>' ) self.assertEqual( nested_simplify(_A ) ,[ {'sequence': 'My name is John', 'score': 0.0_0_8, 'token': 610, 'token_str': ' John'}, {'sequence': 'My name is Chris', 'score': 0.0_0_7, 'token': 1573, 'token_str': ' Chris'}, ] ,) _lowerCAmelCase : List[Any] = unmasker('The largest city in France is <mask>' ) self.assertEqual( nested_simplify(_A ) ,[ { 'sequence': 'The largest city in France is Paris', 'score': 0.2_5_1, 'token': 2201, 'token_str': ' Paris', }, { 'sequence': 'The largest city in France is Lyon', 'score': 0.2_1_4, 'token': 1_2790, 'token_str': ' Lyon', }, ] ,) _lowerCAmelCase : Optional[int] = unmasker('My name is <mask>' ,targets=[' Patrick', ' Clara', ' Teven'] ,top_k=3 ) self.assertEqual( nested_simplify(_A ) ,[ {'sequence': 'My name is Patrick', 'score': 0.0_0_5, 'token': 3499, 'token_str': ' Patrick'}, {'sequence': 'My name is Clara', 'score': 0.0_0_0, 'token': 1_3606, 'token_str': ' Clara'}, {'sequence': 'My name is Te', 'score': 0.0_0_0, 'token': 2941, 'token_str': ' Te'}, ] ,) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,framework='pt' ) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[int] = None self.run_pipeline_test(_A ,[] ) @require_tf def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = pipeline(task='fill-mask' ,model='sshleifer/tiny-distilroberta-base' ,framework='tf' ) _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = None self.run_pipeline_test(_A ,[] ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' ) _lowerCAmelCase : List[str] = FillMaskPipeline(model=_A ,tokenizer=_A ) _lowerCAmelCase : List[str] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = fill_masker.tokenizer _lowerCAmelCase : Optional[int] = fill_masker.model _lowerCAmelCase : Union[str, Any] = fill_masker( F"""This is a {tokenizer.mask_token}""" ,) self.assertEqual( _A ,[ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] ,) _lowerCAmelCase : Any = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _A ,[ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] ,) _lowerCAmelCase : Tuple = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _A ,[ [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], ] ,) with self.assertRaises(_A ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_A ): fill_masker('This is' ) self.run_test_top_k(_A ,_A ) self.run_test_targets(_A ,_A ) self.run_test_top_k_targets(_A ,_A ) self.fill_mask_with_duplicate_targets_and_top_k(_A ,_A ) self.fill_mask_with_multiple_masks(_A ,_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tokenizer.get_vocab() _lowerCAmelCase : Tuple = sorted(vocab.keys() )[:2] # Pipeline argument _lowerCAmelCase : Optional[Any] = FillMaskPipeline(model=_A ,tokenizer=_A ,targets=_A ) _lowerCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _A ,[ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] ,) _lowerCAmelCase : Union[str, Any] = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} ,_A ) _lowerCAmelCase : List[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} ,set(_A ) ) # Call argument _lowerCAmelCase : Optional[Any] = FillMaskPipeline(model=_A ,tokenizer=_A ) _lowerCAmelCase : str = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=_A ) self.assertEqual( _A ,[ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] ,) _lowerCAmelCase : int = {vocab[el] for el in targets} self.assertEqual({el['token'] for el in outputs} ,_A ) _lowerCAmelCase : Dict = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['token_str'] for el in outputs} ,set(_A ) ) # Score equivalence _lowerCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=_A ) _lowerCAmelCase : Any = [top_mask['token_str'] for top_mask in outputs] _lowerCAmelCase : Optional[int] = [top_mask['score'] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_A ) == set(_A ): _lowerCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=_A ) _lowerCAmelCase : Union[str, Any] = [top_mask['score'] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_A ) ,nested_simplify(_A ) ) # Raises with invalid with self.assertRaises(_A ): _lowerCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_A ): _lowerCAmelCase : int = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets=[''] ) with self.assertRaises(_A ): _lowerCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ,targets='' ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = FillMaskPipeline(model=_A ,tokenizer=_A ,top_k=2 ) _lowerCAmelCase : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _A ,[ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] ,) _lowerCAmelCase : Optional[Any] = FillMaskPipeline(model=_A ,tokenizer=_A ) _lowerCAmelCase : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=2 ) self.assertEqual( _A ,[ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ] ,) self.assertEqual(nested_simplify(_A ) ,nested_simplify(_A ) ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tokenizer.get_vocab() _lowerCAmelCase : List[str] = FillMaskPipeline(model=_A ,tokenizer=_A ) # top_k=2, ntargets=3 _lowerCAmelCase : str = sorted(vocab.keys() )[:3] _lowerCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=2 ,targets=_A ) # If we use the most probably targets, and filter differently, we should still # have the same results _lowerCAmelCase : Dict = [el['token_str'] for el in sorted(_A ,key=lambda _A : x["score"] ,reverse=_A )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_A ).issubset(_A ): _lowerCAmelCase : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ,top_k=3 ,targets=_A ) # They should yield exactly the same result self.assertEqual(nested_simplify(_A ) ,nested_simplify(_A ) ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = FillMaskPipeline(model=_A ,tokenizer=_A ) _lowerCAmelCase : Tuple = tokenizer.get_vocab() # String duplicates + id duplicates _lowerCAmelCase : List[Any] = sorted(vocab.keys() )[:3] _lowerCAmelCase : List[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _lowerCAmelCase : List[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" ,targets=_A ,top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_A ) ,3 ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = FillMaskPipeline(model=_A ,tokenizer=_A ) _lowerCAmelCase : Union[str, Any] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" ,top_k=2 ) self.assertEqual( _A ,[ [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], [ {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, {'sequence': ANY(_A ), 'score': ANY(_A ), 'token': ANY(_A ), 'token_str': ANY(_A )}, ], ] ,)
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" import argparse from collections import defaultdict import yaml _lowerCAmelCase = """docs/source/en/_toctree.yml""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = defaultdict(_lowerCamelCase ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[int] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_lowerCamelCase ) _lowerCAmelCase : Any = new_doc_list _lowerCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] _lowerCAmelCase : Union[str, Any] = [] for duplicate_key in duplicates: _lowerCAmelCase : Optional[Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _lowerCAmelCase : int = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCamelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_lowerCamelCase ) # Sort return overview_doc def lowerCamelCase__ ( _lowerCamelCase=False ): '''simple docstring''' with open(_lowerCamelCase , encoding='utf-8' ) as f: _lowerCAmelCase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase : List[str] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _lowerCAmelCase : str = api_doc[scheduler_idx]['sections'] _lowerCAmelCase : Union[str, Any] = clean_doc_toc(_lowerCamelCase ) _lowerCAmelCase : int = False if new_scheduler_doc != scheduler_doc: _lowerCAmelCase : Optional[int] = True if overwrite: _lowerCAmelCase : List[Any] = new_scheduler_doc if diff: if overwrite: _lowerCAmelCase : Optional[int] = api_doc with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowerCamelCase__ ( _lowerCamelCase=False ): '''simple docstring''' with open(_lowerCamelCase , encoding='utf-8' ) as f: _lowerCAmelCase : str = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Any = content[api_idx]['sections'] # Then to the model doc _lowerCAmelCase : Optional[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _lowerCAmelCase : Tuple = False _lowerCAmelCase : Tuple = api_doc[pipeline_idx]['sections'] _lowerCAmelCase : Dict = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _lowerCAmelCase : Any = pipeline_doc['section'] _lowerCAmelCase : Dict = clean_doc_toc(_lowerCamelCase ) if overwrite: _lowerCAmelCase : List[str] = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCamelCase ) # sort overall pipeline doc _lowerCAmelCase : Tuple = clean_doc_toc(_lowerCamelCase ) if new_pipeline_docs != pipeline_docs: _lowerCAmelCase : Optional[Any] = True if overwrite: _lowerCAmelCase : Union[str, Any] = new_pipeline_docs if diff: if overwrite: _lowerCAmelCase : str = api_doc with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowerCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch.load(snake_case_ , map_location='cpu' ) if "model" in sd.keys(): _lowerCAmelCase : List[Any] = torch.load(snake_case_ , map_location='cpu' )["model"] # pop unnecessary weights _lowerCAmelCase : List[str] = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(snake_case_ ) _lowerCAmelCase : Union[str, Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase : Optional[int] = sd.pop(snake_case_ ) _lowerCAmelCase : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase : int = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase : List[Any] = key.replace('.qkv_proj.' , '.q_proj.' ) _lowerCAmelCase : Any = key.replace('.qkv_proj.' , '.k_proj.' ) _lowerCAmelCase : Optional[int] = key.replace('.qkv_proj.' , '.v_proj.' ) _lowerCAmelCase : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase : Dict = torch.split(snake_case_ , depth // 3 , dim=0 ) _lowerCAmelCase : Union[str, Any] = q _lowerCAmelCase : Optional[Any] = k _lowerCAmelCase : Union[str, Any] = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = load_checkpoint(snake_case_ ) if config is not None: _lowerCAmelCase : Tuple = OPTConfig.from_pretrained(snake_case_ ) else: _lowerCAmelCase : Tuple = OPTConfig() _lowerCAmelCase : Union[str, Any] = OPTModel(snake_case_ ).half().eval() model.load_state_dict(snake_case_ ) # Check results Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _lowerCAmelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): _UpperCAmelCase = AutoencoderKL _UpperCAmelCase = "sample" _UpperCAmelCase = 1E-2 @property def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 4 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : str = (32, 32) _lowerCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) return {"sample": image} @property def __lowerCamelCase ( self ): '''simple docstring''' return (3, 32, 32) @property def __lowerCamelCase ( self ): '''simple docstring''' return (3, 32, 32) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skipIf(torch_device == 'mps' ,'Gradient checkpointing skipped on MPS' ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase : List[Any] = self.model_class(**_A ) model.to(_A ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase : List[str] = model(**_A ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase : Dict = torch.randn_like(_A ) _lowerCAmelCase : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase : Optional[int] = self.model_class(**_A ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_A ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase : Tuple = model_a(**_A ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase : int = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase : Dict = dict(model.named_parameters() ) _lowerCAmelCase : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5E-5 ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ,output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['missing_keys'] ) ,0 ) model.to(_A ) _lowerCAmelCase : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) _lowerCAmelCase : int = model.to(_A ) model.eval() if torch_device == "mps": _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(0 ) _lowerCAmelCase : Dict = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) _lowerCAmelCase : List[str] = image.to(_A ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(_A ,sample_posterior=_A ,generator=_A ).sample _lowerCAmelCase : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase : List[Any] = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase : Optional[Any] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: _lowerCAmelCase : Any = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_A ,_A ,rtol=1E-2 ) ) @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_A ) for s in shape] )}.npy""" def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A=0 ,_A=(4, 3, 512, 512) ,_A=False ): '''simple docstring''' _lowerCAmelCase : str = torch.floataa if fpaa else torch.floataa _lowerCAmelCase : Any = torch.from_numpy(load_hf_numpy(self.get_file_format(_A ,_A ) ) ).to(_A ).to(_A ) return image def __lowerCamelCase ( self ,_A="CompVis/stable-diffusion-v1-4" ,_A=False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "fp16" if fpaa else None _lowerCAmelCase : str = torch.floataa if fpaa else torch.floataa _lowerCAmelCase : Union[str, Any] = AutoencoderKL.from_pretrained( _A ,subfolder='vae' ,torch_dtype=_A ,revision=_A ,) model.to(_A ).eval() return model def __lowerCamelCase ( self ,_A=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(_A ) return torch.Generator(device=_A ).manual_seed(_A ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_sd_vae_model() _lowerCAmelCase : List[str] = self.get_sd_image(_A ) _lowerCAmelCase : List[Any] = self.get_generator(_A ) with torch.no_grad(): _lowerCAmelCase : List[str] = model(_A ,generator=_A ,sample_posterior=_A ).sample assert sample.shape == image.shape _lowerCAmelCase : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase : Optional[int] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(_A ,_A ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.get_sd_vae_model(fpaa=_A ) _lowerCAmelCase : Optional[int] = self.get_sd_image(_A ,fpaa=_A ) _lowerCAmelCase : Optional[Any] = self.get_generator(_A ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(_A ,generator=_A ,sample_posterior=_A ).sample assert sample.shape == image.shape _lowerCAmelCase : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase : int = torch.tensor(_A ) assert torch_all_close(_A ,_A ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_sd_vae_model() _lowerCAmelCase : Dict = self.get_sd_image(_A ) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(_A ).sample assert sample.shape == image.shape _lowerCAmelCase : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase : List[str] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(_A ,_A ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_sd_vae_model() _lowerCAmelCase : List[Any] = self.get_sd_image(_A ,shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase : str = model.decode(_A ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase : Tuple = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase : Tuple = torch.tensor(_A ) assert torch_all_close(_A ,_A ,atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.get_sd_vae_model(fpaa=_A ) _lowerCAmelCase : Optional[int] = self.get_sd_image(_A ,shape=(3, 4, 64, 64) ,fpaa=_A ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model.decode(_A ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase : Any = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase : Any = torch.tensor(_A ) assert torch_all_close(_A ,_A ,atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='xformers is not required when using PyTorch 2.0.' ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_sd_vae_model(fpaa=_A ) _lowerCAmelCase : Union[str, Any] = self.get_sd_image(_A ,shape=(3, 4, 64, 64) ,fpaa=_A ) with torch.no_grad(): _lowerCAmelCase : List[str] = model.decode(_A ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase : Tuple = model.decode(_A ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_A ,_A ,atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason='xformers is not required when using PyTorch 2.0.' ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_sd_vae_model() _lowerCAmelCase : int = self.get_sd_image(_A ,shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase : int = model.decode(_A ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase : Tuple = model.decode(_A ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_A ,_A ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_sd_vae_model() _lowerCAmelCase : List[str] = self.get_sd_image(_A ) _lowerCAmelCase : List[str] = self.get_generator(_A ) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model.encode(_A ).latent_dist _lowerCAmelCase : Tuple = dist.sample(generator=_A ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase : List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase : Union[str, Any] = torch.tensor(_A ) _lowerCAmelCase : Optional[Any] = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_A ,_A ,atol=_A )
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowerCamelCase__ ( _lowerCamelCase = 100 ): '''simple docstring''' _lowerCAmelCase : str = 1 _lowerCAmelCase : int = 2 for i in range(2 , max_n + 1 ): _lowerCAmelCase : Any = pre_numerator _lowerCAmelCase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 _lowerCAmelCase : str = cur_numerator _lowerCAmelCase : str = e_cont * pre_numerator + temp return sum_digits(_lowerCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' while a != 0: _lowerCAmelCase : Tuple = b % a, a return b def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if gcd(snake_case__ , snake_case__ ) != 1: _lowerCAmelCase : Union[str, Any] = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(snake_case__ ) _lowerCAmelCase : str = 1, 0, a _lowerCAmelCase : List[str] = 0, 1, m while va != 0: _lowerCAmelCase : Union[str, Any] = ua // va _lowerCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase = """\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n""" class __UpperCamelCase ( a__ ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = parser.add_parser( 'convert' ,help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' ,) train_parser.add_argument('--model_type' ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' ,type=__lowerCAmelCase ,required=__lowerCAmelCase ,help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' ,type=__lowerCAmelCase ,default='' ,help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help='Optional fine-tuning task name if the TF model was a finetuned model.' ,) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self ,_A ,_A ,_A ,_A ,_A ,*_A ,): '''simple docstring''' _lowerCAmelCase : Any = logging.get_logger('transformers-cli/converting' ) self._logger.info(F"""Loading model {model_type}""" ) _lowerCAmelCase : List[str] = model_type _lowerCAmelCase : List[Any] = tf_checkpoint _lowerCAmelCase : Dict = pytorch_dump_output _lowerCAmelCase : str = config _lowerCAmelCase : str = finetuning_task_name def __lowerCamelCase ( self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCAmelCase : Tuple = self._tf_checkpoint _lowerCAmelCase : Union[str, Any] = '' else: _lowerCAmelCase : List[str] = self._tf_checkpoint _lowerCAmelCase : Union[str, Any] = '' convert_transfo_xl_checkpoint_to_pytorch( __lowerCAmelCase ,self._config ,self._pytorch_dump_output ,__lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = 0 _lowerCAmelCase : int = len(UpperCAmelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _lowerCAmelCase : Dict = i + 1 else: _lowerCAmelCase : Union[str, Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PhobertTokenizer _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Optional[int] = ["T@@", "i", "I", "R@@", "r", "e@@"] _lowerCAmelCase : str = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) _lowerCAmelCase : Any = ["#version: 0.2", "l à</w>"] _lowerCAmelCase : Dict = {"unk_token": "<unk>"} _lowerCAmelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "Tôi là VinAI Research" _lowerCAmelCase : int = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = PhobertTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowerCAmelCase : str = "Tôi là VinAI Research" _lowerCAmelCase : str = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _lowerCAmelCase : str = tokenizer.tokenize(lowerCAmelCase__ ) print(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCAmelCase : int = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ )
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) _lowerCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) _lowerCAmelCase = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): _UpperCAmelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _UpperCAmelCase = StableDiffusionPanoramaPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Any = DDIMScheduler() torch.manual_seed(0 ) _lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Union[str, Any] = CLIPTextModel(UpperCAmelCase_ ) _lowerCAmelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.manual_seed(UpperCAmelCase_ ) _lowerCAmelCase : int = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Optional[int] = StableDiffusionPanoramaPipeline(**UpperCAmelCase_ ) _lowerCAmelCase : str = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : Dict = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : int = sd_pipe(**UpperCAmelCase_ ).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Dict = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.25E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline(**UpperCAmelCase_ ) _lowerCAmelCase : Tuple = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : Dict = 'french fries' _lowerCAmelCase : List[Any] = sd_pipe(**UpperCAmelCase_ ,negative_prompt=UpperCAmelCase_ ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline(**UpperCAmelCase_ ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : List[str] = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : Dict = sd_pipe(**UpperCAmelCase_ ,view_batch_size=2 ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : str = self.get_dummy_components() _lowerCAmelCase : Optional[int] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ) _lowerCAmelCase : Tuple = StableDiffusionPanoramaPipeline(**UpperCAmelCase_ ) _lowerCAmelCase : List[Any] = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : Optional[int] = sd_pipe(**UpperCAmelCase_ ).images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Optional[Any] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = PNDMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,skip_prk_steps=UpperCAmelCase_ ) _lowerCAmelCase : Optional[Any] = StableDiffusionPanoramaPipeline(**UpperCAmelCase_ ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowerCAmelCase : List[str] = self.get_dummy_inputs(UpperCAmelCase_ ) _lowerCAmelCase : Tuple = sd_pipe(**UpperCAmelCase_ ).images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Tuple = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch.manual_seed(UpperCAmelCase_ ) _lowerCAmelCase : Union[str, Any] = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'stabilityai/stable-diffusion-2-base' _lowerCAmelCase : str = DDIMScheduler.from_pretrained(UpperCAmelCase_ ,subfolder='scheduler' ) _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase_ ,scheduler=UpperCAmelCase_ ,safety_checker=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase : Tuple = self.get_inputs() _lowerCAmelCase : Any = pipe(**UpperCAmelCase_ ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : List[Any] = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' ,safety_checker=UpperCAmelCase_ ) _lowerCAmelCase : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase : List[str] = self.get_inputs() _lowerCAmelCase : int = pipe(**UpperCAmelCase_ ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _lowerCAmelCase : Optional[Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 0 def callback_fn(_A ,_A ,_A ) -> None: _lowerCAmelCase : Any = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _lowerCAmelCase : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : List[Any] = latents[0, -3:, -3:, -1] _lowerCAmelCase : Any = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _lowerCAmelCase : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _lowerCAmelCase : Dict = latents[0, -3:, -3:, -1] _lowerCAmelCase : str = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _lowerCAmelCase : int = False _lowerCAmelCase : Union[str, Any] = 'stabilityai/stable-diffusion-2-base' _lowerCAmelCase : int = DDIMScheduler.from_pretrained(UpperCAmelCase_ ,subfolder='scheduler' ) _lowerCAmelCase : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase_ ,scheduler=UpperCAmelCase_ ,safety_checker=UpperCAmelCase_ ) _lowerCAmelCase : Dict = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() _lowerCAmelCase : List[str] = self.get_inputs() pipe(**UpperCAmelCase_ ,callback=UpperCAmelCase_ ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowerCamelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : List[Any] = 'stabilityai/stable-diffusion-2-base' _lowerCAmelCase : int = DDIMScheduler.from_pretrained(UpperCAmelCase_ ,subfolder='scheduler' ) _lowerCAmelCase : List[str] = StableDiffusionPanoramaPipeline.from_pretrained(UpperCAmelCase_ ,scheduler=UpperCAmelCase_ ,safety_checker=UpperCAmelCase_ ) _lowerCAmelCase : str = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : str = self.get_inputs() _lowerCAmelCase : Any = pipe(**UpperCAmelCase_ ) _lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
710
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _lowerCAmelCase = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = torchvision.models.resnetaaa(pretrained=UpperCamelCase__ ) _lowerCAmelCase : Tuple = list(model.children() )[:-2] _lowerCAmelCase : List[Any] = nn.Sequential(*UpperCamelCase__ ) _lowerCAmelCase : Optional[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.pool(self.model(UpperCamelCase__ ) ) _lowerCAmelCase : Dict = torch.flatten(UpperCamelCase__ ,start_dim=2 ) _lowerCAmelCase : str = out.transpose(1 ,2 ).contiguous() return out # BxNx2048 class __UpperCamelCase ( UpperCamelCase_ ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = [json.loads(UpperCamelCase__ ) for l in open(UpperCamelCase__ )] _lowerCAmelCase : Dict = os.path.dirname(UpperCamelCase__ ) _lowerCAmelCase : Any = tokenizer _lowerCAmelCase : Tuple = labels _lowerCAmelCase : Tuple = len(UpperCamelCase__ ) _lowerCAmelCase : Tuple = max_seq_length _lowerCAmelCase : int = transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] ,add_special_tokens=UpperCamelCase__ ) ) _lowerCAmelCase : Optional[int] = sentence[0], sentence[1:-1], sentence[-1] _lowerCAmelCase : List[str] = sentence[: self.max_seq_length] _lowerCAmelCase : Optional[Any] = torch.zeros(self.n_classes ) _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Dict = Image.open(os.path.join(self.data_dir ,self.data[index]['img'] ) ).convert('RGB' ) _lowerCAmelCase : Any = self.transforms(UpperCamelCase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [len(row['sentence'] ) for row in batch] _lowerCAmelCase : List[str] = len(_lowercase ), max(_lowercase ) _lowerCAmelCase : List[str] = torch.zeros(_lowercase , _lowercase , dtype=torch.long ) _lowerCAmelCase : int = torch.zeros(_lowercase , _lowercase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowercase , _lowercase ) ): _lowerCAmelCase : Optional[Any] = input_row['''sentence'''] _lowerCAmelCase : str = 1 _lowerCAmelCase : Dict = torch.stack([row['image'] for row in batch] ) _lowerCAmelCase : int = torch.stack([row['label'] for row in batch] ) _lowerCAmelCase : Union[str, Any] = torch.stack([row['image_start_token'] for row in batch] ) _lowerCAmelCase : Dict = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _lowerCAmelCase = logging.getLogger(__name__) @dataclass(frozen=UpperCAmelCase__ ) class __UpperCamelCase : _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None @dataclass(frozen=UpperCAmelCase__ ) class __UpperCamelCase : _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class __UpperCamelCase ( UpperCAmelCase__ ): _UpperCAmelCase = 42 def __init__( self ,_A ,_A ,_A ,_A = None ,_A=False ,_A = False ,): '''simple docstring''' _lowerCAmelCase : str = hans_processors[task]() _lowerCAmelCase : List[Any] = os.path.join( _A ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(_A ) ,_A ,) ,) _lowerCAmelCase : List[str] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase : Optional[Any] = label_list[2], label_list[1] _lowerCAmelCase : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : List[Any] = cached_features_file + """.lock""" with FileLock(_A ): if os.path.exists(_A ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) _lowerCAmelCase : Any = torch.load(_A ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) _lowerCAmelCase : Optional[Any] = ( processor.get_dev_examples(_A ) if evaluate else processor.get_train_examples(_A ) ) logger.info('Training examples: %s' ,len(_A ) ) _lowerCAmelCase : List[Any] = hans_convert_examples_to_features(_A ,_A ,_A ,_A ) logger.info('Saving features into cached file %s' ,_A ) torch.save(self.features ,_A ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self ,_A ): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __UpperCamelCase : _UpperCAmelCase = 42 def __init__( self ,_A ,_A ,_A ,_A = 128 ,_A=False ,_A = False ,): '''simple docstring''' _lowerCAmelCase : Dict = hans_processors[task]() _lowerCAmelCase : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase : List[str] = label_list[2], label_list[1] _lowerCAmelCase : Optional[Any] = label_list _lowerCAmelCase : Tuple = processor.get_dev_examples(_A ) if evaluate else processor.get_train_examples(_A ) _lowerCAmelCase : Any = hans_convert_examples_to_features(_A ,_A ,_A ,_A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _lowerCAmelCase : int = tf.data.Dataset.from_generator( _A ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def __lowerCamelCase ( self ): '''simple docstring''' return self.dataset def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self ,_A ): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self ): '''simple docstring''' return self.label_list class __UpperCamelCase ( UpperCAmelCase__ ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_A ,'heuristics_train_set.txt' ) ) ,'train' ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(_A ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def __lowerCamelCase ( self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] for i, line in enumerate(_A ): if i == 0: continue _lowerCAmelCase : Dict = """%s-%s""" % (set_type, line[0]) _lowerCAmelCase : List[str] = line[5] _lowerCAmelCase : List[Any] = line[6] _lowerCAmelCase : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] _lowerCAmelCase : Union[str, Any] = line[0] examples.append(InputExample(guid=_A ,text_a=_A ,text_b=_A ,label=_A ,pairID=_A ) ) return examples def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = {label: i for i, label in enumerate(_lowerCamelCase )} _lowerCAmelCase : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_lowerCamelCase ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d' % (ex_index) ) _lowerCAmelCase : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , truncation=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , ) _lowerCAmelCase : Union[str, Any] = label_map[example.label] if example.label in label_map else 0 _lowerCAmelCase : str = int(example.pairID ) features.append(InputFeatures(**_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features _lowerCAmelCase = { """hans""": 3, } _lowerCAmelCase = { """hans""": HansProcessor, }
713
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowercase__ ): _UpperCAmelCase = ["""speech"""] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['speech'] ) class __UpperCamelCase ( metaclass=lowercase__ ): _UpperCAmelCase = ["""speech"""] def __init__( self ,*_A ,**_A ): '''simple docstring''' requires_backends(self ,['speech'] )
714
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class __UpperCamelCase ( __snake_case ): _UpperCAmelCase = 'swinv2' _UpperCAmelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self ,_A=224 ,_A=4 ,_A=3 ,_A=96 ,_A=[2, 2, 6, 2] ,_A=[3, 6, 12, 24] ,_A=7 ,_A=4.0 ,_A=True ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A="gelu" ,_A=False ,_A=0.0_2 ,_A=1E-5 ,_A=32 ,**_A ,): '''simple docstring''' super().__init__(**A_ ) _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : str = embed_dim _lowerCAmelCase : Dict = depths _lowerCAmelCase : List[Any] = len(A_ ) _lowerCAmelCase : Optional[Any] = num_heads _lowerCAmelCase : List[Any] = window_size _lowerCAmelCase : Any = mlp_ratio _lowerCAmelCase : List[Any] = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Tuple = drop_path_rate _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = use_absolute_embeddings _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(A_ ) - 1) ) _lowerCAmelCase : Optional[Any] = (0, 0, 0, 0)
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(_lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) _lowerCAmelCase : Union[str, Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) _lowerCAmelCase : str = len(_lowerCamelCase ) _lowerCAmelCase : int = matrix_length // 2 _lowerCAmelCase : Union[str, Any] = [[a[i][j] for j in range(_lowerCamelCase , _lowerCamelCase )] for i in range(_lowerCamelCase )] _lowerCAmelCase : List[Any] = [ [a[i][j] for j in range(_lowerCamelCase , _lowerCamelCase )] for i in range(_lowerCamelCase , _lowerCamelCase ) ] _lowerCAmelCase : Dict = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase )] _lowerCAmelCase : Any = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase , _lowerCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return len(_lowerCamelCase ), len(matrix[0] ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' print('\n'.join(str(_lowerCamelCase ) for line in matrix ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if matrix_dimensions(_lowerCamelCase ) == (2, 2): return default_matrix_multiplication(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = split_matrix(_lowerCamelCase ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = split_matrix(_lowerCamelCase ) _lowerCAmelCase : List[Any] = actual_strassen(_lowerCamelCase , matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : Dict = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) _lowerCAmelCase : int = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = actual_strassen(_lowerCamelCase , matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : Dict = actual_strassen(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : List[str] = actual_strassen(matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : str = actual_strassen(matrix_subtraction(_lowerCamelCase , _lowerCamelCase ) , matrix_addition(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : List[str] = matrix_addition(matrix_subtraction(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) , _lowerCamelCase ) _lowerCAmelCase : List[str] = matrix_addition(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = matrix_addition(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : str = matrix_subtraction(matrix_subtraction(matrix_addition(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) , _lowerCamelCase ) # construct the new matrix from our 4 quadrants _lowerCAmelCase : Any = [] for i in range(len(_lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if matrix_dimensions(_lowerCamelCase )[1] != matrix_dimensions(_lowerCamelCase )[0]: _lowerCAmelCase : Union[str, Any] = ( 'Unable to multiply these matrices, please check the dimensions.\n' f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(_lowerCamelCase ) _lowerCAmelCase : Any = matrix_dimensions(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = matrix_dimensions(_lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _lowerCAmelCase : Dict = max(*_lowerCamelCase , *_lowerCamelCase ) _lowerCAmelCase : List[Any] = int(math.pow(2 , math.ceil(math.loga(_lowerCamelCase ) ) ) ) _lowerCAmelCase : Any = matrixa _lowerCAmelCase : Any = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _lowerCAmelCase : Tuple = actual_strassen(_lowerCamelCase , _lowerCamelCase ) # Removing the additional zeros for i in range(0 , _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _lowerCAmelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _lowerCAmelCase = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
716
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) set_seed(7_7_0) _lowerCAmelCase = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } _lowerCAmelCase = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } _lowerCAmelCase = os.path.dirname(os.path.abspath(__file__)) _lowerCAmelCase = os.path.join(os.path.expanduser("""~"""), """.cache""") _lowerCAmelCase = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Any = model_type if use_small: key += "_small" return os.path.join(lowercase__ , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) hf_hub_download(repo_id=lowercase__ , filename=lowercase__ , local_dir=lowercase__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase="text" ): '''simple docstring''' if model_type == "text": _lowerCAmelCase : Dict = BarkSemanticModel _lowerCAmelCase : str = BarkSemanticConfig _lowerCAmelCase : List[str] = BarkSemanticGenerationConfig elif model_type == "coarse": _lowerCAmelCase : Union[str, Any] = BarkCoarseModel _lowerCAmelCase : Dict = BarkCoarseConfig _lowerCAmelCase : Optional[int] = BarkCoarseGenerationConfig elif model_type == "fine": _lowerCAmelCase : str = BarkFineModel _lowerCAmelCase : str = BarkFineConfig _lowerCAmelCase : Any = BarkFineGenerationConfig else: raise NotImplementedError() _lowerCAmelCase : int = f"""{model_type}_small""" if use_small else model_type _lowerCAmelCase : str = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase__ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info['repo_id'] , model_info['file_name'] ) _lowerCAmelCase : List[str] = torch.load(lowercase__ , map_location=lowercase__ ) # this is a hack _lowerCAmelCase : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: _lowerCAmelCase : List[Any] = model_args['vocab_size'] _lowerCAmelCase : Optional[Any] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _lowerCAmelCase : Any = model_args.pop('n_head' ) _lowerCAmelCase : Optional[int] = model_args.pop('n_embd' ) _lowerCAmelCase : List[str] = model_args.pop('n_layer' ) _lowerCAmelCase : Tuple = ConfigClass(**checkpoint['model_args'] ) _lowerCAmelCase : List[Any] = ModelClass(config=lowercase__ ) _lowerCAmelCase : str = GenerationConfigClass() _lowerCAmelCase : Tuple = model_generation_config _lowerCAmelCase : Dict = checkpoint['model'] # fixup checkpoint _lowerCAmelCase : str = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowercase__ ): # replace part of the key with corresponding layer name in HF implementation _lowerCAmelCase : Any = k[len(lowercase__ ) :] for old_layer_name in new_layer_name_dict: _lowerCAmelCase : Any = new_k.replace(lowercase__ , new_layer_name_dict[old_layer_name] ) _lowerCAmelCase : Any = state_dict.pop(lowercase__ ) _lowerCAmelCase : Dict = set(state_dict.keys() ) - set(model.state_dict().keys() ) _lowerCAmelCase : Any = {k for k in extra_keys if not k.endswith('.attn.bias' )} _lowerCAmelCase : List[str] = set(model.state_dict().keys() ) - set(state_dict.keys() ) _lowerCAmelCase : Dict = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowercase__ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(lowercase__ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(lowercase__ , strict=lowercase__ ) _lowerCAmelCase : str = model.num_parameters(exclude_embeddings=lowercase__ ) _lowerCAmelCase : int = checkpoint['best_val_loss'].item() logger.info(f"""model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowercase__ , 3 )} loss""" ) model.eval() model.to(lowercase__ ) del checkpoint, state_dict return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _lowerCAmelCase : Dict = 'cpu' # do conversion on cpu _lowerCAmelCase : Optional[Any] = _get_ckpt_path(lowercase__ , use_small=lowercase__ ) _lowerCAmelCase : List[Any] = _load_model(lowercase__ , lowercase__ , model_type=lowercase__ , use_small=lowercase__ ) # load bark initial model _lowerCAmelCase : List[str] = _bark_load_model(lowercase__ , 'cpu' , model_type=lowercase__ , use_small=lowercase__ ) if model_type == "text": _lowerCAmelCase : Tuple = bark_model['model'] if model.num_parameters(exclude_embeddings=lowercase__ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model _lowerCAmelCase : Tuple = 5 _lowerCAmelCase : List[Any] = 10 if model_type in ["text", "coarse"]: _lowerCAmelCase : List[str] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) _lowerCAmelCase : Tuple = bark_model(lowercase__ )[0] _lowerCAmelCase : Dict = model(lowercase__ ) # take last logits _lowerCAmelCase : List[Any] = output_new_model_total.logits[:, [-1], :] else: _lowerCAmelCase : int = 3 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Dict = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _lowerCAmelCase : List[Any] = model(lowercase__ , lowercase__ ) _lowerCAmelCase : Tuple = bark_model(lowercase__ , lowercase__ ) _lowerCAmelCase : Any = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Tuple = os.path.join(lowercase__ , lowercase__ ) _lowerCAmelCase : Tuple = BarkSemanticConfig.from_pretrained(os.path.join(lowercase__ , 'config.json' ) ) _lowerCAmelCase : Dict = BarkCoarseConfig.from_pretrained(os.path.join(lowercase__ , 'config.json' ) ) _lowerCAmelCase : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(lowercase__ , 'config.json' ) ) _lowerCAmelCase : List[str] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) _lowerCAmelCase : Tuple = BarkSemanticModel.from_pretrained(lowercase__ ) _lowerCAmelCase : Union[str, Any] = BarkCoarseModel.from_pretrained(lowercase__ ) _lowerCAmelCase : Any = BarkFineModel.from_pretrained(lowercase__ ) _lowerCAmelCase : Dict = EncodecModel.from_pretrained('facebook/encodec_24khz' ) _lowerCAmelCase : Optional[Any] = BarkConfig.from_sub_model_configs( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCAmelCase : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _lowerCAmelCase : Optional[Any] = BarkModel(lowercase__ ) _lowerCAmelCase : Optional[Any] = semantic _lowerCAmelCase : List[Any] = coarseAcoustic _lowerCAmelCase : Optional[Any] = fineAcoustic _lowerCAmelCase : Union[str, Any] = codec _lowerCAmelCase : Dict = bark_generation_config Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) bark.save_pretrained(lowercase__ , repo_id=lowercase__ , push_to_hub=lowercase__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") _lowerCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0