code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import math class __UpperCamelCase : def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = 0.0 _lowerCAmelCase : Tuple = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) ,2 ) da += math.pow((sample[i] - weights[1][i]) ,2 ) return 0 if da > da else 1 return 0 def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _lowerCAmelCase : int = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _lowerCAmelCase : Optional[int] = SelfOrganizingMap() _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Tuple = 0.5 for _ in range(UpperCamelCase__ ): for j in range(len(UpperCamelCase__ ) ): # training sample _lowerCAmelCase : Any = training_samples[j] # Compute the winning vector _lowerCAmelCase : Optional[int] = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # Update the winning vector _lowerCAmelCase : List[Any] = self_organizing_map.update(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # classify test sample _lowerCAmelCase : Dict = [0, 0, 0, 1] _lowerCAmelCase : Dict = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } _lowerCAmelCase = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } _lowerCAmelCase = { "jukebox": 5_1_2, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_LYRIC_TOKENS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A ,_A ,_A=["v3", "v2", "v2"] ,_A=512 ,_A=5 ,_A="<|endoftext|>" ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = AddedToken(UpperCAmelCase__ ,lstrip=UpperCAmelCase__ ,rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) else unk_token super().__init__( unk_token=UpperCAmelCase__ ,n_genres=UpperCAmelCase__ ,version=UpperCAmelCase__ ,max_n_lyric_tokens=UpperCAmelCase__ ,**UpperCAmelCase__ ,) _lowerCAmelCase : int = version _lowerCAmelCase : Optional[Any] = max_n_lyric_tokens _lowerCAmelCase : List[str] = n_genres with open(UpperCAmelCase__ ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Dict = json.load(UpperCAmelCase__ ) with open(UpperCAmelCase__ ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(UpperCAmelCase__ ) with open(UpperCAmelCase__ ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Union[str, Any] = json.load(UpperCAmelCase__ ) _lowerCAmelCase : Optional[Any] = r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _lowerCAmelCase : Optional[Any] = oov.replace(r'\-\'' ,r'\-+\'' ) _lowerCAmelCase : str = regex.compile(UpperCAmelCase__ ) _lowerCAmelCase : Dict = {v: k for k, v in self.artists_encoder.items()} _lowerCAmelCase : str = {v: k for k, v in self.genres_encoder.items()} _lowerCAmelCase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = [self.artists_encoder.get(UpperCAmelCase__ ,0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase__ ) ): _lowerCAmelCase : List[str] = [self.genres_encoder.get(UpperCAmelCase__ ,0 ) for genre in list_genres[genres]] _lowerCAmelCase : Any = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _lowerCAmelCase : int = [[self.lyrics_encoder.get(UpperCAmelCase__ ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __lowerCamelCase ( self ,_A ): '''simple docstring''' return list(UpperCAmelCase__ ) def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = self.prepare_for_tokenization(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) _lowerCAmelCase : str = self._tokenize(UpperCAmelCase__ ) return artist, genre, lyrics def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": _lowerCAmelCase : str = artists[idx].lower() _lowerCAmelCase : Dict = [genres[idx].lower()] else: _lowerCAmelCase : List[Any] = self._normalize(artists[idx] ) + '.v2' _lowerCAmelCase : List[Any] = [ self._normalize(UpperCAmelCase__ ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _lowerCAmelCase : Optional[Any] = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) _lowerCAmelCase : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' _lowerCAmelCase : Optional[Any] = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase__ ) )} _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Union[str, Any] = len(UpperCAmelCase__ ) + 1 _lowerCAmelCase : int = self.vocab _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} _lowerCAmelCase : Dict = '' else: _lowerCAmelCase : int = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) _lowerCAmelCase : List[str] = self._run_strip_accents(UpperCAmelCase__ ) _lowerCAmelCase : List[Any] = lyrics.replace('\\' ,'\n' ) _lowerCAmelCase : List[Any] = self.out_of_vocab.sub('' ,UpperCAmelCase__ ), [], [] return artists, genres, lyrics def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = unicodedata.normalize('NFD' ,UpperCAmelCase__ ) _lowerCAmelCase : Optional[Any] = [] for char in text: _lowerCAmelCase : List[str] = unicodedata.category(UpperCAmelCase__ ) if cat == "Mn": continue output.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = ( [chr(UpperCAmelCase__ ) for i in range(ord('a' ) ,ord('z' ) + 1 )] + [chr(UpperCAmelCase__ ) for i in range(ord('A' ) ,ord('Z' ) + 1 )] + [chr(UpperCAmelCase__ ) for i in range(ord('0' ) ,ord('9' ) + 1 )] + ['.'] ) _lowerCAmelCase : List[str] = frozenset(UpperCAmelCase__ ) _lowerCAmelCase : List[str] = re.compile(r'_+' ) _lowerCAmelCase : int = ''.join([c if c in accepted else '_' for c in text.lower()] ) _lowerCAmelCase : int = pattern.sub('_' ,UpperCAmelCase__ ).strip('_' ) return text def __lowerCamelCase ( self ,_A ): '''simple docstring''' return " ".join(UpperCAmelCase__ ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ): _lowerCAmelCase : List[str] = TensorType(UpperCAmelCase__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf _lowerCAmelCase : Optional[Any] = tf.constant _lowerCAmelCase : Tuple = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch _lowerCAmelCase : Optional[Any] = torch.tensor _lowerCAmelCase : List[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 _lowerCAmelCase : int = jnp.array _lowerCAmelCase : Dict = _is_jax else: _lowerCAmelCase : Optional[int] = np.asarray _lowerCAmelCase : Union[str, Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _lowerCAmelCase : Any = [inputs] if not is_tensor(UpperCAmelCase__ ): _lowerCAmelCase : Dict = as_tensor(UpperCAmelCase__ ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self ,_A ,_A ,_A="" ,_A="pt" ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [0, 0, 0] _lowerCAmelCase : List[str] = [artist] * len(self.version ) _lowerCAmelCase : str = [genres] * len(self.version ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = self.tokenize(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self._convert_token_to_id(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) _lowerCAmelCase : Dict = [-INFINITY] * len(full_tokens[-1] ) _lowerCAmelCase : Optional[int] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=UpperCAmelCase__ ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Any = os.path.join( UpperCAmelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(UpperCAmelCase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=UpperCAmelCase__ ) ) _lowerCAmelCase : int = os.path.join( UpperCAmelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(UpperCAmelCase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=UpperCAmelCase__ ) ) _lowerCAmelCase : List[str] = os.path.join( UpperCAmelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(UpperCAmelCase__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=UpperCAmelCase__ ) ) return (artists_file, genres_file, lyrics_file) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.artists_decoder.get(UpperCAmelCase__ ) _lowerCAmelCase : Dict = [self.genres_decoder.get(UpperCAmelCase__ ) for genre in genres_index] _lowerCAmelCase : List[Any] = [self.lyrics_decoder.get(UpperCAmelCase__ ) for character in lyric_index] return artist, genres, lyrics
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _lowerCAmelCase = getLogger(__name__) _lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 8 , _lowerCamelCase = DEFAULT_DEVICE , _lowerCamelCase=False , _lowerCamelCase="summarization" , _lowerCamelCase=None , **_lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Path(_lowerCamelCase ).open('w' , encoding='utf-8' ) _lowerCAmelCase : List[str] = str(_lowerCamelCase ) _lowerCAmelCase : str = AutoModelForSeqaSeqLM.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if fpaa: _lowerCAmelCase : List[Any] = model.half() _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(_lowerCamelCase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _lowerCAmelCase : Tuple = time.time() # update config with task specific params use_task_specific_params(_lowerCamelCase , _lowerCamelCase ) if prefix is None: _lowerCAmelCase : Dict = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(_lowerCamelCase , _lowerCamelCase ) ) ): _lowerCAmelCase : Dict = [prefix + text for text in examples_chunk] _lowerCAmelCase : List[str] = tokenizer(_lowerCamelCase , return_tensors='pt' , truncation=_lowerCamelCase , padding='longest' ).to(_lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_lowerCamelCase , ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() _lowerCAmelCase : Optional[int] = int(time.time() - start_time ) # seconds _lowerCAmelCase : Any = len(_lowerCamelCase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ): '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def lowerCamelCase__ ( _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument('model_name' , type=_lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=_lowerCamelCase , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=_lowerCamelCase , help='where to save summaries' ) parser.add_argument('--reference_path' , type=_lowerCamelCase , required=_lowerCamelCase , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=_lowerCamelCase , required=_lowerCamelCase , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=_lowerCamelCase , required=_lowerCamelCase , default=_lowerCamelCase , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=_lowerCamelCase , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=_lowerCamelCase , default=8 , required=_lowerCamelCase , help='batch size' ) parser.add_argument( '--n_obs' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=_lowerCamelCase , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _lowerCAmelCase, _lowerCAmelCase : Dict = parser.parse_known_args() _lowerCAmelCase : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(_lowerCamelCase ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _lowerCAmelCase : Tuple = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _lowerCAmelCase : List[Any] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_lowerCamelCase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) _lowerCAmelCase : List[str] = generate_summaries_or_translations( _lowerCamelCase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_lowerCamelCase , ) if args.reference_path is None: return {} # Compute scores _lowerCAmelCase : List[str] = calculate_bleu if 'translation' in args.task else calculate_rouge _lowerCAmelCase : Union[str, Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _lowerCAmelCase : Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_lowerCamelCase )] _lowerCAmelCase : List[str] = score_fn(_lowerCamelCase , _lowerCamelCase ) scores.update(_lowerCamelCase ) if args.dump_args: scores.update(_lowerCamelCase ) if args.info: _lowerCAmelCase : List[str] = args.info if verbose: print(_lowerCamelCase ) if args.score_path is not None: json.dump(_lowerCamelCase , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCAmelCase = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] _lowerCAmelCase = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] _lowerCAmelCase = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCAmelCase = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) _lowerCAmelCase = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for tf_name, hf_name in patterns: _lowerCAmelCase : Optional[Any] = k.replace(lowercase__ , lowercase__ ) return k def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = BigBirdPegasusConfig(**lowercase__ ) _lowerCAmelCase : int = BigBirdPegasusForConditionalGeneration(lowercase__ ) _lowerCAmelCase : Dict = torch_model.state_dict() _lowerCAmelCase : Union[str, Any] = {} # separating decoder weights _lowerCAmelCase : str = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _lowerCAmelCase : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): _lowerCAmelCase : int = [k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE] if any(lowercase__ ): continue _lowerCAmelCase : Optional[int] = DECODER_PATTERNS _lowerCAmelCase : Union[str, Any] = rename_state_dict_key(lowercase__ , lowercase__ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowerCAmelCase : str = v.T _lowerCAmelCase : Union[str, Any] = torch.from_numpy(lowercase__ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): _lowerCAmelCase : str = [k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE] if any(lowercase__ ): continue _lowerCAmelCase : int = REMAINING_PATTERNS _lowerCAmelCase : List[Any] = rename_state_dict_key(lowercase__ , lowercase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowerCAmelCase : Optional[Any] = v.T _lowerCAmelCase : Dict = torch.from_numpy(lowercase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _lowerCAmelCase : Tuple = mapping['model.embed_positions.weight'] _lowerCAmelCase : str = mapping.pop('model.embed_positions.weight' ) _lowerCAmelCase, _lowerCAmelCase : Tuple = torch_model.load_state_dict(lowercase__ , strict=lowercase__ ) _lowerCAmelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tf.train.list_variables(lowercase__ ) _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : str = ['global_step'] for name, shape in tqdm(lowercase__ , desc='converting tf checkpoint to dict' ): _lowerCAmelCase : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCAmelCase : Optional[Any] = tf.train.load_variable(lowercase__ , lowercase__ ) _lowerCAmelCase : List[Any] = array return tf_weights def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = get_tf_weights_as_numpy(lowercase__ ) _lowerCAmelCase : Optional[int] = convert_bigbird_pegasus(lowercase__ , lowercase__ ) torch_model.save_pretrained(lowercase__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( a__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __lowerCamelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = ort.SessionOptions() _lowerCAmelCase : str = False return options def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,revision='onnx' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) _lowerCAmelCase : Dict = '''A red cat sitting on a park bench''' _lowerCAmelCase : Tuple = np.random.RandomState(0 ) _lowerCAmelCase : Dict = pipe( prompt=lowercase__ ,image=lowercase__ ,mask_image=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowercase__ ,output_type='np' ,) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : List[str] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : List[Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase : str = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,subfolder='scheduler' ,revision='onnx' ) _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' ,revision='onnx' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) _lowerCAmelCase : Dict = '''A red cat sitting on a park bench''' _lowerCAmelCase : int = np.random.RandomState(0 ) _lowerCAmelCase : int = pipe( prompt=lowercase__ ,image=lowercase__ ,mask_image=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowercase__ ,output_type='np' ,) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Dict = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[int] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" from numpy import exp, pi, sqrt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = int(a_ ) _lowerCAmelCase : Optional[int] = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=300 ): '''simple docstring''' return f"""\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowerCAmelCase : List[str] = f"""{elt:.6f}""" if isinstance(a_ , a_ ) else str(a_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __UpperCamelCase : _UpperCAmelCase = 5 _UpperCAmelCase = 0.2 def __init__( self ,_A ,_A = None ,_A = True ,_A = None ,_A = 300 ,): '''simple docstring''' _lowerCAmelCase : Dict = total _lowerCAmelCase : Tuple = '''''' if prefix is None else prefix _lowerCAmelCase : Tuple = leave _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : int = width _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : str = None _lowerCAmelCase : List[Any] = None def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ): '''simple docstring''' _lowerCAmelCase : Tuple = value if comment is not None: _lowerCAmelCase : int = comment if self.last_value is None: _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : List[str] = value _lowerCAmelCase : Dict = None _lowerCAmelCase : Tuple = self.warmup _lowerCAmelCase : Dict = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : int = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowerCAmelCase : Optional[int] = self.elapsed_time / (value - self.start_value) else: _lowerCAmelCase : Optional[int] = None if value >= self.total: _lowerCAmelCase : List[str] = self.total _lowerCAmelCase : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowerCAmelCase : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) _lowerCAmelCase : Optional[Any] = value _lowerCAmelCase : Tuple = current_time if self.average_time_per_item is None: _lowerCAmelCase : Optional[int] = 1 else: _lowerCAmelCase : Union[str, Any] = max(int(self.update_every / self.average_time_per_item ) ,1 ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: _lowerCAmelCase : str = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _lowerCAmelCase : Optional[Any] = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _lowerCAmelCase : str = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowerCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code ) ,display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def __lowerCamelCase ( self ): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class __UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self ,_A ,_A=None ): '''simple docstring''' super().__init__(__snake_case ) _lowerCAmelCase : List[Any] = None if column_names is None else [column_names] _lowerCAmelCase : Optional[int] = None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowerCAmelCase : List[Any] = disp.display(disp.HTML(self.html_code ) ,display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.inner_table is None: _lowerCAmelCase : Union[str, Any] = [list(values.keys() ), list(values.values() )] else: _lowerCAmelCase : Optional[int] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) _lowerCAmelCase : List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=300 ): '''simple docstring''' _lowerCAmelCase : Any = NotebookProgressBar(__snake_case ,prefix=__snake_case ,parent=self ,width=__snake_case ) return self.child_bar def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = None self.display() class __UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : int = None _lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : int = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Tuple = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _lowerCAmelCase : Optional[Any] = NotebookTrainingTracker(state.max_steps ,__snake_case ) def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 ,comment=F"""Epoch {epoch}/{state.num_train_epochs}""" ,force_update=self._force_next_update ,) _lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowerCAmelCase : List[str] = self.training_tracker.add_child(len(__snake_case ) ) else: _lowerCAmelCase : str = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _lowerCAmelCase : List[str] = None def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowerCAmelCase : Tuple = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy _lowerCAmelCase : Dict = state.global_step self.training_tracker.write_line(__snake_case ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' if self.training_tracker is not None: _lowerCAmelCase : Optional[Any] = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: _lowerCAmelCase : Any = log['''loss'''] break if self.first_column == "Epoch": _lowerCAmelCase : Tuple = int(state.epoch ) else: _lowerCAmelCase : Optional[int] = state.global_step _lowerCAmelCase : Tuple = '''eval''' for k in metrics: if k.endswith('_loss' ): _lowerCAmelCase : Union[str, Any] = re.sub(r'\_loss$' ,'' ,__snake_case ) _lowerCAmelCase : List[Any] = metrics.pop('total_flos' ,__snake_case ) _lowerCAmelCase : Union[str, Any] = metrics.pop('epoch' ,__snake_case ) _lowerCAmelCase : List[Any] = metrics.pop(F"""{metric_key_prefix}_runtime""" ,__snake_case ) _lowerCAmelCase : Dict = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" ,__snake_case ) _lowerCAmelCase : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" ,__snake_case ) _lowerCAmelCase : List[str] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" ,__snake_case ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": _lowerCAmelCase : List[str] = v else: _lowerCAmelCase : Any = k.split('_' ) _lowerCAmelCase : Optional[Any] = ''' '''.join([part.capitalize() for part in splits[1:]] ) _lowerCAmelCase : Union[str, Any] = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() _lowerCAmelCase : Dict = None # Evaluation takes a long time so we should force the next update. _lowerCAmelCase : List[Any] = True def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' self.training_tracker.update( state.global_step ,comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" ,force_update=__snake_case ) _lowerCAmelCase : Any = None
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F'''down_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F'''down_blocks.{i}.attentions.{j}.''' _lowerCAmelCase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F'''up_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F'''up_blocks.{i}.attentions.{j}.''' _lowerCAmelCase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F'''down_blocks.{i}.downsamplers.0.conv.''' _lowerCAmelCase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' _lowerCAmelCase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = """mid_block.attentions.0.""" _lowerCAmelCase = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F'''mid_block.resnets.{j}.''' _lowerCAmelCase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _lowerCAmelCase : Any = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _lowerCAmelCase : List[str] = v.replace(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _lowerCAmelCase : Optional[int] = v.replace(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[Any] = v _lowerCAmelCase : int = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F'''encoder.down_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F'''down_blocks.{i}.downsamplers.0.''' _lowerCAmelCase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' _lowerCAmelCase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F'''decoder.up_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F'''mid_block.resnets.{i}.''' _lowerCAmelCase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _lowerCAmelCase : List[str] = v.replace(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _lowerCAmelCase : Optional[int] = v.replace(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = v _lowerCAmelCase : Dict = {v: vae_state_dict[k] for k, v in mapping.items()} _lowerCAmelCase : Union[str, Any] = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) _lowerCAmelCase : Union[str, Any] = reshape_weight_for_sd(_lowerCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Dict = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): _lowerCAmelCase : str = k[: -len('.q_proj.weight' )] _lowerCAmelCase : Dict = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: _lowerCAmelCase : Dict = [None, None, None] _lowerCAmelCase : List[Any] = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): _lowerCAmelCase : Tuple = k[: -len('.q_proj.bias' )] _lowerCAmelCase : List[Any] = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: _lowerCAmelCase : Union[str, Any] = [None, None, None] _lowerCAmelCase : int = v continue _lowerCAmelCase : Union[str, Any] = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _lowerCAmelCase : List[Any] = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = torch.cat(_lowerCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _lowerCAmelCase : Tuple = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = torch.cat(_lowerCamelCase ) return new_state_dict def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _lowerCAmelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _lowerCAmelCase = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device="""cpu""") else: _lowerCAmelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _lowerCAmelCase = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device="""cpu""") else: _lowerCAmelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _lowerCAmelCase = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device="""cpu""") else: _lowerCAmelCase = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _lowerCAmelCase = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : Tuple = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : str = TFAutoModel.from_pretrained(__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : List[str] = AutoModel.from_pretrained(__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : Dict = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Optional[int] = TFAutoModelForPreTraining.from_pretrained(__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Dict = AutoModelForPreTraining.from_pretrained(__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(__a ,from_pt=__a ) _lowerCAmelCase : int = TFAutoModelForCausalLM.from_pretrained( __a ,output_loading_info=__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Optional[int] = AutoModelForCausalLM.from_pretrained(__a ,from_tf=__a ) _lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained( __a ,output_loading_info=__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : List[Any] = TFAutoModelWithLMHead.from_pretrained(__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : List[str] = AutoModelWithLMHead.from_pretrained(__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__a ,from_pt=__a ) _lowerCAmelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained( __a ,output_loading_info=__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : List[Any] = AutoModelForMaskedLM.from_pretrained(__a ,from_tf=__a ) _lowerCAmelCase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( __a ,output_loading_info=__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : int = TFAutoModelForSeqaSeqLM.from_pretrained(__a ,from_pt=__a ) _lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( __a ,output_loading_info=__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained(__a ,from_tf=__a ) _lowerCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( __a ,output_loading_info=__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : str = TFAutoModelForSequenceClassification.from_pretrained(__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : int = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : List[Any] = TFAutoModelForQuestionAnswering.from_pretrained(__a ,from_pt=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) _lowerCAmelCase : str = AutoModelForQuestionAnswering.from_pretrained(__a ,from_tf=__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a ,__a ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFAutoModelWithLMHead.from_pretrained(__a ,from_pt=__a ) self.assertIsInstance(__a ,__a ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) ,1_4410 ) _lowerCAmelCase : Optional[int] = AutoModelWithLMHead.from_pretrained(__a ,from_tf=__a ) self.assertIsInstance(__a ,__a ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) ,1_4410 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFAutoModelWithLMHead.from_pretrained(__a ,from_pt=__a ) self.assertIsInstance(__a ,__a ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) ,1_4410 ) _lowerCAmelCase : Any = AutoModelWithLMHead.from_pretrained(__a ,from_tf=__a ) self.assertIsInstance(__a ,__a ) self.assertEqual(model.num_parameters() ,1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__a ) ,1_4410 )
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( UpperCAmelCase_ ): def __init__( self ,_A ,_A ,_A ,_A = None ,): '''simple docstring''' super().__init__() self.register_modules(transformer=_snake_case ,vae=_snake_case ,scheduler=_snake_case ) # create a imagenet -> id dictionary for easier use _lowerCAmelCase : int = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): _lowerCAmelCase : Tuple = int(_snake_case ) _lowerCAmelCase : Optional[int] = dict(sorted(self.labels.items() ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if not isinstance(_snake_case ,_snake_case ): _lowerCAmelCase : List[Any] = list(_snake_case ) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self ,_A ,_A = 4.0 ,_A = None ,_A = 50 ,_A = "pil" ,_A = True ,): '''simple docstring''' _lowerCAmelCase : Any = len(_snake_case ) _lowerCAmelCase : Tuple = self.transformer.config.sample_size _lowerCAmelCase : Optional[int] = self.transformer.config.in_channels _lowerCAmelCase : Any = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=_snake_case ,device=self.device ,dtype=self.transformer.dtype ,) _lowerCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents _lowerCAmelCase : Union[str, Any] = torch.tensor(_snake_case ,device=self.device ).reshape(-1 ) _lowerCAmelCase : List[Any] = torch.tensor([1000] * batch_size ,device=self.device ) _lowerCAmelCase : List[str] = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: _lowerCAmelCase : Dict = latent_model_input[: len(_snake_case ) // 2] _lowerCAmelCase : Dict = torch.cat([half, half] ,dim=0 ) _lowerCAmelCase : Union[str, Any] = self.scheduler.scale_model_input(_snake_case ,_snake_case ) _lowerCAmelCase : int = t if not torch.is_tensor(_snake_case ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCAmelCase : int = latent_model_input.device.type == 'mps' if isinstance(_snake_case ,_snake_case ): _lowerCAmelCase : Dict = torch.floataa if is_mps else torch.floataa else: _lowerCAmelCase : int = torch.intaa if is_mps else torch.intaa _lowerCAmelCase : Dict = torch.tensor([timesteps] ,dtype=_snake_case ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: _lowerCAmelCase : Optional[int] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output _lowerCAmelCase : Optional[int] = self.transformer( _snake_case ,timestep=_snake_case ,class_labels=_snake_case ).sample # perform guidance if guidance_scale > 1: _lowerCAmelCase, _lowerCAmelCase : List[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCAmelCase, _lowerCAmelCase : Dict = torch.split(_snake_case ,len(_snake_case ) // 2 ,dim=0 ) _lowerCAmelCase : Dict = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCAmelCase : List[str] = torch.cat([half_eps, half_eps] ,dim=0 ) _lowerCAmelCase : Tuple = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = torch.split(_snake_case ,_snake_case ,dim=1 ) else: _lowerCAmelCase : int = noise_pred # compute previous image: x_t -> x_t-1 _lowerCAmelCase : Optional[int] = self.scheduler.step(_snake_case ,_snake_case ,_snake_case ).prev_sample if guidance_scale > 1: _lowerCAmelCase, _lowerCAmelCase : int = latent_model_input.chunk(2 ,dim=0 ) else: _lowerCAmelCase : str = latent_model_input _lowerCAmelCase : Any = 1 / self.vae.config.scaling_factor * latents _lowerCAmelCase : List[str] = self.vae.decode(_snake_case ).sample _lowerCAmelCase : Any = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : List[str] = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : Tuple = self.numpy_to_pil(_snake_case ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_snake_case )
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): _UpperCAmelCase = StableUnCLIPImgaImgPipeline _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _UpperCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _UpperCAmelCase = frozenset([] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 32 _lowerCAmelCase : Union[str, Any] = embedder_hidden_size # image encoding components _lowerCAmelCase : Optional[int] = CLIPImageProcessor(crop_size=32 ,size=32 ) torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCAmelCase ,projection_dim=_lowerCAmelCase ,num_hidden_layers=5 ,num_attention_heads=4 ,image_size=32 ,intermediate_size=37 ,patch_size=1 ,) ) # regular denoising components torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase ) _lowerCAmelCase : str = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=_lowerCAmelCase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='projection' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=_lowerCAmelCase ,layers_per_block=1 ,upcast_attention=_lowerCAmelCase ,use_linear_projection=_lowerCAmelCase ,) torch.manual_seed(0 ) _lowerCAmelCase : str = DDIMScheduler( beta_schedule='scaled_linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='v_prediction' ,set_alpha_to_one=_lowerCAmelCase ,steps_offset=1 ,) torch.manual_seed(0 ) _lowerCAmelCase : int = AutoencoderKL() _lowerCAmelCase : List[str] = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def __lowerCamelCase ( self ,_A ,_A=0 ,_A=True ): '''simple docstring''' if str(_lowerCAmelCase ).startswith('mps' ): _lowerCAmelCase : Dict = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase : str = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase : str = floats_tensor((1, 3, 32, 32) ,rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) if pil_image: _lowerCAmelCase : str = input_image * 0.5 + 0.5 _lowerCAmelCase : Optional[int] = input_image.clamp(0 ,1 ) _lowerCAmelCase : Optional[int] = input_image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() _lowerCAmelCase : Dict = DiffusionPipeline.numpy_to_pil(_lowerCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : int = StableUnCLIPImgaImgPipeline(**_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Any = self.get_dummy_inputs(_lowerCAmelCase ) inputs.update({'image_embeds': None} ) _lowerCAmelCase : Dict = sd_pipe(**_lowerCAmelCase ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase : Any = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowerCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCAmelCase ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) _lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) _lowerCAmelCase : int = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' ,torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : str = pipe(_lowerCAmelCase ,'anime turle' ,generator=_lowerCAmelCase ,output_type='np' ) _lowerCAmelCase : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase ,_lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) _lowerCAmelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) _lowerCAmelCase : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' ,torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Tuple = pipe(_lowerCAmelCase ,'anime turle' ,generator=_lowerCAmelCase ,output_type='np' ) _lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase ,_lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Dict = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase : Union[str, Any] = pipe( _lowerCAmelCase ,'anime turtle' ,num_inference_steps=2 ,output_type='np' ,) _lowerCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase = 50 ): '''simple docstring''' _lowerCAmelCase : str = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' debug_launcher(test_script.main ) def __lowerCamelCase ( self ): '''simple docstring''' debug_launcher(test_ops.main )
710
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase = 1000000 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set(range(3 , lowerCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCamelCase_ , lowerCamelCase_ ) ) ) _lowerCAmelCase : Optional[Any] = [float(lowerCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase : def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = question_encoder _lowerCAmelCase : Union[str, Any] = generator _lowerCAmelCase : Dict = self.question_encoder def __lowerCamelCase ( self ,_A ): '''simple docstring''' if os.path.isfile(__A ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__A ,exist_ok=__A ) _lowerCAmelCase : Tuple = os.path.join(__A ,'question_encoder_tokenizer' ) _lowerCAmelCase : Optional[Any] = os.path.join(__A ,'generator_tokenizer' ) self.question_encoder.save_pretrained(__A ) self.generator.save_pretrained(__A ) @classmethod def __lowerCamelCase ( cls ,_A ,**_A ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : str = kwargs.pop('config' ,__A ) if config is None: _lowerCAmelCase : Union[str, Any] = RagConfig.from_pretrained(__A ) _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( __A ,config=config.question_encoder ,subfolder='question_encoder_tokenizer' ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( __A ,config=config.generator ,subfolder='generator_tokenizer' ) return cls(question_encoder=__A ,generator=__A ) def __call__( self ,*_A ,**_A ): '''simple docstring''' return self.current_tokenizer(*__A ,**__A ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.generator.batch_decode(*__A ,**__A ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.generator.decode(*__A ,**__A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.question_encoder def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.generator def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A = None ,_A = "longest" ,_A = None ,_A = True ,**_A ,): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' ,__A ,) if max_length is None: _lowerCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length _lowerCAmelCase : Optional[Any] = self( __A ,add_special_tokens=__A ,return_tensors=__A ,max_length=__A ,padding=__A ,truncation=__A ,**__A ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : Dict = self( text_target=__A ,add_special_tokens=__A ,return_tensors=__A ,padding=__A ,max_length=__A ,truncation=__A ,**__A ,) _lowerCAmelCase : List[str] = labels['input_ids'] return model_inputs
713
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
0
"""simple docstring""" import qiskit def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowerCAmelCase : int = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _lowerCAmelCase : Dict = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
714
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return getitem, k def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return setitem, k, v def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return delitem, k def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ): '''simple docstring''' try: return fun(_UpperCAmelCase , *_UpperCAmelCase ), None except Exception as e: return None, e _lowerCAmelCase = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) _lowerCAmelCase = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] _lowerCAmelCase = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] _lowerCAmelCase = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] _lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HashMap(initial_block_size=4 ) _lowerCAmelCase : List[Any] = {} for _, (fun, *args) in enumerate(_UpperCAmelCase ): _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = _run_operation(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ) _lowerCAmelCase, _lowerCAmelCase : Dict = _run_operation(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ) assert my_res == py_res assert str(_UpperCAmelCase ) == str(_UpperCAmelCase ) assert set(_UpperCAmelCase ) == set(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) assert set(my.items() ) == set(py.items() ) def lowerCamelCase__ ( ): '''simple docstring''' def is_public(_lowerCamelCase ) -> bool: return not name.startswith('_' ) _lowerCAmelCase : Optional[Any] = {name for name in dir({} ) if is_public(_UpperCAmelCase )} _lowerCAmelCase : Any = {name for name in dir(HashMap() ) if is_public(_UpperCAmelCase )} assert dict_public_names > hash_public_names
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCAmelCase = logging.getLogger(__name__) @dataclass class __UpperCamelCase : _UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase = field(default=UpperCamelCase_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __UpperCamelCase : _UpperCAmelCase = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) _UpperCAmelCase = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCAmelCase = field( default=UpperCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) _lowerCAmelCase : List[str] = import_module('tasks' ) try: _lowerCAmelCase : Any = getattr(_lowerCamelCase , model_args.task_type ) _lowerCAmelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _lowerCAmelCase : Optional[Any] = token_classification_task.get_labels(data_args.labels ) _lowerCAmelCase : Dict[int, str] = dict(enumerate(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid={label: i for i, label in enumerate(_lowerCamelCase )} , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _lowerCAmelCase : Optional[int] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase : List[Any] = ( TokenClassificationDataset( token_classification_task=_lowerCamelCase , data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , labels=_lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase : int = ( TokenClassificationDataset( token_classification_task=_lowerCamelCase , data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , labels=_lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_lowerCamelCase , _lowerCamelCase ) -> Tuple[List[int], List[int]]: _lowerCAmelCase : str = np.argmax(_lowerCamelCase , axis=2 ) _lowerCAmelCase : int = preds.shape _lowerCAmelCase : Dict = [[] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Union[str, Any] = [[] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_lowerCamelCase ) -> Dict: _lowerCAmelCase : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_lowerCamelCase , _lowerCamelCase ), "precision": precision_score(_lowerCamelCase , _lowerCamelCase ), "recall": recall_score(_lowerCamelCase , _lowerCamelCase ), "f1": fa_score(_lowerCamelCase , _lowerCamelCase ), } # Data collator _lowerCAmelCase : Optional[int] = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase : Optional[Any] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase : List[str] = trainer.evaluate() _lowerCAmelCase : Tuple = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _lowerCamelCase , _lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(_lowerCamelCase ) # Predict if training_args.do_predict: _lowerCAmelCase : str = TokenClassificationDataset( token_classification_task=_lowerCamelCase , data_dir=data_args.data_dir , tokenizer=_lowerCamelCase , labels=_lowerCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _lowerCAmelCase : str = trainer.predict(_lowerCamelCase ) _lowerCAmelCase : List[str] = align_predictions(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _lowerCamelCase , _lowerCamelCase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _lowerCAmelCase : List[str] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return results def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
716
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _lowercase ).groups()[0] class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A=None ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = file_names _lowerCAmelCase : Any = image_transform _lowerCAmelCase : List[str] = label_to_id def __len__( self ): '''simple docstring''' return len(self.file_names ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.file_names[idx] _lowerCAmelCase : List[Any] = PIL.Image.open(__A ) _lowerCAmelCase : Optional[Any] = raw_image.convert('RGB' ) if self.image_transform is not None: _lowerCAmelCase : List[Any] = self.image_transform(__A ) _lowerCAmelCase : Optional[int] = extract_label(__A ) if self.label_to_id is not None: _lowerCAmelCase : str = self.label_to_id[label] return {"image": image, "label": label} def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if args.with_tracking: _lowerCAmelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _lowerCAmelCase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Any = config['lr'] _lowerCAmelCase : List[Any] = int(config['num_epochs'] ) _lowerCAmelCase : Any = int(config['seed'] ) _lowerCAmelCase : List[Any] = int(config['batch_size'] ) _lowerCAmelCase : Union[str, Any] = config['image_size'] if not isinstance(_lowercase , (list, tuple) ): _lowerCAmelCase : List[Any] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": _lowerCAmelCase : Optional[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _lowerCAmelCase : List[str] = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: _lowerCAmelCase : Union[str, Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _lowerCAmelCase : int = os.path.split(_lowercase )[-1].split('.' )[0] accelerator.init_trackers(_lowercase , _lowercase ) # Grab all the image filenames _lowerCAmelCase : Union[str, Any] = [os.path.join(args.data_dir , _lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences _lowerCAmelCase : List[str] = [extract_label(_lowercase ) for fname in file_names] _lowerCAmelCase : Tuple = list(set(_lowercase ) ) id_to_label.sort() _lowerCAmelCase : int = {lbl: i for i, lbl in enumerate(_lowercase )} # Set the seed before splitting the data. np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # Split our filenames between train and validation _lowerCAmelCase : Optional[int] = np.random.permutation(len(_lowercase ) ) _lowerCAmelCase : Dict = int(0.8 * len(_lowercase ) ) _lowerCAmelCase : Union[str, Any] = random_perm[:cut] _lowerCAmelCase : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop _lowerCAmelCase : Any = Compose([RandomResizedCrop(_lowercase , scale=(0.5, 1.0) ), ToTensor()] ) _lowerCAmelCase : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowercase , label_to_id=_lowercase ) # For evaluation, we use a deterministic Resize _lowerCAmelCase : Tuple = Compose([Resize(_lowercase ), ToTensor()] ) _lowerCAmelCase : str = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowercase , label_to_id=_lowercase ) # Instantiate dataloaders. _lowerCAmelCase : Tuple = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) _lowerCAmelCase : Any = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : int = create_model('resnet50d' , pretrained=_lowercase , num_classes=len(_lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : str = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _lowerCAmelCase : str = False for param in model.get_classifier().parameters(): _lowerCAmelCase : Dict = True # We normalize the batches of images to be a bit faster. _lowerCAmelCase : Optional[Any] = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) _lowerCAmelCase : Union[str, Any] = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _lowerCAmelCase : Dict = OneCycleLR(optimizer=_lowercase , max_lr=_lowercase , epochs=_lowercase , steps_per_epoch=len(_lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over _lowerCAmelCase : List[str] = 0 # We also need to keep track of the starting epoch so files are named properly _lowerCAmelCase : Optional[Any] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) _lowerCAmelCase : Tuple = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _lowerCAmelCase : Optional[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _lowerCAmelCase : Optional[int] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _lowerCAmelCase : Optional[Any] = os.path.splitext(_lowercase )[0] if "epoch" in training_difference: _lowerCAmelCase : Tuple = int(training_difference.replace('epoch_' , '' ) ) + 1 _lowerCAmelCase : List[str] = None else: _lowerCAmelCase : Union[str, Any] = int(training_difference.replace('step_' , '' ) ) _lowerCAmelCase : List[str] = resume_step // len(_lowercase ) resume_step -= starting_epoch * len(_lowercase ) # Now we train the model for epoch in range(_lowercase , _lowercase ): model.train() if args.with_tracking: _lowerCAmelCase : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _lowerCAmelCase : str = accelerator.skip_first_batches(_lowercase , _lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _lowerCAmelCase : Dict = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCAmelCase : int = {k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCAmelCase : int = (batch['image'] - mean) / std _lowerCAmelCase : Optional[int] = model(_lowercase ) _lowerCAmelCase : List[Any] = torch.nn.functional.cross_entropy(_lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowercase , _lowercase ): _lowerCAmelCase : List[str] = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _lowerCAmelCase : Any = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) model.eval() _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Dict = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCAmelCase : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCAmelCase : Optional[int] = (batch['image'] - mean) / std with torch.no_grad(): _lowerCAmelCase : int = model(_lowercase ) _lowerCAmelCase : int = outputs.argmax(dim=-1 ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['label']) ) _lowerCAmelCase : str = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _lowerCAmelCase : Optional[int] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(_lowercase ), 'epoch': epoch, } , step=_lowercase , ) if checkpointing_steps == "epoch": _lowerCAmelCase : Optional[int] = f"""epoch_{epoch}""" if args.output_dir is not None: _lowerCAmelCase : Optional[int] = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_lowercase , default=_lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_lowercase , default=_lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_lowercase , default=_lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _lowerCAmelCase : str = parser.parse_args() _lowerCAmelCase : Tuple = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=32 ,_A=3 ,_A=4 ,_A=[10, 20, 30, 40] ,_A=[2, 2, 3, 2] ,_A=True ,_A=True ,_A=37 ,_A="gelu" ,_A=10 ,_A=0.0_2 ,_A=["stage2", "stage3", "stage4"] ,_A=[2, 3, 4] ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Any = num_stages _lowerCAmelCase : Union[str, Any] = hidden_sizes _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : Dict = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Dict = out_features _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : Union[str, Any] = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_lowercase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = ConvNextVaModel(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Tuple = model(_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = ConvNextVaForImageClassification(_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Dict = model(_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ConvNextVaBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : Optional[int] = model(_lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = ConvNextVaBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase : List[str] = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.prepare_config_and_inputs() _lowerCAmelCase : Optional[int] = config_and_inputs _lowerCAmelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : str = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __UpperCamelCase ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCAmelCase = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = ConvNextVaModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self ,config_class=_lowercase ,has_text_modality=_lowercase ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : List[str] = True if model_class.__name__ in [ *get_values(_lowercase ), *get_values(_lowercase ), ]: continue _lowerCAmelCase : Optional[int] = model_class(_lowercase ) model.to(_lowercase ) model.train() _lowerCAmelCase : Tuple = self._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) _lowerCAmelCase : Dict = model(**_lowercase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : List[Any] = True if ( model_class.__name__ in [*get_values(_lowercase ), *get_values(_lowercase )] or not model_class.supports_gradient_checkpointing ): continue _lowerCAmelCase : Optional[int] = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : Optional[int] = self._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) _lowerCAmelCase : Any = model(**_lowercase ).loss loss.backward() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(_lowercase ) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[str] = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : Any = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase : Tuple = model(**self._prepare_for_class(_lowercase ,_lowercase ) ) _lowerCAmelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(_lowercase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = True check_hidden_states_output(_lowercase ,_lowercase ,_lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Tuple = True check_hidden_states_output(_lowercase ,_lowercase ,_lowercase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_lowercase ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Union[str, Any] = prepare_img() _lowerCAmelCase : Union[str, Any] = preprocessor(images=_lowercase ,return_tensors='pt' ).to(_lowercase ) # forward pass with torch.no_grad(): _lowerCAmelCase : List[Any] = model(**_lowercase ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_lowercase ) _lowerCAmelCase : Any = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowercase ,atol=1E-4 ) )
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _lowerCAmelCase = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') _lowerCAmelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image _lowerCAmelCase = soup.find("""meta""", {"""property""": """og:image"""})['content'] _lowerCAmelCase = requests.get(image_url).content _lowerCAmelCase = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : List[str] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = True, True _lowerCAmelCase : Any = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return path def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = -1 for i in range(lowerCAmelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _lowerCAmelCase : Union[str, Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = check_circuit_or_path(lowerCAmelCase__ , lowerCAmelCase__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _lowerCAmelCase : Union[str, Any] = 1 if check == 2: _lowerCAmelCase : Union[str, Any] = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _lowerCAmelCase : Any = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _lowerCAmelCase : Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _lowerCAmelCase : Tuple = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _lowerCAmelCase : Any = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _lowerCAmelCase : Tuple = { 1: [], 2: [] # all degree is zero } _lowerCAmelCase : List[Any] = 10 check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" import os from distutils.util import strtobool def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for e in env_keys: _lowerCAmelCase : Any = int(os.environ.get(_lowerCamelCase , -1 ) ) if val >= 0: return val return default def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : str = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) ) return strtobool(_lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase="no" ): '''simple docstring''' _lowerCAmelCase : str = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) ) return value
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=64 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=4 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[str] = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Optional[Any] = use_input_mask _lowerCAmelCase : Tuple = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = embedding_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : List[str] = num_choices _lowerCAmelCase : Optional[Any] = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : Tuple = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Tuple = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : Dict = None _lowerCAmelCase : int = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : Any = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_A ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = MegatronBertModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Any = model(_A ,attention_mask=_A ,token_type_ids=_A ) _lowerCAmelCase : Union[str, Any] = model(_A ,token_type_ids=_A ) _lowerCAmelCase : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = MegatronBertForMaskedLM(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MegatronBertForCausalLM(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = MegatronBertForNextSentencePrediction(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model( _A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = MegatronBertForPreTraining(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[int] = model( _A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,next_sentence_label=_A ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = MegatronBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model( _A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Tuple = MegatronBertForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Any = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : str = MegatronBertForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : str = model(_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_choices _lowerCAmelCase : Dict = MegatronBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : List[Any] = model( _A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : List[Any] = config_and_inputs _lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _UpperCAmelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True # test_resize_embeddings = False _UpperCAmelCase = False def __lowerCamelCase ( self ,_A ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = super()._prepare_for_class(_A ,_A ,return_labels=_A ) if return_labels: if model_class in get_values(_A ): _lowerCAmelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=_A ) _lowerCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = MegatronBertModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_A ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) _lowerCAmelCase = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _lowerCAmelCase : List[str] = os.path.join(os.environ['MYDIR'] ,_A ) _lowerCAmelCase : Dict = MegatronBertModel.from_pretrained(_A ) model.to(_A ) model.half() _lowerCAmelCase : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(_A )[0] _lowerCAmelCase : List[Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape ,_A ) _lowerCAmelCase : List[Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): _lowerCAmelCase : int = output[0, ii, jj] _lowerCAmelCase : Optional[Any] = expected[3 * ii + jj] _lowerCAmelCase : Dict = 'ii={} jj={} a={} b={}'.format(_A ,_A ,_A ,_A ) self.assertTrue(math.isclose(_A ,_A ,rel_tol=_A ,abs_tol=_A ) ,msg=_A )
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _lowerCAmelCase : int = k.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if k.startswith('encoder' ): _lowerCAmelCase : int = k.replace('.attn' , '.self_attn' ) _lowerCAmelCase : Optional[Any] = k.replace('norm1' , 'self_attn_layer_norm' ) _lowerCAmelCase : Union[str, Any] = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _lowerCAmelCase : List[str] = k.replace('norm1' , 'self_attn_layer_norm' ) _lowerCAmelCase : List[str] = k.replace('norm2' , 'encoder_attn_layer_norm' ) _lowerCAmelCase : Optional[int] = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: _lowerCAmelCase : Optional[int] = sd.pop(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase : Any = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _lowerCAmelCase : Any = v _lowerCAmelCase = ["""START"""] @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) _lowerCAmelCase : List[Any] = model["model"] _lowerCAmelCase : List[Any] = BlenderbotConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase : List[str] = BlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase : List[Any] = m.model.state_dict().keys() _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _lowerCAmelCase : Union[str, Any] = rename_state_dict_key(SCREAMING_SNAKE_CASE_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _lowerCAmelCase : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(SCREAMING_SNAKE_CASE_ ) m.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) m.half() m.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) _lowerCAmelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase__ ( _lowerCamelCase = 3 ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(SCREAMING_SNAKE_CASE_ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) _lowerCAmelCase : Any = QuantumRegister(SCREAMING_SNAKE_CASE_ , 'qr' ) _lowerCAmelCase : List[Any] = ClassicalRegister(SCREAMING_SNAKE_CASE_ , 'cr' ) _lowerCAmelCase : Optional[int] = QuantumCircuit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase : Optional[Any] = number_of_qubits for i in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # simulate with 10000 shots _lowerCAmelCase : str = Aer.get_backend('qasm_simulator' ) _lowerCAmelCase : List[Any] = execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=10000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( __A ): def __init__( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : int = feature_size _lowerCAmelCase : List[Any] = sampling_rate _lowerCAmelCase : Dict = padding_value _lowerCAmelCase : List[Any] = kwargs.pop('padding_side' ,'right' ) _lowerCAmelCase : str = kwargs.pop('return_attention_mask' ,_A ) super().__init__(**_A ) def __lowerCamelCase ( self ,_A ,_A = True ,_A = None ,_A = False ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' if isinstance(_A ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): _lowerCAmelCase : int = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) _lowerCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] _lowerCAmelCase : str = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_A ) == 0: if return_attention_mask: _lowerCAmelCase : Optional[Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowerCAmelCase : Optional[Any] = required_input[0] if isinstance(_A ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowerCAmelCase : str = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_A ): _lowerCAmelCase : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(_A ): _lowerCAmelCase : List[str] = 'tf' elif is_torch_tensor(_A ): _lowerCAmelCase : Tuple = 'pt' elif isinstance(_A ,(int, float, list, tuple, np.ndarray) ): _lowerCAmelCase : str = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(_A )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): _lowerCAmelCase : Dict = to_numpy(_A ) else: _lowerCAmelCase : str = [to_numpy(_A ) for v in value] # Convert padding_strategy in PaddingStrategy _lowerCAmelCase : List[Any] = self._get_padding_strategies(padding=_A ,max_length=_A ) _lowerCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] _lowerCAmelCase : List[str] = len(_A ) if not all(len(_A ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _lowerCAmelCase : List[str] = [] for i in range(_A ): _lowerCAmelCase : Optional[int] = {k: v[i] for k, v in processed_features.items()} # truncation _lowerCAmelCase : Tuple = self._truncate( _A ,max_length=_A ,pad_to_multiple_of=_A ,truncation=_A ,) truncated_inputs.append(_A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowerCAmelCase : int = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowerCAmelCase : Optional[Any] = PaddingStrategy.MAX_LENGTH _lowerCAmelCase : List[str] = {} for i in range(_A ): # padding _lowerCAmelCase : int = self._pad( truncated_inputs[i] ,max_length=_A ,padding_strategy=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,) for key, value in outputs.items(): if key not in batch_outputs: _lowerCAmelCase : Optional[int] = [] if value.dtype is np.dtype(np.floataa ): _lowerCAmelCase : Any = value.astype(np.floataa ) batch_outputs[key].append(_A ) return BatchFeature(_A ,tensor_type=_A ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = PaddingStrategy.DO_NOT_PAD ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : str = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowerCAmelCase : List[Any] = len(_A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowerCAmelCase : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowerCAmelCase : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowerCAmelCase : List[Any] = np.ones(len(_A ) ,dtype=np.intaa ) if needs_to_be_padded: _lowerCAmelCase : int = max_length - len(_A ) if self.padding_side == "right": if return_attention_mask: _lowerCAmelCase : Union[str, Any] = np.pad( processed_features['attention_mask'] ,(0, difference) ) _lowerCAmelCase : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowerCAmelCase : str = np.pad( _A ,_A ,'constant' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowerCAmelCase : Any = np.pad( processed_features['attention_mask'] ,(difference, 0) ) _lowerCAmelCase : List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowerCAmelCase : Union[str, Any] = np.pad( _A ,_A ,'constant' ,constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _lowerCAmelCase : Any = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowerCAmelCase : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowerCAmelCase : Optional[int] = len(_A ) > max_length if needs_to_be_truncated: _lowerCAmelCase : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowerCAmelCase : Dict = processed_features['attention_mask'][:max_length] return processed_features def __lowerCamelCase ( self ,_A=False ,_A=None ): '''simple docstring''' if padding is not False: if padding is True: _lowerCAmelCase : Union[str, Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_A ,_A ): _lowerCAmelCase : Optional[int] = PaddingStrategy(_A ) elif isinstance(_A ,_A ): _lowerCAmelCase : str = padding else: _lowerCAmelCase : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__snake_case ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if index == len(__snake_case ): return True # Recursive Step for i in range(__snake_case ): if valid_coloring(graph[index] , __snake_case , __snake_case ): # Color current vertex _lowerCAmelCase : str = i # Validate coloring if util_color(__snake_case , __snake_case , __snake_case , index + 1 ): return True # Backtrack _lowerCAmelCase : Any = -1 return False def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [-1] * len(__snake_case ) if util_color(__snake_case , __snake_case , __snake_case , 0 ): return colored_vertices return []
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCAmelCase : List[Any] = [p / w for p, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCAmelCase : List[str] = sorted(lowerCAmelCase__ ) # declaring useful variables _lowerCAmelCase : List[str] = len(lowerCAmelCase__ ) _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 0 _lowerCAmelCase : Optional[int] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCAmelCase : Optional[Any] = sorted_profit_by_weight[length - i - 1] _lowerCAmelCase : Union[str, Any] = profit_by_weight.index(lowerCAmelCase__ ) _lowerCAmelCase : Any = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) _lowerCAmelCase = [int(x) for x in input("""Input profits separated by spaces: """).split()] _lowerCAmelCase = [int(x) for x in input("""Input weights separated by spaces: """).split()] _lowerCAmelCase = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCAmelCase_ , n - 1 , lowerCAmelCase_ ) * a) % mod else: _lowerCAmelCase : Tuple = binary_exponentiation(lowerCAmelCase_ , n / 2 , lowerCAmelCase_ ) return (b * b) % mod # a prime number _lowerCAmelCase = 7_0_1 _lowerCAmelCase = 1_0_0_0_0_0_0_0_0_0 _lowerCAmelCase = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [0] * len(_snake_case ) for i in range(1 , len(_snake_case ) ): # use last results for better performance - dynamic programming _lowerCAmelCase : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowerCAmelCase : int = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowerCAmelCase : Optional[Any] = j return prefix_result def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return max(prefix_function(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Tuple = OmegaConf.load(_A ) if display: print(yaml.dump(OmegaConf.to_container(_A ) ) ) return config def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' if conf_path is None: _lowerCAmelCase : Optional[Any] = './model_checkpoints/vqgan_only.yaml' _lowerCAmelCase : int = load_config(_A , display=_A ) _lowerCAmelCase : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: _lowerCAmelCase : List[str] = './model_checkpoints/vqgan_only.pt' _lowerCAmelCase : Union[str, Any] = torch.load(_A , map_location=_A ) if ".ckpt" in ckpt_path: _lowerCAmelCase : Optional[Any] = sd['state_dict'] model.load_state_dict(_A , strict=_A ) model.to(_A ) del sd return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = model.encode(_A ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) _lowerCAmelCase : Union[str, Any] = model.decode(_A ) return xrec def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : str = string.rsplit('.' , 1 ) if reload: _lowerCAmelCase : int = importlib.import_module(_A ) importlib.reload(_A ) return getattr(importlib.import_module(_A , package=_A ) , cls ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : int = instantiate_from_config(_A ) if sd is not None: model.load_state_dict(_A ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ckpt: _lowerCAmelCase : Optional[Any] = torch.load(_A , map_location='cpu' ) _lowerCAmelCase : Union[str, Any] = pl_sd['global_step'] print(f"""loaded model from global step {global_step}.""" ) else: _lowerCAmelCase : Any = {'state_dict': None} _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=_A , eval_mode=_A )['model'] return model, global_step
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0
"""simple docstring""" import argparse import datetime def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } _lowerCAmelCase : Dict = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A_ ) < 11: raise ValueError('Must be 10 characters long' ) # Get month _lowerCAmelCase : List[str] = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) _lowerCAmelCase : Dict = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day _lowerCAmelCase : Dict = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator _lowerCAmelCase : Optional[Any] = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year _lowerCAmelCase : Optional[Any] = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation _lowerCAmelCase : Union[str, Any] = datetime.date(int(A_ ) , int(A_ ) , int(A_ ) ) # Start math if m <= 2: _lowerCAmelCase : Any = y - 1 _lowerCAmelCase : str = m + 12 # maths var _lowerCAmelCase : Tuple = int(str(A_ )[:2] ) _lowerCAmelCase : Tuple = int(str(A_ )[2:] ) _lowerCAmelCase : Union[str, Any] = int(2.6 * m - 5.39 ) _lowerCAmelCase : Optional[Any] = int(c / 4 ) _lowerCAmelCase : Tuple = int(k / 4 ) _lowerCAmelCase : Optional[Any] = int(d + k ) _lowerCAmelCase : List[str] = int(t + u + v + x ) _lowerCAmelCase : List[str] = int(z - (2 * c) ) _lowerCAmelCase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response _lowerCAmelCase : Any = f"""Your date {date_input}, is a {days[str(A_ )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _lowerCAmelCase = parser.parse_args() zeller(args.date_input)
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = set() _lowerCAmelCase : Union[str, Any] = [] def parse_line(_lowerCamelCase ): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : str = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = '\n'.join(_lowerCamelCase ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(_lowerCamelCase ) buffer.clear() continue else: _lowerCAmelCase : Optional[Any] = line.strip() buffer.append(_lowerCamelCase ) if from_gh: for filename in os.listdir(_lowerCamelCase ): _lowerCAmelCase : Any = os.path.join(_lowerCamelCase , _lowerCamelCase ) if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) else: try: with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() _lowerCAmelCase : List[str] = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return values.split(',' ) _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCAmelCase = extract_warnings(args.output_dir, args.targets) _lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
710
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F'''down_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F'''down_blocks.{i}.attentions.{j}.''' _lowerCAmelCase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F'''up_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F'''up_blocks.{i}.attentions.{j}.''' _lowerCAmelCase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F'''down_blocks.{i}.downsamplers.0.conv.''' _lowerCAmelCase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' _lowerCAmelCase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = """mid_block.attentions.0.""" _lowerCAmelCase = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F'''mid_block.resnets.{j}.''' _lowerCAmelCase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _lowerCAmelCase : Any = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _lowerCAmelCase : Tuple = v.replace(__snake_case , __snake_case ) _lowerCAmelCase : Tuple = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _lowerCAmelCase : List[Any] = v.replace(__snake_case , __snake_case ) _lowerCAmelCase : Union[str, Any] = v _lowerCAmelCase : Dict = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F'''encoder.down_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F'''down_blocks.{i}.downsamplers.0.''' _lowerCAmelCase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F'''up_blocks.{i}.upsamplers.0.''' _lowerCAmelCase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F'''decoder.up_blocks.{i}.resnets.{j}.''' _lowerCAmelCase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F'''mid_block.resnets.{i}.''' _lowerCAmelCase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _lowerCAmelCase : str = v.replace(__snake_case , __snake_case ) _lowerCAmelCase : List[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _lowerCAmelCase : Optional[Any] = v.replace(__snake_case , __snake_case ) _lowerCAmelCase : Optional[Any] = v _lowerCAmelCase : str = {v: vae_state_dict[k] for k, v in mapping.items()} _lowerCAmelCase : int = ['q', 'k', 'v', 'proj_out'] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) _lowerCAmelCase : Optional[int] = reshape_weight_for_sd(__snake_case ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {} _lowerCAmelCase : str = {} _lowerCAmelCase : Optional[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith('.self_attn.q_proj.weight' ) or k.endswith('.self_attn.k_proj.weight' ) or k.endswith('.self_attn.v_proj.weight' ) ): _lowerCAmelCase : Any = k[: -len('.q_proj.weight' )] _lowerCAmelCase : List[Any] = k[-len('q_proj.weight' )] if k_pre not in capture_qkv_weight: _lowerCAmelCase : int = [None, None, None] _lowerCAmelCase : Union[str, Any] = v continue if ( k.endswith('.self_attn.q_proj.bias' ) or k.endswith('.self_attn.k_proj.bias' ) or k.endswith('.self_attn.v_proj.bias' ) ): _lowerCAmelCase : List[str] = k[: -len('.q_proj.bias' )] _lowerCAmelCase : Optional[Any] = k[-len('q_proj.bias' )] if k_pre not in capture_qkv_bias: _lowerCAmelCase : str = [None, None, None] _lowerCAmelCase : Union[str, Any] = v continue _lowerCAmelCase : Tuple = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , __snake_case ) _lowerCAmelCase : Any = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _lowerCAmelCase : Optional[int] = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , __snake_case ) _lowerCAmelCase : Optional[int] = torch.cat(__snake_case ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' ) _lowerCAmelCase : Tuple = textenc_pattern.sub(lambda _lowerCamelCase : protected[re.escape(m.group(0 ) )] , __snake_case ) _lowerCAmelCase : List[Any] = torch.cat(__snake_case ) return new_state_dict def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _lowerCAmelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _lowerCAmelCase = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device="""cpu""") else: _lowerCAmelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _lowerCAmelCase = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device="""cpu""") else: _lowerCAmelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _lowerCAmelCase = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device="""cpu""") else: _lowerCAmelCase = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _lowerCAmelCase = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=7 ,_A=3 ,_A=10 ,_A=18 ,_A=30 ,_A=400 ,_A=True ,_A=None ,_A=True ,_A=[0.5, 0.5, 0.5] ,_A=[0.5, 0.5, 0.5] ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 18} _lowerCAmelCase : List[str] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Tuple = num_frames _lowerCAmelCase : int = image_size _lowerCAmelCase : Any = min_resolution _lowerCAmelCase : Optional[int] = max_resolution _lowerCAmelCase : str = do_resize _lowerCAmelCase : str = size _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Dict = image_std _lowerCAmelCase : List[Any] = crop_size def __lowerCamelCase ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCamelCase ( lowercase_ , unittest.TestCase ): _UpperCAmelCase = VivitImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = VivitImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_ ,'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase_ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_ ,'do_center_crop' ) ) self.assertTrue(hasattr(lowerCamelCase_ ,'size' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size ,{'height': 18, 'width': 18} ) _lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase : int = prepare_video_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase_ ) for video in video_inputs: self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Dict = image_processing(lowerCamelCase_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : int = prepare_video_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase_ ,numpify=lowerCamelCase_ ) for video in video_inputs: self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input _lowerCAmelCase : Tuple = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Union[str, Any] = image_processing(lowerCamelCase_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase_ ,torchify=lowerCamelCase_ ) for video in video_inputs: self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input _lowerCAmelCase : int = image_processing(video_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(lowerCamelCase_ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCAmelCase = False class __UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowerCAmelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : Any = pipe.dual_guided( prompt='first prompt' ,image=UpperCamelCase_ ,text_to_image_strength=0.7_5 ,generator=UpperCamelCase_ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = VersatileDiffusionPipeline.from_pretrained(UpperCamelCase_ ,torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowerCAmelCase : Tuple = generator.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe.dual_guided( prompt='first prompt' ,image=UpperCamelCase_ ,text_to_image_strength=0.7_5 ,generator=UpperCamelCase_ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowerCAmelCase : str = 'cyberpunk 2077' _lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = pipe.dual_guided( prompt=UpperCamelCase_ ,image=UpperCamelCase_ ,text_to_image_strength=0.7_5 ,generator=UpperCamelCase_ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ,).images _lowerCAmelCase : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : str = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _lowerCAmelCase : Optional[Any] = 'A painting of a squirrel eating a burger ' _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe.text_to_image( prompt=UpperCamelCase_ ,generator=UpperCamelCase_ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ).images _lowerCAmelCase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 _lowerCAmelCase : List[Any] = pipe.image_variation(UpperCamelCase_ ,generator=UpperCamelCase_ ,output_type='numpy' ).images _lowerCAmelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
713
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class __UpperCamelCase ( _UpperCamelCase ): _UpperCAmelCase = "codegen" _UpperCAmelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,_A=5_0400 ,_A=2048 ,_A=2048 ,_A=4096 ,_A=28 ,_A=16 ,_A=64 ,_A=None ,_A="gelu_new" ,_A=0.0 ,_A=0.0 ,_A=0.0 ,_A=1E-5 ,_A=0.0_2 ,_A=True ,_A=5_0256 ,_A=5_0256 ,_A=False ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : int = n_ctx _lowerCAmelCase : Tuple = n_positions _lowerCAmelCase : List[Any] = n_embd _lowerCAmelCase : List[str] = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Any = n_inner _lowerCAmelCase : Union[str, Any] = rotary_dim _lowerCAmelCase : List[str] = activation_function _lowerCAmelCase : Optional[int] = resid_pdrop _lowerCAmelCase : List[str] = embd_pdrop _lowerCAmelCase : Optional[Any] = attn_pdrop _lowerCAmelCase : List[str] = layer_norm_epsilon _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : int = use_cache _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : Dict = eos_token_id super().__init__( bos_token_id=_A ,eos_token_id=_A ,tie_word_embeddings=_A ,**_A ) class __UpperCamelCase ( _UpperCamelCase ): def __init__( self ,_A ,_A = "default" ,_A = None ,_A = False ,): '''simple docstring''' super().__init__(_A ,task=_A ,patching_specs=_A ,use_past=_A ) if not getattr(self._config ,'pad_token_id' ,_A ): # TODO: how to do that better? _lowerCAmelCase : Union[str, Any] = 0 @property def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_A ,direction='inputs' ) _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def __lowerCamelCase ( self ): '''simple docstring''' return self._config.n_layer @property def __lowerCamelCase ( self ): '''simple docstring''' return self._config.n_head def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = super(_A ,self ).generate_dummy_inputs( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Optional[Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase : str = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase : Union[str, Any] = seqlen + 2 _lowerCAmelCase : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : Optional[Any] = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] _lowerCAmelCase : Dict = common_inputs["attention_mask"] if self.use_past: _lowerCAmelCase : str = ordered_inputs["attention_mask"].dtype _lowerCAmelCase : Any = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_A ,_A ,dtype=_A )] ,dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ): '''simple docstring''' return 13
714
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return getitem, k def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return setitem, k, v def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return delitem, k def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ): '''simple docstring''' try: return fun(a__ , *a__ ), None except Exception as e: return None, e _lowerCAmelCase = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) _lowerCAmelCase = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] _lowerCAmelCase = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] _lowerCAmelCase = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] _lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = HashMap(initial_block_size=4 ) _lowerCAmelCase : List[Any] = {} for _, (fun, *args) in enumerate(a__ ): _lowerCAmelCase, _lowerCAmelCase : Any = _run_operation(a__ , a__ , *a__ ) _lowerCAmelCase, _lowerCAmelCase : Any = _run_operation(a__ , a__ , *a__ ) assert my_res == py_res assert str(a__ ) == str(a__ ) assert set(a__ ) == set(a__ ) assert len(a__ ) == len(a__ ) assert set(my.items() ) == set(py.items() ) def lowerCamelCase__ ( ): '''simple docstring''' def is_public(_lowerCamelCase ) -> bool: return not name.startswith('_' ) _lowerCAmelCase : Optional[int] = {name for name in dir({} ) if is_public(a__ )} _lowerCAmelCase : List[Any] = {name for name in dir(HashMap() ) if is_public(a__ )} assert dict_public_names > hash_public_names
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
"""simple docstring""" _lowerCAmelCase = 0 # The first color of the flag. _lowerCAmelCase = 1 # The second color of the flag. _lowerCAmelCase = 2 # The third color of the flag. _lowerCAmelCase = (red, white, blue) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not sequence: return [] if len(snake_case__ ) == 1: return list(snake_case__ ) _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : Tuple = len(snake_case__ ) - 1 _lowerCAmelCase : Any = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase, _lowerCAmelCase : List[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : List[str] = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(snake_case__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input("""Enter numbers separated by commas:\n""").strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
716
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = 'data2vec-vision' def __init__( self ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1E-12 ,_A=224 ,_A=16 ,_A=3 ,_A=False ,_A=False ,_A=False ,_A=False ,_A=0.1 ,_A=0.1 ,_A=True ,_A=[3, 5, 7, 11] ,_A=[1, 2, 3, 6] ,_A=True ,_A=0.4 ,_A=256 ,_A=1 ,_A=False ,_A=255 ,**_A ,): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : List[Any] = image_size _lowerCAmelCase : Any = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Any = use_mask_token _lowerCAmelCase : Any = use_absolute_position_embeddings _lowerCAmelCase : List[Any] = use_relative_position_bias _lowerCAmelCase : Any = use_shared_relative_position_bias _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Optional[int] = drop_path_rate _lowerCAmelCase : str = use_mean_pooling # decode head attributes (semantic segmentation) _lowerCAmelCase : Any = out_indices _lowerCAmelCase : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) _lowerCAmelCase : Union[str, Any] = use_auxiliary_head _lowerCAmelCase : Optional[int] = auxiliary_loss_weight _lowerCAmelCase : int = auxiliary_channels _lowerCAmelCase : int = auxiliary_num_convs _lowerCAmelCase : List[str] = auxiliary_concat_input _lowerCAmelCase : int = semantic_loss_ignore_index class __UpperCamelCase ( a__ ): _UpperCAmelCase = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase = "deta" _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self ,_A=None ,_A=900 ,_A=2048 ,_A=6 ,_A=2048 ,_A=8 ,_A=6 ,_A=1024 ,_A=8 ,_A=0.0 ,_A=True ,_A="relu" ,_A=256 ,_A=0.1 ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1.0 ,_A=True ,_A=False ,_A="sine" ,_A=5 ,_A=4 ,_A=4 ,_A=True ,_A=300 ,_A=True ,_A=True ,_A=1 ,_A=5 ,_A=2 ,_A=1 ,_A=1 ,_A=5 ,_A=2 ,_A=0.1 ,_A=0.2_5 ,**_A ,): '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(snake_case__ ,snake_case__ ): _lowerCAmelCase : Union[str, Any] = backbone_config.pop('model_type' ) _lowerCAmelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Tuple = config_class.from_dict(snake_case__ ) _lowerCAmelCase : List[str] = backbone_config _lowerCAmelCase : List[str] = num_queries _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = d_model _lowerCAmelCase : Tuple = encoder_ffn_dim _lowerCAmelCase : List[Any] = encoder_layers _lowerCAmelCase : Dict = encoder_attention_heads _lowerCAmelCase : List[Any] = decoder_ffn_dim _lowerCAmelCase : Any = decoder_layers _lowerCAmelCase : Dict = decoder_attention_heads _lowerCAmelCase : Optional[int] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[Any] = activation_dropout _lowerCAmelCase : int = activation_function _lowerCAmelCase : Optional[Any] = init_std _lowerCAmelCase : str = init_xavier_std _lowerCAmelCase : Tuple = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = auxiliary_loss _lowerCAmelCase : Any = position_embedding_type # deformable attributes _lowerCAmelCase : int = num_feature_levels _lowerCAmelCase : Union[str, Any] = encoder_n_points _lowerCAmelCase : str = decoder_n_points _lowerCAmelCase : str = two_stage _lowerCAmelCase : Optional[int] = two_stage_num_proposals _lowerCAmelCase : Any = with_box_refine _lowerCAmelCase : int = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowerCAmelCase : int = class_cost _lowerCAmelCase : Any = bbox_cost _lowerCAmelCase : int = giou_cost # Loss coefficients _lowerCAmelCase : List[Any] = mask_loss_coefficient _lowerCAmelCase : List[str] = dice_loss_coefficient _lowerCAmelCase : Optional[int] = bbox_loss_coefficient _lowerCAmelCase : Any = giou_loss_coefficient _lowerCAmelCase : Any = eos_coefficient _lowerCAmelCase : List[str] = focal_alpha super().__init__(is_encoder_decoder=snake_case__ ,**snake_case__ ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCamelCase ( self ): '''simple docstring''' return self.d_model def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : int = self.backbone_config.to_dict() _lowerCAmelCase : List[str] = self.__class__.model_type return output
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): _lowerCAmelCase = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _lowerCAmelCase = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase : Optional[int] = numpy_to_pil(__a ) return images def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if images.ndim == 3: _lowerCAmelCase : List[str] = images[None, ...] _lowerCAmelCase : List[Any] = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _lowerCAmelCase : Any = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: _lowerCAmelCase : Optional[int] = [Image.fromarray(__a ) for image in images] return pil_images
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase ( _snake_case , unittest.TestCase ): _UpperCAmelCase = TextToVideoSDPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _UpperCAmelCase = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') ,up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') ,cross_attention_dim=32 ,attention_head_dim=4 ,) _lowerCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=snake_case_ ,set_alpha_to_one=snake_case_ ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='gelu' ,projection_dim=512 ,) _lowerCAmelCase : Tuple = CLIPTextModel(snake_case_ ) _lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(snake_case_ ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(snake_case_ ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _lowerCAmelCase : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[Any] = self.get_dummy_components() _lowerCAmelCase : Tuple = TextToVideoSDPipeline(**snake_case_ ) _lowerCAmelCase : List[str] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _lowerCAmelCase : int = self.get_dummy_inputs(snake_case_ ) _lowerCAmelCase : Union[str, Any] = "np" _lowerCAmelCase : Dict = sd_pipe(**snake_case_ ).frames _lowerCAmelCase : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _lowerCAmelCase : Dict = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ ,expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowerCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ ,expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) _lowerCAmelCase : int = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCAmelCase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _lowerCAmelCase : Tuple = pipe.to('cuda' ) _lowerCAmelCase : List[Any] = "Spiderman is surfing" _lowerCAmelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : int = pipe(snake_case_ ,generator=snake_case_ ,num_inference_steps=25 ,output_type='pt' ).frames _lowerCAmelCase : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) _lowerCAmelCase : str = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) _lowerCAmelCase : int = pipe.to('cuda' ) _lowerCAmelCase : Any = "Spiderman is surfing" _lowerCAmelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Any = pipe(snake_case_ ,generator=snake_case_ ,num_inference_steps=2 ,output_type='pt' ).frames _lowerCAmelCase : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , unittest.TestCase ): _UpperCAmelCase = DDIMPipeline _UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Tuple = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) _lowerCAmelCase : Dict = DDIMScheduler() _lowerCAmelCase : Tuple = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(UpperCAmelCase__ ).startswith('mps' ): _lowerCAmelCase : Tuple = torch.manual_seed(UpperCAmelCase__ ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _lowerCAmelCase : Tuple = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = '''cpu''' _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Any = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _lowerCAmelCase : int = self.get_dummy_inputs(UpperCAmelCase__ ) _lowerCAmelCase : int = pipe(**UpperCAmelCase__ ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 32, 32, 3) ) _lowerCAmelCase : str = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) _lowerCAmelCase : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ ,1E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = '''google/ddpm-cifar10-32''' _lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : List[str] = DDIMPipeline(unet=UpperCAmelCase__ ,scheduler=UpperCAmelCase__ ) ddim.to(UpperCAmelCase__ ) ddim.set_progress_bar_config(disable=UpperCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Tuple = ddim(generator=UpperCAmelCase__ ,eta=0.0 ,output_type='numpy' ).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase : Optional[Any] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = '''google/ddpm-ema-bedroom-256''' _lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained(UpperCAmelCase__ ) _lowerCAmelCase : Optional[int] = DDIMScheduler.from_pretrained(UpperCAmelCase__ ) _lowerCAmelCase : Optional[int] = DDIMPipeline(unet=UpperCAmelCase__ ,scheduler=UpperCAmelCase__ ) ddpm.to(UpperCAmelCase__ ) ddpm.set_progress_bar_config(disable=UpperCAmelCase__ ) _lowerCAmelCase : Dict = torch.manual_seed(0 ) _lowerCAmelCase : int = ddpm(generator=UpperCAmelCase__ ,output_type='numpy' ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : int = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
"""simple docstring""" from __future__ import annotations from random import random class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = value _lowerCAmelCase : Any = random() _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[Any] = None def __repr__( self ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 ) def __str__( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = str(self.value ) + ' ' _lowerCAmelCase : str = str(self.left or '' ) _lowerCAmelCase : List[str] = str(self.right or '' ) return value + left + right def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCAmelCase, _lowerCAmelCase : List[str] = split(root.left , _lowerCAmelCase ) return left, root else: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = split(root.right , _lowerCAmelCase ) return root, right def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCAmelCase : List[Any] = merge(left.right , _lowerCAmelCase ) return left else: _lowerCAmelCase : Any = merge(_lowerCAmelCase , right.left ) return right def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = Node(_lowerCAmelCase ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(merge(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = split(_lowerCAmelCase , value - 1 ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = split(_lowerCAmelCase , _lowerCAmelCase ) return merge(_lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCAmelCase : Optional[Any] = insert(_lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _lowerCAmelCase : Dict = erase(_lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _lowerCAmelCase : List[str] = input() while args != "q": _lowerCAmelCase : Optional[int] = interact_treap(_lowerCAmelCase , _lowerCAmelCase ) print(_lowerCAmelCase ) _lowerCAmelCase : List[Any] = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" _lowerCAmelCase = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 1_0: 'a', 1_1: 'b', 1_2: 'c', 1_3: 'd', 1_4: 'e', 1_5: 'f', } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' assert type(lowerCamelCase_ ) in (int, float) and decimal == int(lowerCamelCase_ ) _lowerCAmelCase : Tuple = int(lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = '''''' _lowerCAmelCase : List[Any] = False if decimal < 0: _lowerCAmelCase : str = True decimal *= -1 while decimal > 0: _lowerCAmelCase : Optional[int] = divmod(lowerCamelCase_ , 16 ) _lowerCAmelCase : Any = values[remainder] + hexadecimal _lowerCAmelCase : Optional[int] = '''0x''' + hexadecimal if negative: _lowerCAmelCase : Dict = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = mock.Mock() _lowerCAmelCase : Optional[int] = 500 _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = HTTPError _lowerCAmelCase : List[Any] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=_lowercase ) as mock_head: _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = mock.Mock() _lowerCAmelCase : Any = 500 _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Any = HTTPError _lowerCAmelCase : Tuple = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Any = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=_lowercase ) as mock_head: _lowerCAmelCase : Tuple = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self ): '''simple docstring''' try: _lowerCAmelCase : Dict = tempfile.mktemp() with open(_lowercase ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,_lowercase ) _lowerCAmelCase : Union[str, Any] = AlbertTokenizer.from_pretrained(_lowercase ) finally: os.remove(_lowercase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,_lowercase ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class __UpperCamelCase ( unittest.TestCase ): _UpperCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' _lowerCAmelCase : Any = TOKEN HfFolder.save_token(_lowercase ) @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : Any = BertTokenizer(_lowercase ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) _lowerCAmelCase : List[str] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ,repo_id='test-tokenizer' ,push_to_hub=_lowercase ,use_auth_token=self._token ) _lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Optional[Any] = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : List[Any] = BertTokenizer(_lowercase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) _lowerCAmelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowercase ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=_lowercase ,use_auth_token=self._token ) _lowerCAmelCase : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Any = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : Tuple = CustomTokenizer(_lowercase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" ,trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : Any = BertTokenizerFast.from_pretrained(_lowercase ) bert_tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase : Any = CustomTokenizerFast.from_pretrained(_lowercase ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" ,trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" ,use_fast=_lowercase ,trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = Trie() _lowerCAmelCase : List[Any] = trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowercase ,['AB', 'C'] )
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _lowerCAmelCase : Union[str, Any] = (low + high) // 2 _lowerCAmelCase : List[str] = max_subarray(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase : List[Any] = max_subarray(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Optional[int] = max_cross_sum(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = float('-inf' ), -1 _lowerCAmelCase : List[str] = float('-inf' ), -1 _lowerCAmelCase : int | float = 0 for i in range(__SCREAMING_SNAKE_CASE , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _lowerCAmelCase : List[str] = summ _lowerCAmelCase : Optional[Any] = i _lowerCAmelCase : Tuple = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _lowerCAmelCase : Tuple = summ _lowerCAmelCase : Optional[Any] = i return max_left, max_right, (left_sum + right_sum) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [randint(1 , __SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE )] _lowerCAmelCase : int = time.time() max_subarray(__SCREAMING_SNAKE_CASE , 0 , input_size - 1 ) _lowerCAmelCase : Optional[Any] = time.time() return end - start def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Dict = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] _lowerCAmelCase : Optional[Any] = [time_max_subarray(__SCREAMING_SNAKE_CASE ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): print(__SCREAMING_SNAKE_CASE , '\t\t' , __SCREAMING_SNAKE_CASE ) plt.plot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "roberta-base": 5_1_2, "roberta-large": 5_1_2, "roberta-large-mnli": 5_1_2, "distilroberta-base": 5_1_2, "roberta-base-openai-detector": 5_1_2, "roberta-large-openai-detector": 5_1_2, } class __UpperCamelCase ( _UpperCAmelCase ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase = RobertaTokenizer def __init__( self ,_A=None ,_A=None ,_A=None ,_A="replace" ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=False ,_A=True ,**_A ,): '''simple docstring''' super().__init__( A_ ,A_ ,tokenizer_file=A_ ,errors=A_ ,bos_token=A_ ,eos_token=A_ ,sep_token=A_ ,cls_token=A_ ,unk_token=A_ ,pad_token=A_ ,mask_token=A_ ,add_prefix_space=A_ ,trim_offsets=A_ ,**A_ ,) _lowerCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,A_ ) != add_prefix_space: _lowerCAmelCase : Optional[int] = getattr(A_ ,pre_tok_state.pop('type' ) ) _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = pre_tok_class(**A_ ) _lowerCAmelCase : Tuple = add_prefix_space _lowerCAmelCase : int = 'post_processor' _lowerCAmelCase : Optional[Any] = getattr(self.backend_tokenizer ,A_ ,A_ ) if tokenizer_component_instance: _lowerCAmelCase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Tuple = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : Tuple = tuple(state['cls'] ) _lowerCAmelCase : Any = False if state.get('add_prefix_space' ,A_ ) != add_prefix_space: _lowerCAmelCase : Optional[Any] = add_prefix_space _lowerCAmelCase : Optional[Any] = True if state.get('trim_offsets' ,A_ ) != trim_offsets: _lowerCAmelCase : str = trim_offsets _lowerCAmelCase : int = True if changes_to_apply: _lowerCAmelCase : int = getattr(A_ ,state.pop('type' ) ) _lowerCAmelCase : Union[str, Any] = component_class(**A_ ) setattr(self.backend_tokenizer ,A_ ,A_ ) @property def __lowerCamelCase ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else value _lowerCAmelCase : Optional[int] = value def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' ,A_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ ,**A_ ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' _lowerCAmelCase : str = kwargs.get('is_split_into_words' ,A_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ ,**A_ ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(A_ ,name=A_ ) return tuple(A_ ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" from math import isqrt def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Any = False return [i for i in range(2 , _lowerCamelCase ) if is_prime[i]] def lowerCamelCase__ ( _lowerCamelCase = 10**8 ): '''simple docstring''' _lowerCAmelCase : str = calculate_prime_numbers(max_number // 2 ) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Dict = len(_lowerCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __UpperCamelCase ( enum.Enum ): _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 2 @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self ,*_A ,**_A ): '''simple docstring''' super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _lowerCAmelCase : Dict = None if self.model.config.prefix is not None: _lowerCAmelCase : Optional[int] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _lowerCAmelCase : str = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._sanitize_parameters(prefix=__UpperCamelCase ,**self._forward_params ) _lowerCAmelCase : str = {**self._preprocess_params, **preprocess_params} _lowerCAmelCase : Union[str, Any] = {**self._forward_params, **forward_params} def __lowerCamelCase ( self ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,**_A ,): '''simple docstring''' _lowerCAmelCase : str = {} if prefix is not None: _lowerCAmelCase : Optional[int] = prefix if prefix: _lowerCAmelCase : Union[str, Any] = self.tokenizer( __UpperCamelCase ,padding=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=self.framework ) _lowerCAmelCase : Optional[int] = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ' [None, \'hole\']' ) _lowerCAmelCase : Optional[Any] = handle_long_generation preprocess_params.update(__UpperCamelCase ) _lowerCAmelCase : str = generate_kwargs _lowerCAmelCase : int = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _lowerCAmelCase : Union[str, Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _lowerCAmelCase : Optional[Any] = ReturnType.TENSORS if return_type is not None: _lowerCAmelCase : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: _lowerCAmelCase : str = clean_up_tokenization_spaces if stop_sequence is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _lowerCAmelCase : Dict = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*__UpperCamelCase ,**__UpperCamelCase ) def __call__( self ,_A ,**_A ): '''simple docstring''' return super().__call__(__UpperCamelCase ,**__UpperCamelCase ) def __lowerCamelCase ( self ,_A ,_A="" ,_A=None ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer( prefix + prompt_text ,padding=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,return_tensors=self.framework ) _lowerCAmelCase : int = prompt_text if handle_long_generation == "hole": _lowerCAmelCase : int = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _lowerCAmelCase : Union[str, Any] = generate_kwargs['max_new_tokens'] else: _lowerCAmelCase : str = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _lowerCAmelCase : List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _lowerCAmelCase : List[Any] = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _lowerCAmelCase : Tuple = inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = model_inputs['input_ids'] _lowerCAmelCase : Dict = model_inputs.get('attention_mask' ,__UpperCamelCase ) # Allow empty prompts if input_ids.shape[1] == 0: _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = None _lowerCAmelCase : Optional[Any] = 1 else: _lowerCAmelCase : int = input_ids.shape[0] _lowerCAmelCase : Tuple = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _lowerCAmelCase : List[Any] = generate_kwargs.pop('prefix_length' ,0 ) if prefix_length > 0: _lowerCAmelCase : Tuple = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _lowerCAmelCase : Union[str, Any] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _lowerCAmelCase : Any = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _lowerCAmelCase : int = self.model.generate(input_ids=__UpperCamelCase ,attention_mask=__UpperCamelCase ,**__UpperCamelCase ) _lowerCAmelCase : str = generated_sequence.shape[0] if self.framework == "pt": _lowerCAmelCase : int = generated_sequence.reshape(__UpperCamelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": _lowerCAmelCase : Optional[int] = tf.reshape(__UpperCamelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self ,_A ,_A=ReturnType.FULL_TEXT ,_A=True ): '''simple docstring''' _lowerCAmelCase : int = model_outputs['generated_sequence'][0] _lowerCAmelCase : Union[str, Any] = model_outputs['input_ids'] _lowerCAmelCase : Optional[Any] = model_outputs['prompt_text'] _lowerCAmelCase : Tuple = generated_sequence.numpy().tolist() _lowerCAmelCase : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _lowerCAmelCase : Tuple = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _lowerCAmelCase : Dict = self.tokenizer.decode( __UpperCamelCase ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _lowerCAmelCase : List[Any] = 0 else: _lowerCAmelCase : Tuple = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ,) ) if return_type == ReturnType.FULL_TEXT: _lowerCAmelCase : Any = prompt_text + text[prompt_length:] else: _lowerCAmelCase : str = text[prompt_length:] _lowerCAmelCase : str = {'generated_text': all_text} records.append(__UpperCamelCase ) return records
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = model.config _lowerCAmelCase : List[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCAmelCase : List[Any] = MBartConfig( is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , add_cross_attention=_lowerCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_lowerCamelCase , add_final_layer_norm=_lowerCamelCase , ) return encoder_config, decoder_config def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if "encoder.model" in name: _lowerCAmelCase : int = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: _lowerCAmelCase : Dict = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: _lowerCAmelCase : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCAmelCase : Tuple = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: _lowerCAmelCase : Any = """encoder.""" + name if "attn.proj" in name: _lowerCAmelCase : Any = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: _lowerCAmelCase : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCAmelCase : Dict = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCAmelCase : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCAmelCase : List[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCAmelCase : Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _lowerCAmelCase : str = """encoder.layernorm.weight""" if name == "encoder.norm.bias": _lowerCAmelCase : Dict = """encoder.layernorm.bias""" return name def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCAmelCase : List[str] = orig_state_dict.pop(_lowerCamelCase ) if "qkv" in key: _lowerCAmelCase : int = key.split('.' ) _lowerCAmelCase : List[str] = int(key_split[3] ) _lowerCAmelCase : Optional[Any] = int(key_split[5] ) _lowerCAmelCase : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase : Union[str, Any] = val[:dim, :] _lowerCAmelCase : Optional[int] = val[dim : dim * 2, :] _lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: _lowerCAmelCase : List[Any] = val[:dim] _lowerCAmelCase : Optional[Any] = val[dim : dim * 2] _lowerCAmelCase : Dict = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCAmelCase : List[str] = val return orig_state_dict def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=False ): '''simple docstring''' _lowerCAmelCase : Dict = DonutModel.from_pretrained(_lowerCamelCase ).eval() # load HuggingFace model _lowerCAmelCase : List[str] = get_configs(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = DonutSwinModel(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = MBartForCausalLM(_lowerCamelCase ) _lowerCAmelCase : Any = VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) model.eval() _lowerCAmelCase : List[Any] = original_model.state_dict() _lowerCAmelCase : List[Any] = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify results on scanned document _lowerCAmelCase : str = load_dataset('hf-internal-testing/example-documents' ) _lowerCAmelCase : List[Any] = dataset["""test"""][0]["""image"""].convert('RGB' ) _lowerCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained(_lowerCamelCase , from_slow=_lowerCamelCase ) _lowerCAmelCase : Tuple = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCAmelCase : Optional[int] = DonutProcessor(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Tuple = processor(_lowerCamelCase , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCAmelCase : List[str] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _lowerCAmelCase : Union[str, Any] = """When is the coffee break?""" _lowerCAmelCase : List[str] = task_prompt.replace('{user_input}' , _lowerCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCAmelCase : str = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCAmelCase : str = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCAmelCase : Any = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCAmelCase : List[str] = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCAmelCase : int = """hello world""" else: raise ValueError('Model name not supported' ) _lowerCAmelCase : List[Any] = original_model.decoder.tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors='pt' )[ """input_ids""" ] _lowerCAmelCase : Tuple = original_model.encoder.model.patch_embed(_lowerCamelCase ) _lowerCAmelCase : str = model.encoder.embeddings(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) # verify encoder hidden states _lowerCAmelCase : Any = original_model.encoder(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = model.encoder(_lowerCamelCase ).last_hidden_state assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) # verify decoder hidden states _lowerCAmelCase : int = original_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).logits _lowerCAmelCase : Dict = model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase ).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) _lowerCAmelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=4 ,): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Union[str, Any] = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Optional[Any] = use_attention_mask _lowerCAmelCase : Any = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Any = num_choices def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : Optional[Any] = None if self.use_attention_mask: _lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : List[Any] = None if self.use_token_type_ids: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : Tuple = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=UpperCamelCase__ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __UpperCamelCase ( __A , unittest.TestCase ): _UpperCAmelCase = True _UpperCAmelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxBertModelTester(self ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = FlaxBertModel.from_pretrained('bert-base-cased' ) _lowerCAmelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ )
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return base * power(_lowerCamelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") _lowerCAmelCase = int(input("""Enter the base: """).strip()) _lowerCAmelCase = int(input("""Enter the exponent: """).strip()) _lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowerCAmelCase = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , 'html.parser' ) _lowerCAmelCase : Optional[int] = soup.find('div' , attrs={'class': 'gs_ri'} ) _lowerCAmelCase : str = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
710
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ): '''simple docstring''' _lowerCAmelCase : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCAmelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( __UpperCAmelCase ): def __init__( self ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules( unet=lowerCAmelCase_ ,scheduler=lowerCAmelCase_ ,movq=lowerCAmelCase_ ,) _lowerCAmelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' if latents is None: _lowerCAmelCase : Union[str, Any] = randn_tensor(lowerCAmelCase_ ,generator=lowerCAmelCase_ ,device=lowerCAmelCase_ ,dtype=lowerCAmelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) _lowerCAmelCase : int = latents.to(lowerCAmelCase_ ) _lowerCAmelCase : List[str] = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self ,_A=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCAmelCase : int = torch.device(F"""cuda:{gpu_id}""" ) _lowerCAmelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ ,lowerCAmelCase_ ) def __lowerCamelCase ( self ,_A=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _lowerCAmelCase : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=lowerCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCAmelCase, _lowerCAmelCase : Tuple = cpu_offload_with_hook(lowerCAmelCase_ ,lowerCAmelCase_ ,prev_module_hook=lowerCAmelCase_ ) # We'll offload the last model manually. _lowerCAmelCase : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase_ ) def __call__( self ,_A ,_A ,_A = 512 ,_A = 512 ,_A = 100 ,_A = 4.0 ,_A = 1 ,_A = None ,_A = None ,_A = "pil" ,_A = True ,): '''simple docstring''' _lowerCAmelCase : int = self._execution_device _lowerCAmelCase : str = guidance_scale > 1.0 if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): _lowerCAmelCase : Optional[Any] = torch.cat(lowerCAmelCase_ ,dim=0 ) _lowerCAmelCase : Tuple = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): _lowerCAmelCase : Dict = torch.cat(lowerCAmelCase_ ,dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : Tuple = image_embeds.repeat_interleave(lowerCAmelCase_ ,dim=0 ) _lowerCAmelCase : List[Any] = negative_image_embeds.repeat_interleave(lowerCAmelCase_ ,dim=0 ) _lowerCAmelCase : str = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=lowerCAmelCase_ ) self.scheduler.set_timesteps(lowerCAmelCase_ ,device=lowerCAmelCase_ ) _lowerCAmelCase : Dict = self.scheduler.timesteps _lowerCAmelCase : Union[str, Any] = self.unet.config.in_channels _lowerCAmelCase, _lowerCAmelCase : Optional[int] = downscale_height_and_width(lowerCAmelCase_ ,lowerCAmelCase_ ,self.movq_scale_factor ) # create initial latent _lowerCAmelCase : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,image_embeds.dtype ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,self.scheduler ,) for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : List[str] = {'image_embeds': image_embeds} _lowerCAmelCase : Dict = self.unet( sample=lowerCAmelCase_ ,timestep=lowerCAmelCase_ ,encoder_hidden_states=lowerCAmelCase_ ,added_cond_kwargs=lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ,)[0] if do_classifier_free_guidance: _lowerCAmelCase, _lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCAmelCase, _lowerCAmelCase : str = noise_pred.chunk(2 ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = variance_pred.chunk(2 ) _lowerCAmelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Dict = self.scheduler.step( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,generator=lowerCAmelCase_ ,)[0] # post-processing _lowerCAmelCase : Dict = self.movq.decode(lowerCAmelCase_ ,force_not_quantize=lowerCAmelCase_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCAmelCase : int = image * 0.5 + 0.5 _lowerCAmelCase : Union[str, Any] = image.clamp(0 ,1 ) _lowerCAmelCase : Tuple = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : List[Any] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __UpperCamelCase ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = nn.Linear(3 ,4 ) _lowerCAmelCase : Tuple = nn.BatchNormad(4 ) _lowerCAmelCase : List[Any] = nn.Linear(4 ,5 ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_UpperCAmelCase ) ) ) class __UpperCamelCase ( _UpperCamelCase ): def __lowerCamelCase ( self ,_A ,*_A ,**_A ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class __UpperCamelCase ( _UpperCamelCase ): def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return output + 1 class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = ModelForTest() _lowerCAmelCase : Dict = ModelHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual(test_model._hf_hook ,_UpperCAmelCase ) self.assertTrue(hasattr(_UpperCAmelCase ,'_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['x'] ) remove_hook_from_module(_UpperCAmelCase ) self.assertFalse(hasattr(_UpperCAmelCase ,'_hf_hook' ) ) self.assertFalse(hasattr(_UpperCAmelCase ,'_old_forward' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ModelForTest() _lowerCAmelCase : List[str] = ModelHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ,append=_UpperCAmelCase ) self.assertEqual(isinstance(test_model._hf_hook ,_UpperCAmelCase ) ,_UpperCAmelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) ,2 ) self.assertTrue(hasattr(_UpperCAmelCase ,'_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ ,'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) ,['x'] ) remove_hook_from_module(_UpperCAmelCase ) self.assertFalse(hasattr(_UpperCAmelCase ,'_hf_hook' ) ) self.assertFalse(hasattr(_UpperCAmelCase ,'_old_forward' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = ModelForTest() _lowerCAmelCase : List[Any] = torch.randn(2 ,3 ) _lowerCAmelCase : Optional[Any] = test_model(x + 1 ) _lowerCAmelCase : Optional[int] = test_model(x + 2 ) _lowerCAmelCase : Optional[int] = PreForwardHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : Tuple = test_model(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCAmelCase : Union[str, Any] = PreForwardHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : Optional[int] = test_model(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCAmelCase : List[str] = SequentialHook(PreForwardHook() ,PreForwardHook() ) add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : List[str] = test_model(_UpperCAmelCase ) assert torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1E-5 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = ModelForTest() _lowerCAmelCase : Tuple = torch.randn(2 ,3 ) _lowerCAmelCase : List[Any] = test_model(_UpperCAmelCase ) _lowerCAmelCase : int = PostForwardHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : List[str] = test_model(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase ,output + 1 ,atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _lowerCAmelCase : Any = PostForwardHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : Dict = test_model(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase ,output + 1 ,atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _lowerCAmelCase : List[Any] = SequentialHook(PostForwardHook() ,PostForwardHook() ) add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : List[Any] = test_model(_UpperCAmelCase ) assert torch.allclose(_UpperCAmelCase ,output + 2 ,atol=1E-5 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = ModelForTest() _lowerCAmelCase : Optional[int] = torch.randn(2 ,3 ) _lowerCAmelCase : int = test_model(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = PostForwardHook() add_hook_to_module(_UpperCAmelCase ,_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = test_model(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase ,output + 1 ) ) self.assertTrue(outputa.requires_grad ) _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : List[Any] = test_model(_UpperCAmelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device(0 ) ) self.assertEqual(model.lineara.weight.device ,torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _lowerCAmelCase : Dict = torch.randn(2 ,3 ) _lowerCAmelCase : Dict = model(_UpperCAmelCase ) self.assertEqual(output.device ,torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(_UpperCAmelCase ,AlignDevicesHook(io_same_device=_UpperCAmelCase ) ) _lowerCAmelCase : Union[str, Any] = torch.randn(2 ,3 ).to(0 ) _lowerCAmelCase : Optional[int] = model(_UpperCAmelCase ) self.assertEqual(output.device ,torch.device(0 ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices _lowerCAmelCase : int = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara ,AlignDevicesHook(**_UpperCAmelCase ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**_UpperCAmelCase ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**_UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase : Tuple = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device ,_UpperCAmelCase ) _lowerCAmelCase : Tuple = torch.randn(2 ,3 ) _lowerCAmelCase : Optional[int] = model(_UpperCAmelCase ) self.assertEqual(output.device ,_UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # Now test with buffers included in the offload _lowerCAmelCase : Optional[Any] = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara ,AlignDevicesHook(**_UpperCAmelCase ) ) add_hook_to_module(model.batchnorm ,AlignDevicesHook(**_UpperCAmelCase ) ) add_hook_to_module(model.lineara ,AlignDevicesHook(**_UpperCAmelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('meta' ) ) _lowerCAmelCase : int = torch.randn(2 ,3 ) _lowerCAmelCase : Tuple = model(_UpperCAmelCase ) self.assertEqual(output.device ,_UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices _lowerCAmelCase : str = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_UpperCAmelCase ,execution_device=_UpperCAmelCase ,offload=_UpperCAmelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase : List[str] = torch.device(_UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device ,_UpperCAmelCase ) _lowerCAmelCase : Dict = torch.randn(2 ,3 ) _lowerCAmelCase : Dict = model(_UpperCAmelCase ) self.assertEqual(output.device ,_UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(_UpperCAmelCase ,execution_device=_UpperCAmelCase ,offload=_UpperCAmelCase ,offload_buffers=_UpperCAmelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('meta' ) ) _lowerCAmelCase : Tuple = torch.randn(2 ,3 ) _lowerCAmelCase : str = model(_UpperCAmelCase ) self.assertEqual(output.device ,_UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # This will move each submodule on different devices _lowerCAmelCase : List[Any] = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _UpperCAmelCase ,execution_device=_UpperCAmelCase ,offload=_UpperCAmelCase ,weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device _lowerCAmelCase : List[Any] = torch.device(_UpperCAmelCase ) self.assertEqual(model.batchnorm.running_mean.device ,_UpperCAmelCase ) _lowerCAmelCase : Dict = torch.randn(2 ,3 ) _lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase ) self.assertEqual(output.device ,_UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( _UpperCAmelCase ,execution_device=_UpperCAmelCase ,offload=_UpperCAmelCase ,weights_map=model.state_dict() ,offload_buffers=_UpperCAmelCase ,) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device ,torch.device('meta' ) ) _lowerCAmelCase : Optional[Any] = torch.randn(2 ,3 ) _lowerCAmelCase : Optional[Any] = model(_UpperCAmelCase ) self.assertEqual(output.device ,_UpperCAmelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_UpperCAmelCase ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device ,torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device ,torch.device('cpu' ) )
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True , _lowerCamelCase="pt" ): '''simple docstring''' _lowerCAmelCase : List[Any] = {'add_prefix_space': True} if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and not line.startswith(' ' ) else {} _lowerCAmelCase : Union[str, Any] = padding_side return tokenizer( [line] , max_length=UpperCAmelCase__ , padding='max_length' if pad_to_max_length else None , truncation=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = input_ids.ne(UpperCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __UpperCamelCase ( _a ): def __init__( self ,_A ,_A ,_A ,_A ,_A="train" ,_A=None ,_A=None ,_A=None ,_A="" ,): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Path(_A ).joinpath(type_path + '.source' ) _lowerCAmelCase : Union[str, Any] = Path(_A ).joinpath(type_path + '.target' ) _lowerCAmelCase : Optional[int] = self.get_char_lens(self.src_file ) _lowerCAmelCase : Union[str, Any] = max_source_length _lowerCAmelCase : Optional[int] = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : List[Any] = prefix if n_obs is not None: _lowerCAmelCase : Union[str, Any] = self.src_lens[:n_obs] _lowerCAmelCase : Tuple = src_lang _lowerCAmelCase : List[str] = tgt_lang def __len__( self ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = index + 1 # linecache starts at 1 _lowerCAmelCase : Tuple = self.prefix + linecache.getline(str(self.src_file ) ,_A ).rstrip('\n' ) _lowerCAmelCase : Tuple = linecache.getline(str(self.tgt_file ) ,_A ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_A ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCAmelCase : Tuple = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_A ) else self.tokenizer ) _lowerCAmelCase : Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer ,_A ) else self.tokenizer _lowerCAmelCase : Optional[int] = encode_line(_A ,_A ,self.max_source_length ,'right' ) _lowerCAmelCase : Tuple = encode_line(_A ,_A ,self.max_target_length ,'right' ) _lowerCAmelCase : Optional[int] = source_inputs['input_ids'].squeeze() _lowerCAmelCase : Optional[Any] = target_inputs['input_ids'].squeeze() _lowerCAmelCase : Union[str, Any] = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return [len(_A ) for x in Path(_A ).open().readlines()] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch.stack([x['input_ids'] for x in batch] ) _lowerCAmelCase : List[str] = torch.stack([x['attention_mask'] for x in batch] ) _lowerCAmelCase : Tuple = torch.stack([x['decoder_input_ids'] for x in batch] ) _lowerCAmelCase : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_A ) else self.tokenizer.pad_token_id ) _lowerCAmelCase : Any = trim_batch(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Tuple = trim_batch(_A ,_A ,attention_mask=_A ) _lowerCAmelCase : Any = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch _lowerCAmelCase = getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(UpperCAmelCase__ ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = get_git_info() save_json(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'git_log.json' ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=4 , **_lowerCamelCase ): '''simple docstring''' with open(UpperCAmelCase__ , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , indent=UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(UpperCAmelCase__ ) as f: return json.load(UpperCAmelCase__ ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = git.Repo(search_parent_directories=UpperCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = { 'repo_id': str(UpperCAmelCase__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return list(map(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(UpperCAmelCase__ , 'wb' ) as f: return pickle.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' def remove_articles(_lowerCamelCase ): return re.sub(R'\b(a|an|the)\b' , ' ' , UpperCAmelCase__ ) def white_space_fix(_lowerCamelCase ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase ): _lowerCAmelCase : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = normalize_answer(UpperCAmelCase__ ).split() _lowerCAmelCase : Tuple = normalize_answer(UpperCAmelCase__ ).split() _lowerCAmelCase : Tuple = Counter(UpperCAmelCase__ ) & Counter(UpperCAmelCase__ ) _lowerCAmelCase : str = sum(common.values() ) if num_same == 0: return 0 _lowerCAmelCase : Tuple = 1.0 * num_same / len(UpperCAmelCase__ ) _lowerCAmelCase : str = 1.0 * num_same / len(UpperCAmelCase__ ) _lowerCAmelCase : List[str] = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) _lowerCAmelCase : str = 0 for hypo, pred in zip(UpperCAmelCase__ , UpperCAmelCase__ ): em += exact_match_score(UpperCAmelCase__ , UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: em /= len(UpperCAmelCase__ ) return {"em": em} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCAmelCase : Tuple = 'dropout_rate' for p in extra_params: if getattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) and not hasattr(UpperCAmelCase__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(UpperCAmelCase__ ) ) delattr(UpperCAmelCase__ , UpperCAmelCase__ ) continue _lowerCAmelCase : str = p if hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) else equivalent_param[p] setattr(UpperCAmelCase__ , UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__ ) ) delattr(UpperCAmelCase__ , UpperCAmelCase__ ) return hparams, config
713
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
0
"""simple docstring""" from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __UpperCamelCase ( a__ ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : int = 'pt' _lowerCAmelCase : Dict = 'tf' def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCamelCase ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = TFAutoModel.from_pretrained(self.test_model ,from_pt=__UpperCamelCase ) model_tf.save_pretrained(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : int = FeaturesManager.determine_framework(self.test_model ,__UpperCamelCase ) self.assertEqual(__UpperCamelCase ,__UpperCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCamelCase ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(__UpperCamelCase ,__UpperCamelCase ) self.assertEqual(__UpperCamelCase ,__UpperCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCamelCase ) _lowerCAmelCase : Any = FeaturesManager.determine_framework(__UpperCamelCase ,__UpperCamelCase ) self.assertEqual(__UpperCamelCase ,__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCamelCase ) _lowerCAmelCase : Any = FeaturesManager.determine_framework(__UpperCamelCase ) self.assertEqual(__UpperCamelCase ,self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCamelCase ) _lowerCAmelCase : int = FeaturesManager.determine_framework(__UpperCamelCase ) self.assertEqual(__UpperCamelCase ,self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCamelCase ): _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = MagicMock(return_value=__UpperCamelCase ) with patch('transformers.onnx.features.is_tf_available' ,__UpperCamelCase ): _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase ,self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Optional[int] = MagicMock(return_value=__UpperCamelCase ) with patch('transformers.onnx.features.is_torch_available' ,__UpperCamelCase ): _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase ,self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : Tuple = MagicMock(return_value=__UpperCamelCase ) _lowerCAmelCase : str = MagicMock(return_value=__UpperCamelCase ) with patch('transformers.onnx.features.is_tf_available' ,__UpperCamelCase ), patch( 'transformers.onnx.features.is_torch_available' ,__UpperCamelCase ): _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase ,self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : int = MagicMock(return_value=__UpperCamelCase ) _lowerCAmelCase : Any = MagicMock(return_value=__UpperCamelCase ) with patch('transformers.onnx.features.is_tf_available' ,__UpperCamelCase ), patch( 'transformers.onnx.features.is_torch_available' ,__UpperCamelCase ): with self.assertRaises(__UpperCamelCase ): _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(self.test_model )
714
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["""pixel_values"""] def __init__( self ,_A = True ,_A = None ,_A = PILImageResampling.BILINEAR ,_A = True ,_A = None ,_A = True ,_A = 1 / 255 ,_A = True ,_A = None ,_A = None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : Optional[Any] = size if size is not None else {'shortest_edge': 256} _lowerCAmelCase : int = get_size_dict(_A ,default_to_square=_A ) _lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase : int = get_size_dict(_A ) _lowerCAmelCase : List[str] = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : Union[str, Any] = resample _lowerCAmelCase : Dict = do_center_crop _lowerCAmelCase : str = crop_size _lowerCAmelCase : Dict = do_rescale _lowerCAmelCase : Dict = rescale_factor _lowerCAmelCase : Optional[int] = do_normalize _lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self ,_A ,_A ,_A = PILImageResampling.BICUBIC ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = get_size_dict(_A ,default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _lowerCAmelCase : str = get_resize_output_image_size(_A ,size=size['shortest_edge'] ,default_to_square=_A ) return resize(_A ,size=_A ,resample=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_size_dict(_A ) return center_crop(_A ,size=(size['height'], size['width']) ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ): '''simple docstring''' return rescale(_A ,scale=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' return normalize(_A ,mean=_A ,std=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = ChannelDimension.FIRST ,**_A ,): '''simple docstring''' _lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Optional[Any] = size if size is not None else self.size _lowerCAmelCase : List[Any] = get_size_dict(_A ,default_to_square=_A ) _lowerCAmelCase : List[str] = resample if resample is not None else self.resample _lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : str = get_size_dict(_A ) _lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Union[str, Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : Any = [to_numpy_array(_A ) for image in images] if do_resize: _lowerCAmelCase : str = [self.resize(image=_A ,size=_A ,resample=_A ) for image in images] if do_center_crop: _lowerCAmelCase : Union[str, Any] = [self.center_crop(image=_A ,size=_A ) for image in images] if do_rescale: _lowerCAmelCase : List[str] = [self.rescale(image=_A ,scale=_A ) for image in images] if do_normalize: _lowerCAmelCase : Union[str, Any] = [self.normalize(image=_A ,mean=_A ,std=_A ) for image in images] _lowerCAmelCase : str = [to_channel_dimension_format(_A ,_A ) for image in images] _lowerCAmelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_A ,tensor_type=_A )
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase = logging.getLogger(__name__) _lowerCAmelCase = """Hello world! cécé herlolip""" _lowerCAmelCase = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = BertAbsConfig( temp_dir='.' , finetune_bert=_lowerCamelCase , large=_lowerCamelCase , share_emb=_lowerCamelCase , use_bert_emb=_lowerCamelCase , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) _lowerCAmelCase : Optional[Any] = torch.load(_lowerCamelCase , lambda _lowerCamelCase , _lowerCamelCase : storage ) _lowerCAmelCase : Any = AbsSummarizer(_lowerCamelCase , torch.device('cpu' ) , _lowerCamelCase ) original.eval() _lowerCAmelCase : Tuple = BertAbsSummarizer(_lowerCamelCase , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) _lowerCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs _lowerCAmelCase : Any = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_lowerCamelCase )) ) _lowerCAmelCase : Optional[int] = torch.tensor(_lowerCamelCase ).unsqueeze(0 ) _lowerCAmelCase : Any = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_lowerCamelCase )) ) _lowerCAmelCase : Any = torch.tensor(_lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _lowerCAmelCase : int = encoder_input_ids _lowerCAmelCase : Any = decoder_input_ids _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : int = None _lowerCAmelCase : Any = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _lowerCAmelCase : Tuple = original(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )[0] _lowerCAmelCase : Tuple = original.generator(_lowerCamelCase ) _lowerCAmelCase : List[Any] = new_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )[0] _lowerCAmelCase : Any = new_model.generator(_lowerCamelCase ) _lowerCAmelCase : List[str] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_lowerCamelCase ) ) _lowerCAmelCase : str = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_lowerCamelCase ) ) _lowerCAmelCase : Tuple = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) _lowerCAmelCase = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
716
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): _UpperCAmelCase = AltDiffusionPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=lowerCamelCase__ ,set_alpha_to_one=lowerCamelCase__ ,) torch.manual_seed(0 ) _lowerCAmelCase : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5002 ,) _lowerCAmelCase : List[Any] = CLIPTextModel(lowerCamelCase__ ) _lowerCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _lowerCAmelCase : Tuple = 77 _lowerCAmelCase : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): _lowerCAmelCase : Optional[int] = torch.manual_seed(lowerCamelCase__ ) else: _lowerCAmelCase : Dict = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _lowerCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() torch.manual_seed(0 ) _lowerCAmelCase : str = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder _lowerCAmelCase : int = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) _lowerCAmelCase : Any = text_encoder _lowerCAmelCase : Dict = AltDiffusionPipeline(**lowerCamelCase__ ) _lowerCAmelCase : Any = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs(lowerCamelCase__ ) _lowerCAmelCase : Optional[int] = '''A photo of an astronaut''' _lowerCAmelCase : int = alt_pipe(**lowerCamelCase__ ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[Any] = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder _lowerCAmelCase : int = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) _lowerCAmelCase : str = text_encoder _lowerCAmelCase : str = AltDiffusionPipeline(**lowerCamelCase__ ) _lowerCAmelCase : Optional[Any] = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(lowerCamelCase__ ) _lowerCAmelCase : Tuple = alt_pipe(**lowerCamelCase__ ) _lowerCAmelCase : int = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' ,safety_checker=lowerCamelCase__ ) _lowerCAmelCase : Union[str, Any] = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCAmelCase : Any = '''A painting of a squirrel eating a burger''' _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = alt_pipe([prompt] ,generator=lowerCamelCase__ ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type='np' ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : int = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' ,subfolder='scheduler' ) _lowerCAmelCase : Optional[int] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' ,scheduler=lowerCamelCase__ ,safety_checker=lowerCamelCase__ ) _lowerCAmelCase : Dict = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _lowerCAmelCase : Optional[int] = '''A painting of a squirrel eating a burger''' _lowerCAmelCase : Dict = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = alt_pipe([prompt] ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type='numpy' ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : str = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class __UpperCamelCase : def __init__( self ,_A ,_A ,_A ,_A=None ,_A=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = start _lowerCAmelCase : int = end _lowerCAmelCase : Optional[Any] = val _lowerCAmelCase : Optional[int] = (start + end) // 2 _lowerCAmelCase : Optional[Any] = left _lowerCAmelCase : Optional[Any] = right def __repr__( self ): '''simple docstring''' return F"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __UpperCamelCase : def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = collection _lowerCAmelCase : Any = function if self.collection: _lowerCAmelCase : List[str] = self._build_tree(0 ,len(_A ) - 1 ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' self._update_tree(self.root ,_A ,_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self._query_range(self.root ,_A ,_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if start == end: return SegmentTreeNode(_A ,_A ,self.collection[start] ) _lowerCAmelCase : str = (start + end) // 2 _lowerCAmelCase : Optional[int] = self._build_tree(_A ,_A ) _lowerCAmelCase : Dict = self._build_tree(mid + 1 ,_A ) return SegmentTreeNode(_A ,_A ,self.fn(left.val ,right.val ) ,_A ,_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' if node.start == i and node.end == i: _lowerCAmelCase : Union[str, Any] = val return if i <= node.mid: self._update_tree(node.left ,_A ,_A ) else: self._update_tree(node.right ,_A ,_A ) _lowerCAmelCase : List[Any] = self.fn(node.left.val ,node.right.val ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,_A ,_A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,_A ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,_A ) ,) else: # range in right child tree return self._query_range(node.right ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' if self.root is not None: _lowerCAmelCase : Union[str, Any] = Queue() queue.put(self.root ) while not queue.empty(): _lowerCAmelCase : List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 5_0) _lowerCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def update_area_of_max_square(_lowerCamelCase , _lowerCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowerCAmelCase : Tuple = update_area_of_max_square(lowerCamelCase__ , col + 1 ) _lowerCAmelCase : Optional[int] = update_area_of_max_square(row + 1 , col + 1 ) _lowerCAmelCase : List[str] = update_area_of_max_square(row + 1 , lowerCamelCase__ ) if mat[row][col]: _lowerCAmelCase : Optional[Any] = 1 + min([right, diagonal, down] ) _lowerCAmelCase : str = max(largest_square_area[0] , lowerCamelCase__ ) return sub_problem_sol else: return 0 _lowerCAmelCase : Optional[Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def update_area_of_max_square_using_dp_array( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowerCAmelCase : List[str] = update_area_of_max_square_using_dp_array(lowerCamelCase__ , col + 1 , lowerCamelCase__ ) _lowerCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCamelCase__ ) _lowerCAmelCase : str = update_area_of_max_square_using_dp_array(row + 1 , lowerCamelCase__ , lowerCamelCase__ ) if mat[row][col]: _lowerCAmelCase : str = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Any = max(largest_square_area[0] , lowerCamelCase__ ) _lowerCAmelCase : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 _lowerCAmelCase : Dict = [0] _lowerCAmelCase : Any = [[-1] * cols for _ in range(lowerCamelCase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCamelCase__ ) return largest_square_area[0] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] _lowerCAmelCase : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : Optional[Any] = dp_array[row][col + 1] _lowerCAmelCase : List[Any] = dp_array[row + 1][col + 1] _lowerCAmelCase : int = dp_array[row + 1][col] if mat[row][col] == 1: _lowerCAmelCase : List[Any] = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _lowerCAmelCase : Union[str, Any] = max(dp_array[row][col] , lowerCamelCase__ ) else: _lowerCAmelCase : List[str] = 0 return largest_square_area def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = [0] * (cols + 1) _lowerCAmelCase : str = [0] * (cols + 1) _lowerCAmelCase : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : Any = current_row[col + 1] _lowerCAmelCase : Optional[Any] = next_row[col + 1] _lowerCAmelCase : Tuple = next_row[col] if mat[row][col] == 1: _lowerCAmelCase : Dict = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _lowerCAmelCase : Any = max(current_row[col] , lowerCamelCase__ ) else: _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Dict = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowerCAmelCase = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = None # source code of `config_class` _lowerCAmelCase : List[Any] = inspect.getsource(_lowerCamelCase ) _lowerCAmelCase : Any = _re_checkpoint.findall(_lowerCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _lowerCAmelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _lowerCAmelCase : Optional[int] = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: _lowerCAmelCase : Tuple = ckpt_name break return checkpoint def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _lowerCAmelCase : str = get_checkpoint_from_config_class(_lowerCamelCase ) _lowerCAmelCase : int = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : List[str] = '\n'.join(sorted(_lowerCamelCase ) ) raise ValueError(f"""The following configurations don\'t contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = """MobileNetV1Config""" # Base docstring _lowerCAmelCase = """google/mobilenet_v1_1.0_224""" _lowerCAmelCase = [1, 1_0_2_4, 7, 7] # Image classification docstring _lowerCAmelCase = """google/mobilenet_v1_1.0_224""" _lowerCAmelCase = """tabby, tabby cat""" _lowerCAmelCase = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Tuple = model.mobilenet_va else: _lowerCAmelCase : Dict = model _lowerCAmelCase : Optional[int] = 'MobilenetV1/Conv2d_0/' _lowerCAmelCase : Optional[int] = backbone.conv_stem.convolution.weight _lowerCAmelCase : Any = backbone.conv_stem.normalization.bias _lowerCAmelCase : List[Any] = backbone.conv_stem.normalization.weight _lowerCAmelCase : int = backbone.conv_stem.normalization.running_mean _lowerCAmelCase : Union[str, Any] = backbone.conv_stem.normalization.running_var for i in range(13 ): _lowerCAmelCase : int = i + 1 _lowerCAmelCase : Optional[Any] = i * 2 _lowerCAmelCase : Optional[Any] = backbone.layer[pt_index] _lowerCAmelCase : int = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" _lowerCAmelCase : str = pointer.convolution.weight _lowerCAmelCase : Optional[Any] = pointer.normalization.bias _lowerCAmelCase : Union[str, Any] = pointer.normalization.weight _lowerCAmelCase : int = pointer.normalization.running_mean _lowerCAmelCase : int = pointer.normalization.running_var _lowerCAmelCase : Optional[int] = backbone.layer[pt_index + 1] _lowerCAmelCase : str = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" _lowerCAmelCase : List[Any] = pointer.convolution.weight _lowerCAmelCase : List[Any] = pointer.normalization.bias _lowerCAmelCase : str = pointer.normalization.weight _lowerCAmelCase : Optional[Any] = pointer.normalization.running_mean _lowerCAmelCase : Optional[int] = pointer.normalization.running_var if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' _lowerCAmelCase : Tuple = model.classifier.weight _lowerCAmelCase : Dict = model.classifier.bias return tf_to_pt_map def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model _lowerCAmelCase : int = tf.train.list_variables(_lowerCamelCase ) _lowerCAmelCase : Dict = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) _lowerCAmelCase : Any = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = array # Build TF to PyTorch weights loading map _lowerCAmelCase : str = _build_tf_to_pytorch_map(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue _lowerCAmelCase : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) _lowerCAmelCase : str = np.transpose(_lowerCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer _lowerCAmelCase : Dict = array.squeeze().transpose() else: _lowerCAmelCase : List[str] = np.transpose(_lowerCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) _lowerCAmelCase : Any = torch.from_numpy(_lowerCamelCase ) tf_weights.pop(_lowerCamelCase , _lowerCamelCase ) tf_weights.pop(name + '/RMSProp' , _lowerCamelCase ) tf_weights.pop(name + '/RMSProp_1' , _lowerCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , _lowerCamelCase ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = features.shape[-2:] _lowerCAmelCase : List[Any] = conv_layer.stride _lowerCAmelCase : List[Any] = conv_layer.kernel_size if in_height % stride_height == 0: _lowerCAmelCase : Dict = max(kernel_height - stride_height , 0 ) else: _lowerCAmelCase : Dict = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: _lowerCAmelCase : List[str] = max(kernel_width - stride_width , 0 ) else: _lowerCAmelCase : Optional[Any] = max(kernel_width - (in_width % stride_width) , 0 ) _lowerCAmelCase : Union[str, Any] = pad_along_width // 2 _lowerCAmelCase : str = pad_along_width - pad_left _lowerCAmelCase : List[str] = pad_along_height // 2 _lowerCAmelCase : Optional[int] = pad_along_height - pad_top _lowerCAmelCase : int = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_lowerCamelCase , _lowerCamelCase , 'constant' , 0.0 ) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A = 1 ,_A = 1 ,_A = False ,_A = True ,_A = True ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) _lowerCAmelCase : Union[str, Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _lowerCAmelCase : Optional[Any] = nn.Convad( in_channels=_A ,out_channels=_A ,kernel_size=_A ,stride=_A ,padding=_A ,groups=_A ,bias=_A ,padding_mode='zeros' ,) if use_normalization: _lowerCAmelCase : Union[str, Any] = nn.BatchNormad( num_features=_A ,eps=config.layer_norm_eps ,momentum=0.9_9_9_7 ,affine=_A ,track_running_stats=_A ,) else: _lowerCAmelCase : Dict = None if use_activation: if isinstance(_A ,_A ): _lowerCAmelCase : Optional[int] = ACTaFN[use_activation] elif isinstance(config.hidden_act ,_A ): _lowerCAmelCase : List[Any] = ACTaFN[config.hidden_act] else: _lowerCAmelCase : Dict = config.hidden_act else: _lowerCAmelCase : Any = None def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.config.tf_padding: _lowerCAmelCase : Any = apply_tf_padding(_A ,self.convolution ) _lowerCAmelCase : int = self.convolution(_A ) if self.normalization is not None: _lowerCAmelCase : Tuple = self.normalization(_A ) if self.activation is not None: _lowerCAmelCase : Optional[int] = self.activation(_A ) return features class __UpperCamelCase ( a__ ): _UpperCAmelCase = MobileNetVaConfig _UpperCAmelCase = load_tf_weights_in_mobilenet_va _UpperCAmelCase = "mobilenet_v1" _UpperCAmelCase = "pixel_values" _UpperCAmelCase = False def __lowerCamelCase ( self ,_A ): '''simple docstring''' if isinstance(_A ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowerCAmelCase = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A = True ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Optional[Any] = config _lowerCAmelCase : Any = 32 _lowerCAmelCase : List[Any] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) _lowerCAmelCase : Any = MobileNetVaConvLayer( _A ,in_channels=config.num_channels ,out_channels=_A ,kernel_size=3 ,stride=2 ,) _lowerCAmelCase : List[str] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _lowerCAmelCase : Tuple = nn.ModuleList() for i in range(13 ): _lowerCAmelCase : Any = out_channels if strides[i] == 2 or i == 0: depth *= 2 _lowerCAmelCase : str = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( _A ,in_channels=_A ,out_channels=_A ,kernel_size=3 ,stride=strides[i] ,groups=_A ,) ) self.layer.append( MobileNetVaConvLayer( _A ,in_channels=_A ,out_channels=_A ,kernel_size=1 ,) ) _lowerCAmelCase : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCamelCase ( self ,_A ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _lowerCAmelCase : Any = self.conv_stem(_A ) _lowerCAmelCase : Optional[int] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _lowerCAmelCase : Tuple = layer_module(_A ) if output_hidden_states: _lowerCAmelCase : int = all_hidden_states + (hidden_states,) _lowerCAmelCase : Dict = hidden_states if self.pooler is not None: _lowerCAmelCase : Union[str, Any] = torch.flatten(self.pooler(_A ) ,start_dim=1 ) else: _lowerCAmelCase : Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A ,pooler_output=_A ,hidden_states=_A ,) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Dict = config.num_labels _lowerCAmelCase : List[str] = MobileNetVaModel(_A ) _lowerCAmelCase : List[str] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _lowerCAmelCase : Dict = nn.Dropout(config.classifier_dropout_prob ,inplace=_A ) _lowerCAmelCase : List[str] = nn.Linear(_A ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=_A ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def __lowerCamelCase ( self ,_A = None ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Any = self.mobilenet_va(_A ,output_hidden_states=_A ,return_dict=_A ) _lowerCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : Optional[int] = self.classifier(self.dropout(_A ) ) _lowerCAmelCase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase : int = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase : List[Any] = 'single_label_classification' else: _lowerCAmelCase : Tuple = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase : Optional[Any] = MSELoss() if self.num_labels == 1: _lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() ,labels.squeeze() ) else: _lowerCAmelCase : Union[str, Any] = loss_fct(_A ,_A ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase : Union[str, Any] = CrossEntropyLoss() _lowerCAmelCase : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase : Any = BCEWithLogitsLoss() _lowerCAmelCase : int = loss_fct(_A ,_A ) if not return_dict: _lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_A ,logits=_A ,hidden_states=outputs.hidden_states ,)
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _lowerCAmelCase = int(input("""Enter number: """).strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def __lowerCamelCase ( *_A ,**_A ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __UpperCamelCase ( unittest.TestCase ): _UpperCAmelCase = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ObjectDetectionPipeline(model=_A ,image_processor=_A ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' ,threshold=0.0 ) self.assertGreater(len(_A ) ,0 ) for detected_object in outputs: self.assertEqual( _A ,{ 'score': ANY(_A ), 'label': ANY(_A ), 'box': {'xmin': ANY(_A ), 'ymin': ANY(_A ), 'xmax': ANY(_A ), 'ymax': ANY(_A )}, } ,) import datasets _lowerCAmelCase : List[Any] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' ,'image' ,split='test' ) _lowerCAmelCase : Optional[int] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _lowerCAmelCase : Dict = object_detector(_A ,threshold=0.0 ) self.assertEqual(len(_A ) ,len(_A ) ) for outputs in batch_outputs: self.assertGreater(len(_A ) ,0 ) for detected_object in outputs: self.assertEqual( _A ,{ 'score': ANY(_A ), 'label': ANY(_A ), 'box': {'xmin': ANY(_A ), 'ymin': ANY(_A ), 'xmax': ANY(_A ), 'ymax': ANY(_A )}, } ,) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = 'hf-internal-testing/tiny-detr-mobilenetsv3' _lowerCAmelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_A ) _lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained(_A ) _lowerCAmelCase : Tuple = ObjectDetectionPipeline(model=_A ,feature_extractor=_A ) _lowerCAmelCase : str = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=0.0 ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] ,) _lowerCAmelCase : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] ,) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'facebook/detr-resnet-50' _lowerCAmelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_A ) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(_A ) _lowerCAmelCase : List[str] = ObjectDetectionPipeline(model=_A ,feature_extractor=_A ) _lowerCAmelCase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _lowerCAmelCase : Optional[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'facebook/detr-resnet-50' _lowerCAmelCase : Dict = pipeline('object-detection' ,model=_A ) _lowerCAmelCase : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _lowerCAmelCase : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0.9_9_8_5 _lowerCAmelCase : str = 'facebook/detr-resnet-50' _lowerCAmelCase : Optional[int] = pipeline('object-detection' ,model=_A ) _lowerCAmelCase : Optional[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=_A ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) @require_torch @require_pytesseract @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'Narsil/layoutlmv3-finetuned-funsd' _lowerCAmelCase : Tuple = 0.9_9_9_3 _lowerCAmelCase : str = pipeline('object-detection' ,model=_A ,threshold=_A ) _lowerCAmelCase : Any = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_A ,decimals=4 ) ,[ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] ,)
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(_lowerCamelCase , 2 ) - pow(_lowerCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCamelCase , 2 ) - pow(_lowerCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCamelCase , 2 ) + pow(_lowerCamelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") _lowerCAmelCase = logging.getLogger(__name__) @dataclass class __UpperCamelCase : _UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __UpperCamelCase : _UpperCAmelCase = field(default=a__ , metadata={"help": "The input training data file (a text file)."} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __lowerCamelCase ( self ): '''simple docstring''' if self.train_file is not None: _lowerCAmelCase : Any = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _lowerCAmelCase : Optional[int] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __UpperCamelCase : _UpperCAmelCase = 42 _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None def __call__( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = 'label' if 'label' in features[0].keys() else 'labels' _lowerCAmelCase : Dict = [feature.pop(_A ) for feature in features] _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Any = len(features[0]['input_ids'] ) _lowerCAmelCase : Any = [ [{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features ] _lowerCAmelCase : Any = list(chain(*_A ) ) _lowerCAmelCase : List[str] = self.tokenizer.pad( _A ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten _lowerCAmelCase : Union[str, Any] = {k: v.view(_A ,_A ,-1 ) for k, v in batch.items()} # Add back labels _lowerCAmelCase : Dict = torch.tensor(_A ,dtype=torch.intaa ) return batch def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _lowerCAmelCase : Optional[Any] = {} if data_args.train_file is not None: _lowerCAmelCase : Optional[Any] = data_args.train_file if data_args.validation_file is not None: _lowerCAmelCase : Any = data_args.validation_file _lowerCAmelCase : List[Any] = data_args.train_file.split('.' )[-1] _lowerCAmelCase : str = load_dataset( _lowerCamelCase , data_files=_lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _lowerCAmelCase : List[str] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _lowerCAmelCase : Dict = [f"""ending{i}""" for i in range(4 )] _lowerCAmelCase : Tuple = 'sent1' _lowerCAmelCase : Any = 'sent2' if data_args.max_seq_length is None: _lowerCAmelCase : Optional[int] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _lowerCAmelCase : Any = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowerCAmelCase : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = [[context] * 4 for context in examples[context_name]] _lowerCAmelCase : str = examples[question_header_name] _lowerCAmelCase : Dict = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowerCamelCase ) ] # Flatten out _lowerCAmelCase : Tuple = list(chain(*_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = list(chain(*_lowerCamelCase ) ) # Tokenize _lowerCAmelCase : List[str] = tokenizer( _lowerCamelCase , _lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowerCAmelCase : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _lowerCAmelCase : Any = min(len(_lowerCamelCase ) , data_args.max_train_samples ) _lowerCAmelCase : Tuple = train_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowerCAmelCase : Any = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowerCAmelCase : Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowerCAmelCase : str = min(len(_lowerCamelCase ) , data_args.max_eval_samples ) _lowerCAmelCase : str = eval_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowerCAmelCase : int = eval_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _lowerCAmelCase : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : Dict = eval_predictions _lowerCAmelCase : Optional[Any] = np.argmax(_lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _lowerCAmelCase : Optional[int] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Dict = last_checkpoint _lowerCAmelCase : int = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCAmelCase : int = train_result.metrics _lowerCAmelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('train' , _lowerCamelCase ) trainer.save_metrics('train' , _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase : Optional[Any] = trainer.evaluate() _lowerCAmelCase : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) _lowerCAmelCase : Dict = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) _lowerCAmelCase : Any = downstream_dict['projector.weight'] _lowerCAmelCase : Any = downstream_dict['projector.bias'] _lowerCAmelCase : List[Any] = downstream_dict['model.post_net.linear.weight'] _lowerCAmelCase : List[Any] = downstream_dict['model.post_net.linear.bias'] return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = downstream_dict['model.linear.weight'] _lowerCAmelCase : int = downstream_dict['model.linear.bias'] return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = UniSpeechSatForXVector.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) _lowerCAmelCase : Tuple = downstream_dict['connector.weight'] _lowerCAmelCase : List[Any] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCAmelCase : Optional[int] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _lowerCAmelCase : str = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _lowerCAmelCase : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _lowerCAmelCase : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _lowerCAmelCase : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _lowerCAmelCase : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _lowerCAmelCase : str = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = torch.load(_lowerCamelCase , map_location='cpu' ) _lowerCAmelCase : Dict = checkpoint['Downstream'] _lowerCAmelCase : Union[str, Any] = UniSpeechSatConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( _lowerCamelCase , return_attention_mask=_lowerCamelCase , do_normalize=_lowerCamelCase ) _lowerCAmelCase : List[str] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _lowerCAmelCase : Dict = convert_classification(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith('ForAudioFrameClassification' ): _lowerCAmelCase : int = convert_diarization(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith('ForXVector' ): _lowerCAmelCase : Any = convert_xvector(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _lowerCAmelCase : int = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=24 ,_A=2 ,_A=6 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=None ,_A=1000 ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Dict = seq_length _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Any = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : List[str] = scope _lowerCAmelCase : Optional[int] = range_bbox def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Union[str, Any] = bbox[i, j, 3] _lowerCAmelCase : str = bbox[i, j, 1] _lowerCAmelCase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : Optional[Any] = bbox[i, j, 0] _lowerCAmelCase : List[str] = t _lowerCAmelCase : Optional[int] = None if self.use_input_mask: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : Any = LiltModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[str] = model(_A ,bbox=_A ,attention_mask=_A ,token_type_ids=_A ) _lowerCAmelCase : Tuple = model(_A ,bbox=_A ,token_type_ids=_A ) _lowerCAmelCase : Optional[int] = model(_A ,bbox=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_labels _lowerCAmelCase : List[str] = LiltForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model( _A ,bbox=_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : int = LiltForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model( _A ,bbox=_A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : List[Any] = config_and_inputs _lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' return True def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = LiltModelTester(self ) _lowerCAmelCase : str = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : int = LiltModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(_A ) _lowerCAmelCase : Dict = torch.tensor([[1, 2]] ,device=_A ) _lowerCAmelCase : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(input_ids=_A ,bbox=_A ) _lowerCAmelCase : Tuple = torch.Size([1, 2, 768] ) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] ,device=_A ,) self.assertTrue(outputs.last_hidden_state.shape ,_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,_A ,atol=1E-3 ) )
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0000.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=13 ,_A=30 ,_A=2 ,_A=3 ,_A=True ,_A=True ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=10 ,_A=0.0_2 ,): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_A ,initializer_range=self.initializer_range ,) return config, pixel_values def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = FlaxViTModel(config=_A ) _lowerCAmelCase : str = model(_A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : str = (self.image_size, self.image_size) _lowerCAmelCase : Optional[Any] = (self.patch_size, self.patch_size) _lowerCAmelCase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = self.type_sequence_label_size _lowerCAmelCase : Optional[Any] = FlaxViTForImageClassification(config=_A ) _lowerCAmelCase : str = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : Tuple = FlaxViTForImageClassification(_A ) _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = model(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = FlaxViTModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(_A ) _lowerCAmelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : List[str] = self._prepare_for_class(_A ,_A ) _lowerCAmelCase : Optional[Any] = model_class(_A ) @jax.jit def model_jitted(_A ,**_A ): return model(pixel_values=_A ,**_A ) with self.subTest('JIT Enabled' ): _lowerCAmelCase : Any = model_jitted(**_A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCAmelCase : Dict = model_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) ,len(_A ) ) for jitted_output, output in zip(_A ,_A ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Any = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _lowerCAmelCase : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_A )
709
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowerCAmelCase = get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCAmelCase : Any = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCAmelCase : str = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" _lowerCAmelCase : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCAmelCase : Optional[int] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCAmelCase : int = os.path.join(_lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) logger.info(f"""Saving model to {ckpt_dir}""" ) _lowerCAmelCase : List[Any] = {'model': state_dict} dist_cp.save_state_dict( state_dict=_lowerCamelCase , storage_writer=dist_cp.FileSystemWriter(_lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_lowerCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return _lowerCAmelCase : Optional[Any] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) _lowerCAmelCase : List[Any] = torch.load(_lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _lowerCAmelCase : Any = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _lowerCAmelCase : Optional[Any] = ( os.path.join(_lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) _lowerCAmelCase : Any = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=_lowerCamelCase , storage_reader=dist_cp.FileSystemReader(_lowerCamelCase ) , planner=DefaultLoadPlanner() , ) _lowerCAmelCase : List[str] = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _lowerCAmelCase : int = FSDP.optim_state_dict(_lowerCamelCase , _lowerCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _lowerCAmelCase : Any = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) _lowerCAmelCase : Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _lowerCAmelCase : Optional[int] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _lowerCAmelCase : int = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) _lowerCAmelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: _lowerCAmelCase : str = ( os.path.join(_lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) _lowerCAmelCase : List[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_lowerCamelCase ) , ) _lowerCAmelCase : int = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) _lowerCAmelCase : str = FSDP.optim_state_dict_to_load(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) optimizer.load_state_dict(_lowerCamelCase )
710
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=7 ,_A=True ,_A=True ,_A=False ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=4 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Tuple = type_vocab_size _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : str = num_labels _lowerCAmelCase : Any = num_choices _lowerCAmelCase : Dict = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[Any] = None if self.use_input_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_A ,initializer_range=self.initializer_range ,pad_token_id=1 ,new_decoder_architecture=_A ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = FalconModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A ) _lowerCAmelCase : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = True _lowerCAmelCase : str = FalconModel(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,) _lowerCAmelCase : Union[str, Any] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,) _lowerCAmelCase : Optional[Any] = model(_A ,attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = FalconForCausalLM(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : int = True _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : int = FalconForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass _lowerCAmelCase : Optional[int] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,use_cache=_A ,) _lowerCAmelCase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _lowerCAmelCase : Dict = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowerCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) _lowerCAmelCase : str = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,output_hidden_states=_A ,)['hidden_states'][0] _lowerCAmelCase : Optional[Any] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,past_key_values=_A ,output_hidden_states=_A ,)['hidden_states'][0] # select random slice _lowerCAmelCase : List[Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A ,_A ,atol=1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : int = config_and_inputs _lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = FalconModelTester(self ) _lowerCAmelCase : int = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _lowerCAmelCase : Optional[int] = alibi self.model_tester.create_and_check_model(_A ,*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[Any] = input_dict['input_ids'] _lowerCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(_A ) _lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = model(_A ,attention_mask=_A ,labels=_A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = 3 _lowerCAmelCase : Dict = 'single_label_classification' _lowerCAmelCase : Union[str, Any] = input_dict['input_ids'] _lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(_A ) _lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ,attention_mask=_A ,labels=_A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[str] = input_dict['input_ids'] _lowerCAmelCase : int = FalconForCausalLM(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model(_A ,use_cache=_A ) _lowerCAmelCase : str = input_ids.shape[0] _lowerCAmelCase : Optional[Any] = model._convert_to_rw_cache(result.past_key_values ) _lowerCAmelCase : int = model._convert_cache_to_standard_format(_A ,_A ) for layer in range(len(_A ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = 3 _lowerCAmelCase : Optional[Any] = 'multi_label_classification' _lowerCAmelCase : List[str] = input_dict['input_ids'] _lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(_A ) _lowerCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase : Tuple = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ,attention_mask=_A ,labels=_A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_A ,'use_cache' ): return _lowerCAmelCase : Dict = model_class(_A ).to(_A ) if "use_cache" not in inputs: _lowerCAmelCase : Tuple = True _lowerCAmelCase : Any = model(**_A ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _lowerCAmelCase : List[Any] = ( getattr(_A ,'decoder_layers' ,_A ) or getattr(_A ,'num_decoder_layers' ,_A ) or config.num_hidden_layers ) _lowerCAmelCase : Dict = getattr(_A ,'num_kv_heads' ,config.num_attention_heads ) _lowerCAmelCase : Any = getattr(_A ,'d_model' ,config.hidden_size ) _lowerCAmelCase : Dict = embed_dim // num_attention_heads _lowerCAmelCase : Optional[Any] = outputs['past_key_values'] self.assertEqual(len(_A ) ,_A ) _lowerCAmelCase : Any = inputs['input_ids'].shape for i in range(_A ): if config.new_decoder_architecture: _lowerCAmelCase : int = config.num_attention_heads elif config.multi_query: _lowerCAmelCase : Tuple = 1 self.assertEqual(len(past_kv[0] ) ,2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) _lowerCAmelCase : int = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(_A ) _lowerCAmelCase : str = tokenizer('My favorite food is' ,return_tensors='pt' ).to(_A ) _lowerCAmelCase : int = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) _lowerCAmelCase : Optional[int] = model.generate(**_A ,do_sample=_A ,max_new_tokens=19 ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(_A )[0] self.assertEqual(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : Optional[Any] = FalconForCausalLM.from_pretrained(_A ) model.eval() model.to(_A ) _lowerCAmelCase : Optional[Any] = tokenizer('My favorite food is' ,return_tensors='pt' ).to(_A ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_A ,do_sample=_A ,max_new_tokens=4 ) model.generate(**_A ,do_sample=_A ,max_new_tokens=4 ) model.generate(**_A ,num_beams=2 ,max_new_tokens=4 ) @slow def __lowerCamelCase ( self ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : List[Any] = FalconForCausalLM.from_pretrained(_A ) model.eval() model.to(device=_A ) _lowerCAmelCase : Optional[Any] = tokenizer('My favorite food is' ,return_tensors='pt' ).to(_A ) # Test results are the same with and without cache _lowerCAmelCase : Optional[int] = model.generate(**_A ,do_sample=_A ,max_new_tokens=20 ,use_cache=_A ) _lowerCAmelCase : Union[str, Any] = model.generate(**_A ,do_sample=_A ,max_new_tokens=20 ,use_cache=_A ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def update_area_of_max_square(_lowerCamelCase , _lowerCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowerCAmelCase : int = update_area_of_max_square(_lowerCamelCase , col + 1 ) _lowerCAmelCase : List[str] = update_area_of_max_square(row + 1 , col + 1 ) _lowerCAmelCase : List[Any] = update_area_of_max_square(row + 1 , _lowerCamelCase ) if mat[row][col]: _lowerCAmelCase : Any = 1 + min([right, diagonal, down] ) _lowerCAmelCase : List[Any] = max(largest_square_area[0] , _lowerCamelCase ) return sub_problem_sol else: return 0 _lowerCAmelCase : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def update_area_of_max_square_using_dp_array( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowerCAmelCase : List[str] = update_area_of_max_square_using_dp_array(_lowerCamelCase , col + 1 , _lowerCamelCase ) _lowerCAmelCase : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , _lowerCamelCase , _lowerCamelCase ) if mat[row][col]: _lowerCAmelCase : int = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Any = max(largest_square_area[0] , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = sub_problem_sol return sub_problem_sol else: return 0 _lowerCAmelCase : int = [0] _lowerCAmelCase : Tuple = [[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _lowerCamelCase ) return largest_square_area[0] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] _lowerCAmelCase : Any = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : str = dp_array[row][col + 1] _lowerCAmelCase : int = dp_array[row + 1][col + 1] _lowerCAmelCase : Dict = dp_array[row + 1][col] if mat[row][col] == 1: _lowerCAmelCase : Tuple = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = max(dp_array[row][col] , _lowerCamelCase ) else: _lowerCAmelCase : List[str] = 0 return largest_square_area def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [0] * (cols + 1) _lowerCAmelCase : List[Any] = [0] * (cols + 1) _lowerCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : Optional[Any] = current_row[col + 1] _lowerCAmelCase : int = next_row[col + 1] _lowerCAmelCase : Union[str, Any] = next_row[col] if mat[row][col] == 1: _lowerCAmelCase : Optional[int] = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = max(current_row[col] , _lowerCamelCase ) else: _lowerCAmelCase : str = 0 _lowerCAmelCase : Tuple = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
712
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=10 ,_A=3 ,_A=2 ,_A=2 ,_A=True ,_A=True ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=10 ,_A=0.0_2 ,_A="divided_space_time" ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : int = num_frames _lowerCAmelCase : Any = is_training _lowerCAmelCase : str = use_labels _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_type _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = scope _lowerCAmelCase : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _lowerCAmelCase : str = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = TimesformerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,) _lowerCAmelCase : List[str] = self.num_labels return config def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = TimesformerModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = TimesformerForVideoClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model(_A ) # verify the logits shape _lowerCAmelCase : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase : int = config_and_inputs _lowerCAmelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _UpperCAmelCase = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TimesformerModelTester(self ) _lowerCAmelCase : Optional[int] = ConfigTester( self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def __lowerCamelCase ( self ,_A ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = copy.deepcopy(_A ) if return_labels: if model_class in get_values(_A ): _lowerCAmelCase : int = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(_A ) _lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Any = TimesformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[str] = True for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = self.model_tester.seq_length _lowerCAmelCase : Union[str, Any] = self.model_tester.num_frames _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : str = False _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : List[Any] = True _lowerCAmelCase : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : str = outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) _lowerCAmelCase : Optional[Any] = len(_A ) # Check attention is always last and order is fine _lowerCAmelCase : int = True _lowerCAmelCase : List[str] = True _lowerCAmelCase : Dict = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : str = model(**self._prepare_for_class(_A ,_A ) ) self.assertEqual(out_len + 1 ,len(_A ) ) _lowerCAmelCase : Tuple = outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : List[Any] = outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_A ) ,_A ) _lowerCAmelCase : Any = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : str = True check_hidden_states_output(_A ,_A ,_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowerCAmelCase : Any = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( _A ) _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : Tuple = prepare_video() _lowerCAmelCase : int = image_processor(video[:8] ,return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**_A ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Optional[Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_A ,atol=1E-4 ) )
713
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=7 ,_A=3 ,_A=30 ,_A=400 ,_A=True ,_A=None ,_A=0.9 ,_A=None ,_A=True ,_A=[0.5, 0.5, 0.5] ,_A=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 30} _lowerCAmelCase : Any = crop_size if crop_size is not None else {'height': 30, 'width': 30} _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : str = min_resolution _lowerCAmelCase : List[str] = max_resolution _lowerCAmelCase : Any = do_resize_and_center_crop _lowerCAmelCase : List[str] = size _lowerCAmelCase : List[Any] = crop_pct _lowerCAmelCase : Optional[Any] = crop_size _lowerCAmelCase : Optional[Any] = do_normalize _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Optional[int] = image_std def __lowerCamelCase ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A ,'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_A ,'size' ) ) self.assertTrue(hasattr(_A ,'crop_pct' ) ) self.assertTrue(hasattr(_A ,'do_normalize' ) ) self.assertTrue(hasattr(_A ,'image_mean' ) ) self.assertTrue(hasattr(_A ,'image_std' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size ,{'height': 30, 'width': 30} ) _lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A ,Image.Image ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A ,np.ndarray ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Any = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A ,torch.Tensor ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : List[Any] = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
714
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) _lowerCAmelCase : Tuple = DetaConfig( backbone_config=_lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowerCamelCase , with_box_refine=_lowerCamelCase , two_stage=_lowerCamelCase , ) # set labels _lowerCAmelCase : Optional[int] = 'huggingface/label-files' if "o365" in model_name: _lowerCAmelCase : int = 366 _lowerCAmelCase : Tuple = 'object365-id2label.json' else: _lowerCAmelCase : List[Any] = 91 _lowerCAmelCase : str = 'coco-detection-id2label.json' _lowerCAmelCase : Any = num_labels _lowerCAmelCase : int = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase : int = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[int] = idalabel _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = dct.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = val def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _lowerCAmelCase : Union[str, Any] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Optional[int] = in_proj_weight[:dim, :] _lowerCAmelCase : List[str] = in_proj_bias[: dim] _lowerCAmelCase : str = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase : List[str] = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase : List[Any] = in_proj_weight[ -dim :, : ] _lowerCAmelCase : Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _lowerCAmelCase : Any = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Union[str, Any] = in_proj_weight[:hidden_size, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[:hidden_size] _lowerCAmelCase : List[str] = in_proj_weight[ hidden_size : hidden_size * 2, : ] _lowerCAmelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] _lowerCAmelCase : Union[str, Any] = in_proj_weight[-hidden_size:, :] _lowerCAmelCase : List[Any] = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": _lowerCAmelCase : List[str] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _lowerCAmelCase : Tuple = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase , param.shape ) # rename keys _lowerCAmelCase : str = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase , _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val if "input_proj" in key: _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _lowerCAmelCase : Any = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : int = val # finally, create HuggingFace model and load state dict _lowerCAmelCase : List[str] = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() _lowerCAmelCase : Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_lowerCamelCase ) # load image processor _lowerCAmelCase : int = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : str = processor(images=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase : str = encoding['pixel_values'] _lowerCAmelCase : str = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _lowerCAmelCase : int = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) _lowerCAmelCase : Optional[int] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) _lowerCAmelCase : int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowerCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowerCamelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCAmelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
715
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
"""simple docstring""" import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase : Any = get_sagemaker_input() else: _lowerCAmelCase : Optional[Any] = get_cluster_input() return config def lowerCamelCase__ ( _lowerCamelCase=None ): '''simple docstring''' if subparsers is not None: _lowerCAmelCase : List[Any] = subparsers.add_parser('config' , description=_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser('Accelerate config command' , description=_lowerCamelCase ) parser.add_argument( '--config_file' , default=_lowerCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = get_user_input() if args.config_file is not None: _lowerCAmelCase : str = args.config_file else: if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : int = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCamelCase ) else: config.to_yaml_file(_lowerCamelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = config_command_parser() _lowerCAmelCase : Dict = parser.parse_args() config_command(_lowerCamelCase ) if __name__ == "__main__": main()
716
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
0
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if not sentence: return "" _lowerCAmelCase : List[str] = dict(zip(_lowerCamelCase , _lowerCamelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
717
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowerCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __UpperCamelCase ( a__ ): _UpperCAmelCase = field(default=a__ , metadata={"help": "Whether to use SortishSampler or not."} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = super().to_dict() for k, v in d.items(): if isinstance(_A ,_A ): _lowerCAmelCase : Tuple = v.to_dict() return d
718
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
719
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" import pytest _lowerCAmelCase = """__dummy_dataset1__""" _lowerCAmelCase = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = dataset_loading_script_name _lowerCAmelCase : Union[str, Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=_lowerCamelCase ) _lowerCAmelCase : Any = script_dir / f"""{script_name}.py""" with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase )
720
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(_lowerCamelCase ): if len(_lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowerCamelCase ) ) return data_lists def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = min(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = max(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCAmelCase : Any = f"""Invalid weight of {weight:f} provided""" raise ValueError(_lowerCamelCase ) score_lists.append(_lowerCamelCase ) return score_lists def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[Any] = final_scores[j] + ele return final_scores def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = get_data(_lowerCamelCase ) _lowerCAmelCase : str = calculate_each_score(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = generate_final_scores(_lowerCamelCase ) # append scores to source data for i, ele in enumerate(_lowerCamelCase ): source_data[i].append(_lowerCamelCase ) return source_data
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCAmelCase : List[str] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase : Optional[Any] = str(bin(_lowerCamelCase ) )[2:] _lowerCAmelCase : Optional[int] = max(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) , b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "blenderbot-small" _UpperCAmelCase = ["past_key_values"] _UpperCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self ,_A=5_0265 ,_A=512 ,_A=8 ,_A=2048 ,_A=16 ,_A=8 ,_A=2048 ,_A=16 ,_A=0.0 ,_A=0.0 ,_A=True ,_A=True ,_A="gelu" ,_A=512 ,_A=0.1 ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1 ,_A=False ,_A=0 ,_A=1 ,_A=2 ,_A=2 ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : List[str] = d_model _lowerCAmelCase : List[Any] = encoder_ffn_dim _lowerCAmelCase : int = encoder_layers _lowerCAmelCase : List[str] = encoder_attention_heads _lowerCAmelCase : List[Any] = decoder_ffn_dim _lowerCAmelCase : Dict = decoder_layers _lowerCAmelCase : Tuple = decoder_attention_heads _lowerCAmelCase : str = dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : str = activation_dropout _lowerCAmelCase : Dict = activation_function _lowerCAmelCase : Optional[Any] = init_std _lowerCAmelCase : Optional[Any] = encoder_layerdrop _lowerCAmelCase : Tuple = decoder_layerdrop _lowerCAmelCase : List[str] = use_cache _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ,is_encoder_decoder=_A ,decoder_start_token_id=_A ,forced_eos_token_id=_A ,**_A ,) class __UpperCamelCase ( a__ ): @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCAmelCase : str = {0: 'batch'} _lowerCAmelCase : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowerCAmelCase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} _lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_A ,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowerCAmelCase : Any = self.num_layers for i in range(_A ): _lowerCAmelCase : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCAmelCase : int = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowerCAmelCase : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Union[str, Any] = super().outputs else: _lowerCAmelCase : Optional[int] = super(_A ,self ).outputs if self.use_past: _lowerCAmelCase : Optional[Any] = self.num_layers for i in range(_A ): _lowerCAmelCase : Any = {0: 'batch', 2: 'past_sequence + sequence'} _lowerCAmelCase : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,_A ,_A ,_A ,_A ) # Generate decoder inputs _lowerCAmelCase : List[str] = seq_length if not self.use_past else 1 _lowerCAmelCase : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,_A ,_A ,_A ,_A ) _lowerCAmelCase : str = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase : Optional[int] = dict(**_A ,**_A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase : str = common_inputs['input_ids'].shape _lowerCAmelCase : Tuple = common_inputs['decoder_input_ids'].shape[1] _lowerCAmelCase : int = self.num_attention_heads _lowerCAmelCase : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : List[Any] = decoder_seq_length + 3 _lowerCAmelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase : Optional[Any] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_A ,_A )] ,dim=1 ) _lowerCAmelCase : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase : Optional[Any] = self.num_layers _lowerCAmelCase : List[Any] = min(_A ,_A ) _lowerCAmelCase : str = max(_A ,_A ) - min_num_layers _lowerCAmelCase : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_A ): common_inputs["past_key_values"].append( ( torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), torch.zeros(_A ), ) ) # TODO: test this. _lowerCAmelCase : Dict = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_A ,_A ): common_inputs["past_key_values"].append((torch.zeros(_A ), torch.zeros(_A )) ) return common_inputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,_A ,_A ,_A ,_A ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase : List[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase : str = seqlen + 2 _lowerCAmelCase : Dict = self.num_layers _lowerCAmelCase : Any = self.num_attention_heads _lowerCAmelCase : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : Optional[int] = common_inputs['attention_mask'].dtype _lowerCAmelCase : Dict = torch.cat( [common_inputs['attention_mask'], torch.ones(_A ,_A ,dtype=_A )] ,dim=1 ) _lowerCAmelCase : str = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(_A ) ] return common_inputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' _lowerCAmelCase : str = compute_effective_axis_dimension( _A ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase : Optional[int] = tokenizer.num_special_tokens_to_add(_A ) _lowerCAmelCase : str = compute_effective_axis_dimension( _A ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase : Tuple = dict(tokenizer(_A ,return_tensors=_A ) ) return common_inputs def __lowerCamelCase ( self ,_A ,_A = -1 ,_A = -1 ,_A = False ,_A = None ,): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) elif self.task == "causal-lm": _lowerCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) else: _lowerCAmelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _A ,batch_size=_A ,seq_length=_A ,is_pair=_A ,framework=_A ) return common_inputs def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Optional[Any] = super()._flatten_past_key_values_(_A ,_A ,_A ,_A ) else: _lowerCAmelCase : str = super(_A ,self )._flatten_past_key_values_( _A ,_A ,_A ,_A )
701
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = val def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCAmelCase : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) _lowerCAmelCase : Any = value else: _lowerCAmelCase : Any = value return new_state_dict def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCAmelCase : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : List[Any] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[:256] _lowerCAmelCase : int = in_proj_weight[256:512, :] _lowerCAmelCase : str = in_proj_bias[256:512] _lowerCAmelCase : str = in_proj_weight[-256:, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCAmelCase : str = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[int] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Dict = in_proj_weight[:256, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[:256] _lowerCAmelCase : List[str] = in_proj_weight[256:512, :] _lowerCAmelCase : int = in_proj_bias[256:512] _lowerCAmelCase : Any = in_proj_weight[-256:, :] _lowerCAmelCase : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowerCAmelCase : List[Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _lowerCAmelCase : Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCAmelCase : Union[str, Any] = in_proj_weight_cross_attn[:256, :] _lowerCAmelCase : str = in_proj_bias_cross_attn[:256] _lowerCAmelCase : Tuple = in_proj_weight_cross_attn[256:512, :] _lowerCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[256:512] _lowerCAmelCase : List[str] = in_proj_weight_cross_attn[-256:, :] _lowerCAmelCase : List[Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = image.size _lowerCAmelCase : Optional[Any] = max(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = 800 if 'detection' in checkpoint_url else 1000 _lowerCAmelCase : int = target_max_size / current_max_size _lowerCAmelCase : List[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = F.to_tensor(_lowerCamelCase ) _lowerCAmelCase : Dict = F.normalize(_lowerCamelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logger.info('Converting model...' ) # load original state dict _lowerCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = rename_backbone_keys(_lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCAmelCase : Optional[Any] = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _lowerCAmelCase : List[str] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Tuple = val # create HuggingFace model and load state dict _lowerCAmelCase : Union[str, Any] = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _lowerCAmelCase : int = 15 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Union[str, Any] = {0: 'table', 1: 'table rotated'} _lowerCAmelCase : Optional[Any] = idalabel _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} else: _lowerCAmelCase : Any = 125 _lowerCAmelCase : Any = 6 _lowerCAmelCase : int = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } _lowerCAmelCase : Any = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} _lowerCAmelCase : int = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) _lowerCAmelCase : List[Any] = TableTransformerForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # verify our conversion _lowerCAmelCase : Dict = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' _lowerCAmelCase : Optional[Any] = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=_lowerCamelCase ) _lowerCAmelCase : List[str] = Image.open(_lowerCamelCase ).convert('RGB' ) _lowerCAmelCase : Tuple = normalize(resize(_lowerCamelCase , _lowerCamelCase ) ).unsqueeze(0 ) _lowerCAmelCase : str = model(_lowerCamelCase ) if "detection" in checkpoint_url: _lowerCAmelCase : List[Any] = (1, 15, 3) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _lowerCAmelCase : Optional[int] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _lowerCAmelCase : Tuple = (1, 125, 7) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _lowerCAmelCase : List[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) _lowerCAmelCase : str = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_lowerCamelCase ) image_processor.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCAmelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
"""simple docstring""" import os def lowerCamelCase__ ( ): '''simple docstring''' with open(os.path.dirname(_lowerCamelCase ) + '/p022_names.txt' ) as file: _lowerCAmelCase : List[str] = str(file.readlines()[0] ) _lowerCAmelCase : Optional[Any] = names.replace('"' , '' ).split(',' ) names.sort() _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Union[str, Any] = 0 for i, name in enumerate(_lowerCamelCase ): for letter in name: name_score += ord(_lowerCamelCase ) - 64 total_score += (i + 1) * name_score _lowerCAmelCase : Dict = 0 return total_score if __name__ == "__main__": print(solution())
703
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
0
import math from collections.abc import Callable def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : float = xa _lowerCAmelCase : float = xa while True: if x_n == x_na or function(_lowerCamelCase ) == function(_lowerCamelCase ): raise ZeroDivisionError('float division by zero, could not find root' ) _lowerCAmelCase : float = x_na - ( function(_lowerCamelCase ) / ((function(_lowerCamelCase ) - function(_lowerCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _lowerCAmelCase : Tuple = x_na _lowerCAmelCase : int = x_na def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return math.pow(_lowerCamelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
704
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=_A ,) assert hasattr(self ,'env' ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = { 'enabled': True, 'processes_per_host': 8, } _lowerCAmelCase : Dict = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _lowerCAmelCase : List[str] = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _lowerCAmelCase : Dict = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" ,instance_count=_A ,instance_type=self.instance_type ,debugger_hook_config=_A ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } ,metric_definitions=self.env.metric_definitions ,distribution=_A ,py_version='py36' ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = self.create_estimator(_A ) # run training estimator.fit() # result dataframe _lowerCAmelCase : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,_A )
705
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
706
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
0
"""simple docstring""" from __future__ import annotations import math _lowerCAmelCase = """2020.9.26""" _lowerCAmelCase = """xcodz-dot, cclaus, dhruvmanila""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not all(isinstance(_lowerCamelCase , (float, int) ) for val in locals().values() ): _lowerCAmelCase : Any = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_lowerCamelCase ) _lowerCAmelCase : Any = ((x * distance) / (z + distance)) * scale _lowerCAmelCase : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('Axis must be a str' ) _lowerCAmelCase : Union[str, Any] = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int) ) for val in input_variables.values() ): _lowerCAmelCase : List[str] = ( 'Input values except axis must either be float or int: ' f"""{list(input_variables.values() )}""" ) raise TypeError(_lowerCamelCase ) _lowerCAmelCase : Tuple = (angle % 360) / 450 * 180 / math.pi if axis == "z": _lowerCAmelCase : Tuple = x * math.cos(_lowerCamelCase ) - y * math.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = y * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) _lowerCAmelCase : List[Any] = z elif axis == "x": _lowerCAmelCase : str = y * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) _lowerCAmelCase : List[Any] = z * math.cos(_lowerCamelCase ) + y * math.sin(_lowerCamelCase ) _lowerCAmelCase : Dict = x elif axis == "y": _lowerCAmelCase : Optional[Any] = x * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = z * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
707
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "bit" _UpperCAmelCase = ["preactivation", "bottleneck"] _UpperCAmelCase = ["SAME", "VALID"] def __init__( self ,_A=3 ,_A=64 ,_A=[256, 512, 1024, 2048] ,_A=[3, 4, 6, 3] ,_A="preactivation" ,_A="relu" ,_A=None ,_A=32 ,_A=0.0 ,_A=False ,_A=32 ,_A=1 ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCAmelCase : Dict = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : str = embedding_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : Dict = layer_type _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Tuple = global_padding _lowerCAmelCase : Dict = num_groups _lowerCAmelCase : Optional[Any] = drop_path_rate _lowerCAmelCase : Tuple = embedding_dynamic_padding _lowerCAmelCase : Union[str, Any] = output_stride _lowerCAmelCase : Dict = width_factor _lowerCAmelCase : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names )
708
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
0