code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "gpt_neox" def __init__( self ,_A=5_0432 ,_A=6144 ,_A=44 ,_A=64 ,_A=2_4576 ,_A="gelu" ,_A=0.2_5 ,_A=1_0000 ,_A=0.0 ,_A=0.0 ,_A=0.1 ,_A=2048 ,_A=0.0_2 ,_A=1E-5 ,_A=True ,_A=0 ,_A=2 ,_A=False ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__(bos_token_id=_A ,eos_token_id=_A ,**_A ) _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : int = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Tuple = rotary_pct _lowerCAmelCase : Optional[Any] = rotary_emb_base _lowerCAmelCase : str = attention_dropout _lowerCAmelCase : List[str] = hidden_dropout _lowerCAmelCase : List[Any] = classifier_dropout _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : Any = use_cache _lowerCAmelCase : int = tie_word_embeddings _lowerCAmelCase : List[Any] = use_parallel_residual _lowerCAmelCase : Optional[Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def __lowerCamelCase ( self ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_A ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) _lowerCAmelCase : int = self.rope_scaling.get('type' ,_A ) _lowerCAmelCase : Any = self.rope_scaling.get('factor' ,_A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A ,_A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" _lowerCAmelCase = range(2, 2_0 + 1) _lowerCAmelCase = [1_0**k for k in range(ks[-1] + 1)] _lowerCAmelCase = {} def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = sum(a_i[j] for j in range(_lowerCamelCase , len(_lowerCamelCase ) ) ) _lowerCAmelCase : List[str] = sum(a_i[j] * base[j] for j in range(min(len(_lowerCamelCase ) , _lowerCamelCase ) ) ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = 0, 0 _lowerCAmelCase : int = n - i _lowerCAmelCase : List[str] = memo.get(_lowerCamelCase ) if sub_memo is not None: _lowerCAmelCase : str = sub_memo.get(_lowerCamelCase ) if jumps is not None and len(_lowerCamelCase ) > 0: # find and make the largest jump without going over _lowerCAmelCase : str = -1 for _k in range(len(_lowerCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _lowerCAmelCase : Optional[int] = _k break if max_jump >= 0: _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = jumps[max_jump] # since the difference between jumps is cached, add c _lowerCAmelCase : str = diff + c for j in range(min(_lowerCamelCase , len(_lowerCamelCase ) ) ): _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = divmod(_lowerCamelCase , 10 ) if new_c > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: _lowerCAmelCase : str = [] else: _lowerCAmelCase : str = {c: []} _lowerCAmelCase : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _lowerCAmelCase, _lowerCAmelCase : str = next_term(_lowerCamelCase , k - 1 , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _lowerCAmelCase, _lowerCAmelCase : str = compute(_lowerCamelCase , _lowerCamelCase , i + dn , _lowerCamelCase ) diff += _diff dn += terms_jumped _lowerCAmelCase : Dict = sub_memo[c] # keep jumps sorted by # of terms skipped _lowerCAmelCase : Optional[int] = 0 while j < len(_lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCamelCase , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if i >= n: return 0, i if k > len(_lowerCamelCase ): a_i.extend([0 for _ in range(k - len(_lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _lowerCAmelCase : Tuple = i _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = 0, 0, 0 for j in range(len(_lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _lowerCAmelCase : Optional[Any] = ds_c + ds_b diff += addend _lowerCAmelCase : int = 0 for j in range(_lowerCamelCase ): _lowerCAmelCase : str = a_i[j] + addend _lowerCAmelCase, _lowerCAmelCase : Tuple = divmod(_lowerCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return diff, i - start_i def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for j in range(_lowerCamelCase , len(_lowerCamelCase ) ): _lowerCAmelCase : Tuple = digits[j] + addend if s >= 10: _lowerCAmelCase, _lowerCAmelCase : Tuple = divmod(_lowerCamelCase , 10 ) _lowerCAmelCase : Dict = addend // 10 + quotient else: _lowerCAmelCase : Optional[Any] = s _lowerCAmelCase : Tuple = addend // 10 if addend == 0: break while addend > 0: _lowerCAmelCase, _lowerCAmelCase : int = divmod(_lowerCamelCase , 10 ) digits.append(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase = 10**15 ): '''simple docstring''' _lowerCAmelCase : List[str] = [1] _lowerCAmelCase : str = 1 _lowerCAmelCase : Optional[int] = 0 while True: _lowerCAmelCase, _lowerCAmelCase : int = next_term(_lowerCamelCase , 20 , i + dn , _lowerCamelCase ) dn += terms_jumped if dn == n - i: break _lowerCAmelCase : Tuple = 0 for j in range(len(_lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _lowerCAmelCase = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _lowerCAmelCase = {"""facebook/blenderbot-3B""": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase : Tuple = bs[:] _lowerCAmelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : int = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = set() _lowerCAmelCase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : List[Any] = char return pairs class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A ,_A="replace" ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=False ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else bos_token _lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else eos_token _lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else sep_token _lowerCAmelCase : Dict = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else cls_token _lowerCAmelCase : List[str] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else unk_token _lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Dict = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token super().__init__( errors=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,add_prefix_space=_A ,**_A ,) with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : List[Any] = json.load(_A ) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Any = errors # how to handle errors in decoding _lowerCAmelCase : str = bytes_to_unicode() _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : List[Any] = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase : Any = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Dict = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Tuple = {} _lowerCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : List[str] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Any = tuple(_A ) _lowerCAmelCase : Any = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : str = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : int = bigram _lowerCAmelCase : Tuple = [] _lowerCAmelCase : List[Any] = 0 while i < len(_A ): try: _lowerCAmelCase : Optional[int] = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[int] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Dict = tuple(_A ) _lowerCAmelCase : Optional[Any] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : Optional[Any] = get_pairs(_A ) _lowerCAmelCase : Optional[int] = ' '.join(_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = [] for token in re.findall(self.pat ,_A ): _lowerCAmelCase : str = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(' ' ) ) return bpe_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.decoder.get(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = ''.join(_A ) _lowerCAmelCase : int = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Tuple = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Union[str, Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : List[str] = 0 with open(_A ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : List[str] = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return vocab_file, merge_file def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self ,_A ,_A=False ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): _lowerCAmelCase : List[str] = ' ' + text return (text, kwargs) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_A ) _lowerCAmelCase : str = ' '.join(_A ) _lowerCAmelCase : Optional[int] = self.encode(_A ) if len(_A ) > self.model_max_length: _lowerCAmelCase : Optional[int] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location='cpu' ) if "model" in sd.keys(): _lowerCAmelCase : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # pop unnecessary weights _lowerCAmelCase : List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) _lowerCAmelCase : Any = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase : Tuple = sd.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase : int = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase : List[Any] = key.replace('.qkv_proj.' , '.q_proj.' ) _lowerCAmelCase : Optional[int] = key.replace('.qkv_proj.' , '.k_proj.' ) _lowerCAmelCase : Any = key.replace('.qkv_proj.' , '.v_proj.' ) _lowerCAmelCase : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) _lowerCAmelCase : int = q _lowerCAmelCase : List[Any] = k _lowerCAmelCase : Optional[int] = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_checkpoint(_lowerCamelCase ) if config is not None: _lowerCAmelCase : str = OPTConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Tuple = OPTConfig() _lowerCAmelCase : Dict = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _lowerCAmelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(_lowerCamelCase ): if len(_lowerCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_lowerCamelCase ) ) return data_lists def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : List[str] = min(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = max(_lowerCamelCase ) _lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCAmelCase : Any = f"""Invalid weight of {weight:f} provided""" raise ValueError(_lowerCamelCase ) score_lists.append(_lowerCamelCase ) return score_lists def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[Any] = final_scores[j] + ele return final_scores def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = get_data(_lowerCamelCase ) _lowerCAmelCase : str = calculate_each_score(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Any = generate_final_scores(_lowerCamelCase ) # append scores to source data for i, ele in enumerate(_lowerCamelCase ): source_data[i].append(_lowerCamelCase ) return source_data
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "audio-spectrogram-transformer" def __init__( self ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1E-12 ,_A=16 ,_A=True ,_A=10 ,_A=10 ,_A=1024 ,_A=128 ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : List[str] = frequency_stride _lowerCAmelCase : Tuple = time_stride _lowerCAmelCase : Any = max_length _lowerCAmelCase : Any = num_mel_bins
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) == 0: return array _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = min(_lowerCamelCase ), max(_lowerCamelCase ) # Compute the variables _lowerCAmelCase : Union[str, Any] = _max - _min + 1 _lowerCAmelCase, _lowerCAmelCase : Any = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowerCAmelCase : Tuple = i - _min _lowerCAmelCase : Tuple = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowerCAmelCase : int = 0 for i in range(_lowerCamelCase ): while holes_repeat[i] > 0: _lowerCAmelCase : Union[str, Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input("""Enter numbers separated by comma:\n""") _lowerCAmelCase = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def update_area_of_max_square(_lowerCamelCase , _lowerCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowerCAmelCase : int = update_area_of_max_square(_lowerCamelCase , col + 1 ) _lowerCAmelCase : List[str] = update_area_of_max_square(row + 1 , col + 1 ) _lowerCAmelCase : List[Any] = update_area_of_max_square(row + 1 , _lowerCamelCase ) if mat[row][col]: _lowerCAmelCase : Any = 1 + min([right, diagonal, down] ) _lowerCAmelCase : List[Any] = max(largest_square_area[0] , _lowerCamelCase ) return sub_problem_sol else: return 0 _lowerCAmelCase : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' def update_area_of_max_square_using_dp_array( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowerCAmelCase : List[str] = update_area_of_max_square_using_dp_array(_lowerCamelCase , col + 1 , _lowerCamelCase ) _lowerCAmelCase : List[str] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , _lowerCamelCase , _lowerCamelCase ) if mat[row][col]: _lowerCAmelCase : int = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Any = max(largest_square_area[0] , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = sub_problem_sol return sub_problem_sol else: return 0 _lowerCAmelCase : int = [0] _lowerCAmelCase : Tuple = [[-1] * cols for _ in range(_lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _lowerCamelCase ) return largest_square_area[0] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] _lowerCAmelCase : Any = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : str = dp_array[row][col + 1] _lowerCAmelCase : int = dp_array[row + 1][col + 1] _lowerCAmelCase : Dict = dp_array[row + 1][col] if mat[row][col] == 1: _lowerCAmelCase : Tuple = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = max(dp_array[row][col] , _lowerCamelCase ) else: _lowerCAmelCase : List[str] = 0 return largest_square_area def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [0] * (cols + 1) _lowerCAmelCase : List[Any] = [0] * (cols + 1) _lowerCAmelCase : str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : Optional[Any] = current_row[col + 1] _lowerCAmelCase : int = next_row[col + 1] _lowerCAmelCase : Union[str, Any] = next_row[col] if mat[row][col] == 1: _lowerCAmelCase : Optional[int] = 1 + min(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = max(current_row[col] , _lowerCamelCase ) else: _lowerCAmelCase : str = 0 _lowerCAmelCase : Tuple = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_A ,speech_processor=_A ,vae=_A ,text_encoder=_A ,tokenizer=_A ,unet=_A ,scheduler=_A ,feature_extractor=_A ,) def __lowerCamelCase ( self ,_A = "auto" ): '''simple docstring''' if slice_size == "auto": _lowerCAmelCase : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self ,_A ,_A=1_6000 ,_A = 512 ,_A = 512 ,_A = 50 ,_A = 7.5 ,_A = None ,_A = 1 ,_A = 0.0 ,_A = None ,_A = None ,_A = "pil" ,_A = True ,_A = None ,_A = 1 ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( _A ,return_tensors='pt' ,sampling_rate=_A ).input_features.to(self.device ) _lowerCAmelCase : List[str] = self.speech_model.generate(_A ,max_length=48_0000 ) _lowerCAmelCase : Optional[Any] = self.speech_processor.tokenizer.batch_decode(_A ,skip_special_tokens=_A ,normalize=_A )[ 0 ] if isinstance(_A ,_A ): _lowerCAmelCase : str = 1 elif isinstance(_A ,_A ): _lowerCAmelCase : Tuple = len(_A ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A ,_A ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_A )}.""" ) # get prompt text embeddings _lowerCAmelCase : Optional[int] = self.tokenizer( _A ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,return_tensors='pt' ,) _lowerCAmelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowerCAmelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = text_embeddings.shape _lowerCAmelCase : Any = text_embeddings.repeat(1 ,_A ,1 ) _lowerCAmelCase : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt ,_A ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : List[str] if negative_prompt is None: _lowerCAmelCase : str = [''] * batch_size elif type(_A ) is not type(_A ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" F""" {type(_A )}.""" ) elif isinstance(_A ,_A ): _lowerCAmelCase : int = [negative_prompt] elif batch_size != len(_A ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _lowerCAmelCase : Dict = negative_prompt _lowerCAmelCase : str = text_input_ids.shape[-1] _lowerCAmelCase : str = self.tokenizer( _A ,padding='max_length' ,max_length=_A ,truncation=_A ,return_tensors='pt' ,) _lowerCAmelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase : Any = uncond_embeddings.shape[1] _lowerCAmelCase : Any = uncond_embeddings.repeat(1 ,_A ,1 ) _lowerCAmelCase : str = uncond_embeddings.view(batch_size * num_images_per_prompt ,_A ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCAmelCase : int = torch.randn(_A ,generator=_A ,device='cpu' ,dtype=_A ).to( self.device ) else: _lowerCAmelCase : Tuple = torch.randn(_A ,generator=_A ,device=self.device ,dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCAmelCase : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : int = {} if accepts_eta: _lowerCAmelCase : List[str] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : Tuple = self.scheduler.scale_model_input(_A ,_A ) # predict the noise residual _lowerCAmelCase : str = self.unet(_A ,_A ,encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: _lowerCAmelCase, _lowerCAmelCase : Any = noise_pred.chunk(2 ) _lowerCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Optional[int] = self.scheduler.step(_A ,_A ,_A ,**_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A ,_A ,_A ) _lowerCAmelCase : Any = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase : Union[str, Any] = self.vae.decode(_A ).sample _lowerCAmelCase : List[str] = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : Any = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A ,nsfw_content_detected=_A )
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" from __future__ import annotations _lowerCAmelCase = 1.6_021E-19 # units = C def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _lowerCAmelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A=None ,_A=1 ): '''simple docstring''' _lowerCAmelCase : Dict = tokenizer _lowerCAmelCase : Union[str, Any] = dataset _lowerCAmelCase : List[Any] = len(_A ) if n_tasks is None else n_tasks _lowerCAmelCase : List[Any] = n_copies def __iter__( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) _lowerCAmelCase : List[str] = self.tokenizer(_A ,padding=_A ,return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = start_length _lowerCAmelCase : Tuple = eof_strings _lowerCAmelCase : str = tokenizer def __call__( self ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowerCAmelCase : str = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_A ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = re.split('(%s)' % '|'.join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=20 , **_lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): _lowerCAmelCase : List[str] = batch['ids'].shape[-1] _lowerCAmelCase : Optional[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times _lowerCAmelCase : Optional[Any] = batch['task_id'].repeat(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) _lowerCAmelCase, _lowerCAmelCase : int = accelerator.gather((generated_tokens, generated_tasks) ) _lowerCAmelCase : int = generated_tokens.cpu().numpy() _lowerCAmelCase : int = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowerCAmelCase : int = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = HfArgumentParser(_lowerCamelCase ) _lowerCAmelCase : int = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowerCAmelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowerCAmelCase : Dict = 'false' if args.num_workers is None: _lowerCAmelCase : List[str] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowerCAmelCase : Optional[Any] = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _lowerCAmelCase : Optional[Any] = tokenizer.eos_token _lowerCAmelCase : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowerCAmelCase : str = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric _lowerCAmelCase : Any = load_dataset('openai_humaneval' ) _lowerCAmelCase : Optional[Any] = load_metric('code_eval' ) _lowerCAmelCase : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) _lowerCAmelCase : Dict = args.n_samples // args.batch_size _lowerCAmelCase : Optional[int] = TokenizedDataset(_lowerCamelCase , human_eval['test'] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowerCAmelCase : Dict = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowerCAmelCase : Optional[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception _lowerCAmelCase, _lowerCAmelCase : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : int = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: _lowerCAmelCase : str = [] for task in tqdm(range(_lowerCamelCase ) ): _lowerCAmelCase : List[Any] = human_eval['test'][task]['test'] _lowerCAmelCase : Optional[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from typing import Any import numpy as np def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return np.array_equal(_lowerCamelCase , matrix.conjugate().T ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = v.conjugate().T _lowerCAmelCase : Union[str, Any] = v_star.dot(_lowerCamelCase ) assert isinstance(_lowerCamelCase , np.ndarray ) return (v_star_dot.dot(_lowerCamelCase )) / (v_star.dot(_lowerCamelCase )) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _lowerCAmelCase : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCamelCase ), f"""{a} is not hermitian.""" print(rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCamelCase ), f"""{a} is not hermitian.""" assert rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _lowerCAmelCase = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _lowerCAmelCase = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _lowerCAmelCase = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _lowerCAmelCase = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _lowerCAmelCase = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = randrange(len(_lowerCamelCase ) ), randrange(len(_lowerCamelCase ) ) _lowerCAmelCase : List[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowerCAmelCase, _lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase__ ( _lowerCamelCase = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(_lowerCamelCase )) @pytest.mark.parametrize('hand, expected' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(_lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(_lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = PokerHand(_lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(_lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(_lowerCamelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(_lowerCamelCase ).compare_with(PokerHand(_lowerCamelCase ) ) == expected def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [PokerHand(_lowerCamelCase ) for hand in SORTED_HANDS] _lowerCAmelCase : List[str] = poker_hands.copy() shuffle(_lowerCamelCase ) _lowerCAmelCase : int = chain(sorted(_lowerCamelCase ) ) for index, hand in enumerate(_lowerCamelCase ): assert hand == poker_hands[index] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = PokerHand('2C 4S AS 3D 5C' ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = os.path.join(_lowerCamelCase , 'poker_hands.txt' ) with open(_lowerCamelCase ) as file_hand: for line in file_hand: _lowerCAmelCase : Dict = line[:14].strip() _lowerCAmelCase : List[str] = line[15:].strip() _lowerCAmelCase, _lowerCAmelCase : List[str] = PokerHand(_lowerCamelCase ), PokerHand(_lowerCamelCase ) _lowerCAmelCase : Dict = player.compare_with(_lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" from numpy import exp, pi, sqrt def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = 0.0 , _lowerCamelCase = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = DPTConfig() if "large" in checkpoint_url: _lowerCAmelCase : Tuple = 1024 _lowerCAmelCase : Optional[Any] = 4096 _lowerCAmelCase : Dict = 24 _lowerCAmelCase : Any = 16 _lowerCAmelCase : Tuple = [5, 11, 17, 23] _lowerCAmelCase : str = [256, 512, 1024, 1024] _lowerCAmelCase : int = (1, 384, 384) if "ade" in checkpoint_url: _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = 150 _lowerCAmelCase : Optional[Any] = 'huggingface/label-files' _lowerCAmelCase : Any = 'ade20k-id2label.json' _lowerCAmelCase : List[Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase : List[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : int = idalabel _lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = [1, 150, 480, 480] return config, expected_shape def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase : Tuple = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCAmelCase : Tuple = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCAmelCase : int = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: _lowerCAmelCase : List[str] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCAmelCase : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCAmelCase : Optional[int] = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCAmelCase : Optional[Any] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: _lowerCAmelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCAmelCase : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCAmelCase : List[str] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCAmelCase : Dict = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCAmelCase : Union[str, Any] = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCAmelCase : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCAmelCase : Any = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCAmelCase : List[Any] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCAmelCase : Optional[Any] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase : List[Any] = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _lowerCAmelCase : str = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCAmelCase : Tuple = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCAmelCase : List[str] = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCAmelCase : Dict = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCAmelCase : List[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase : int = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase : str = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase : int = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase : Optional[int] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase : Optional[int] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCAmelCase : Dict = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCAmelCase : Dict = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCAmelCase : Optional[Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCAmelCase : List[str] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCAmelCase : Dict = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : List[str] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _lowerCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Optional[int] = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase : int = in_proj_bias[: config.hidden_size] _lowerCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : int = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : List[str] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = get_dpt_config(_lowerCamelCase ) # load original state_dict from URL _lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(_lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase : Dict = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) # load HuggingFace model _lowerCAmelCase : Union[str, Any] = DPTForSemanticSegmentation(_lowerCamelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # Check outputs on an image _lowerCAmelCase : Union[str, Any] = 480 if 'ade' in checkpoint_url else 384 _lowerCAmelCase : str = DPTImageProcessor(size=_lowerCamelCase ) _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : Tuple = image_processor(_lowerCamelCase , return_tensors='pt' ) # forward pass _lowerCAmelCase : Union[str, Any] = model(**_lowerCamelCase ).logits if 'ade' in checkpoint_url else model(**_lowerCamelCase ).predicted_depth # Assert logits _lowerCAmelCase : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: _lowerCAmelCase : int = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_lowerCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase ) ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _lowerCAmelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" _lowerCAmelCase = {str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCamelCase ) ) def lowerCamelCase__ ( ): '''simple docstring''' return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(_lowerCamelCase ) ) if __name__ == "__main__": print(solution())
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } _lowerCAmelCase = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } _lowerCAmelCase = { """jukebox""": 5_1_2, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_LYRIC_TOKENS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A ,_A ,_A=["v3", "v2", "v2"] ,_A=512 ,_A=5 ,_A="<|endoftext|>" ,**_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else unk_token super().__init__( unk_token=_A ,n_genres=_A ,version=_A ,max_n_lyric_tokens=_A ,**_A ,) _lowerCAmelCase : Dict = version _lowerCAmelCase : List[str] = max_n_lyric_tokens _lowerCAmelCase : Tuple = n_genres with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Dict = json.load(_A ) with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : int = json.load(_A ) with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : List[Any] = json.load(_A ) _lowerCAmelCase : int = r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _lowerCAmelCase : int = oov.replace(r'\-\'' ,r'\-+\'' ) _lowerCAmelCase : Any = regex.compile(_A ) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.artists_encoder.items()} _lowerCAmelCase : Tuple = {v: k for k, v in self.genres_encoder.items()} _lowerCAmelCase : Dict = {v: k for k, v in self.lyrics_encoder.items()} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [self.artists_encoder.get(_A ,0 ) for artist in list_artists] for genres in range(len(_A ) ): _lowerCAmelCase : List[Any] = [self.genres_encoder.get(_A ,0 ) for genre in list_genres[genres]] _lowerCAmelCase : Tuple = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _lowerCAmelCase : Union[str, Any] = [[self.lyrics_encoder.get(_A ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __lowerCamelCase ( self ,_A ): '''simple docstring''' return list(_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Any = self.prepare_for_tokenization(_A ,_A ,_A ) _lowerCAmelCase : Dict = self._tokenize(_A ) return artist, genre, lyrics def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": _lowerCAmelCase : int = artists[idx].lower() _lowerCAmelCase : Optional[int] = [genres[idx].lower()] else: _lowerCAmelCase : int = self._normalize(artists[idx] ) + '.v2' _lowerCAmelCase : Optional[int] = [ self._normalize(_A ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _lowerCAmelCase : List[Any] = regex.compile(r'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) _lowerCAmelCase : Union[str, Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' _lowerCAmelCase : int = {vocab[index]: index + 1 for index in range(len(_A ) )} _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Tuple = len(_A ) + 1 _lowerCAmelCase : Optional[Any] = self.vocab _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} _lowerCAmelCase : Optional[Any] = '' else: _lowerCAmelCase : int = regex.compile(r'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) _lowerCAmelCase : str = self._run_strip_accents(_A ) _lowerCAmelCase : List[Any] = lyrics.replace('\\' ,'\n' ) _lowerCAmelCase : Optional[Any] = self.out_of_vocab.sub('' ,_A ), [], [] return artists, genres, lyrics def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = unicodedata.normalize('NFD' ,_A ) _lowerCAmelCase : Tuple = [] for char in text: _lowerCAmelCase : Dict = unicodedata.category(_A ) if cat == "Mn": continue output.append(_A ) return "".join(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = ( [chr(_A ) for i in range(ord('a' ) ,ord('z' ) + 1 )] + [chr(_A ) for i in range(ord('A' ) ,ord('Z' ) + 1 )] + [chr(_A ) for i in range(ord('0' ) ,ord('9' ) + 1 )] + ['.'] ) _lowerCAmelCase : Optional[int] = frozenset(_A ) _lowerCAmelCase : List[Any] = re.compile(r'_+' ) _lowerCAmelCase : int = ''.join([c if c in accepted else '_' for c in text.lower()] ) _lowerCAmelCase : Optional[Any] = pattern.sub('_' ,_A ).strip('_' ) return text def __lowerCamelCase ( self ,_A ): '''simple docstring''' return " ".join(_A ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if not isinstance(_A ,_A ): _lowerCAmelCase : List[str] = TensorType(_A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf _lowerCAmelCase : List[str] = tf.constant _lowerCAmelCase : Any = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch _lowerCAmelCase : Dict = torch.tensor _lowerCAmelCase : List[str] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 _lowerCAmelCase : str = jnp.array _lowerCAmelCase : List[str] = _is_jax else: _lowerCAmelCase : List[str] = np.asarray _lowerCAmelCase : int = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _lowerCAmelCase : Optional[Any] = [inputs] if not is_tensor(_A ): _lowerCAmelCase : Any = as_tensor(_A ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self ,_A ,_A ,_A="" ,_A="pt" ): '''simple docstring''' _lowerCAmelCase : str = [0, 0, 0] _lowerCAmelCase : List[Any] = [artist] * len(self.version ) _lowerCAmelCase : int = [genres] * len(self.version ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.tokenize(_A ,_A ,_A ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Any = self._convert_token_to_id(_A ,_A ,_A ) _lowerCAmelCase : int = [-INFINITY] * len(full_tokens[-1] ) _lowerCAmelCase : Union[str, Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=_A ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : int = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=_A ) ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=_A ) ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=_A ) ) return (artists_file, genres_file, lyrics_file) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.artists_decoder.get(_A ) _lowerCAmelCase : Any = [self.genres_decoder.get(_A ) for genre in genres_index] _lowerCAmelCase : Any = [self.lyrics_decoder.get(_A ) for character in lyric_index] return artist, genres, lyrics
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" def lowerCamelCase__ ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_lowerCamelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_lowerCamelCase ) * abs(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_activation('swish' ) self.assertIsInstance(_A ,nn.SiLU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = get_activation('silu' ) self.assertIsInstance(_A ,nn.SiLU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = get_activation('mish' ) self.assertIsInstance(_A ,nn.Mish ) self.assertEqual(act(torch.tensor(-200 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_activation('gelu' ) self.assertIsInstance(_A ,nn.GELU ) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") _lowerCAmelCase = int(input("""Enter number: """).strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowerCAmelCase = pd.read_csv("""sample_data.csv""", header=None) _lowerCAmelCase = df.shape[:1][0] # If you're using some other dataset input the target column _lowerCAmelCase = df.iloc[:, 1:2] _lowerCAmelCase = actual_data.values.reshape(len_data, 1) _lowerCAmelCase = MinMaxScaler().fit_transform(actual_data) _lowerCAmelCase = 1_0 _lowerCAmelCase = 5 _lowerCAmelCase = 2_0 _lowerCAmelCase = len_data - periods * look_back _lowerCAmelCase = actual_data[:division] _lowerCAmelCase = actual_data[division - look_back :] _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase , _lowerCAmelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowerCAmelCase = np.array(train_x) _lowerCAmelCase = np.array(test_x) _lowerCAmelCase = np.array([list(i.ravel()) for i in train_y]) _lowerCAmelCase = np.array([list(i.ravel()) for i in test_y]) _lowerCAmelCase = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") _lowerCAmelCase = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) _lowerCAmelCase = model.predict(x_test)
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowerCAmelCase = ["""text""", """image""", """audio"""] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): inputs.append(create_inputs(_lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = [] for output in outputs: if isinstance(_lowerCamelCase , (str, AgentText) ): output_types.append('text' ) elif isinstance(_lowerCamelCase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class __UpperCamelCase : def __lowerCamelCase ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,'inputs' ) ) self.assertTrue(hasattr(self.tool ,'outputs' ) ) _lowerCAmelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input ,_A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _lowerCAmelCase : Tuple = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = create_inputs(self.tool.inputs ) _lowerCAmelCase : str = self.tool(*_A ) # There is a single output if len(self.tool.outputs ) == 1: _lowerCAmelCase : Union[str, Any] = [outputs] self.assertListEqual(output_types(_A ) ,self.tool.outputs ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool ,'description' ) ) self.assertTrue(hasattr(self.tool ,'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = create_inputs(self.tool.inputs ) _lowerCAmelCase : List[Any] = self.tool(*_A ) if not isinstance(_A ,_A ): _lowerCAmelCase : List[Any] = [outputs] self.assertEqual(len(_A ) ,len(self.tool.outputs ) ) for output, output_type in zip(_A ,self.tool.outputs ): _lowerCAmelCase : Dict = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = create_inputs(self.tool.inputs ) _lowerCAmelCase : int = [] for _input, input_type in zip(_A ,self.tool.inputs ): if isinstance(_A ,_A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _lowerCAmelCase : Optional[int] = self.tool(*_A ) if not isinstance(_A ,_A ): _lowerCAmelCase : Dict = [outputs] self.assertEqual(len(_A ) ,len(self.tool.outputs ) )
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _lowerCAmelCase : Optional[int] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith('encoder' ): _lowerCAmelCase : Dict = k.replace('.attn' , '.self_attn' ) _lowerCAmelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _lowerCAmelCase : Optional[int] = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _lowerCAmelCase : Union[str, Any] = k.replace('norm1' , 'self_attn_layer_norm' ) _lowerCAmelCase : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) _lowerCAmelCase : int = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _lowerCAmelCase : str = sd.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _lowerCAmelCase : Any = v _lowerCAmelCase = ["""START"""] @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = torch.load(_lowerCamelCase , map_location='cpu' ) _lowerCAmelCase : str = model['model'] _lowerCAmelCase : Tuple = BlenderbotConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : str = BlenderbotForConditionalGeneration(_lowerCamelCase ) _lowerCAmelCase : Dict = m.model.state_dict().keys() _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _lowerCAmelCase : Dict = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _lowerCAmelCase : Optional[int] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) _lowerCAmelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""OwlViTFeatureExtractor"""] _lowerCAmelCase = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase, _lowerCAmelCase : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _lowerCAmelCase : str = result + left + right return input_list def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if len(_lowerCamelCase ) <= 1: return input_list _lowerCAmelCase : Dict = list(_lowerCamelCase ) # iteration for two-way merging _lowerCAmelCase : str = 2 while p <= len(_lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): _lowerCAmelCase : Any = i _lowerCAmelCase : Optional[int] = i + p - 1 _lowerCAmelCase : Optional[Any] = (low + high + 1) // 2 _lowerCAmelCase : int = merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # final merge of last two parts if p * 2 >= len(_lowerCamelCase ): _lowerCAmelCase : List[Any] = i _lowerCAmelCase : int = merge(_lowerCamelCase , 0 , _lowerCamelCase , len(_lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _lowerCAmelCase = [] else: _lowerCAmelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=True ,_A=False ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=4 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Tuple = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : Optional[Any] = use_input_mask _lowerCAmelCase : Tuple = use_token_type_ids _lowerCAmelCase : Dict = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = num_labels _lowerCAmelCase : Dict = num_choices _lowerCAmelCase : List[str] = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Tuple = None _lowerCAmelCase : int = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : int = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = DistilBertModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[int] = model(_A ,_A ) _lowerCAmelCase : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = DistilBertForMaskedLM(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : str = model(_A ,attention_mask=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DistilBertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = model( _A ,attention_mask=_A ,start_positions=_A ,end_positions=_A ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Any = DistilBertForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.num_labels _lowerCAmelCase : Any = DistilBertForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : str = model(_A ,attention_mask=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.num_choices _lowerCAmelCase : int = DistilBertForMultipleChoice(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _lowerCAmelCase : List[Any] = model( _A ,attention_mask=_A ,labels=_A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() ((_lowerCAmelCase), (_lowerCAmelCase), (_lowerCAmelCase), (_lowerCAmelCase), (_lowerCAmelCase), (_lowerCAmelCase)) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCAmelCase = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = DistilBertModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self ,config_class=_A ,dim=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = DistilBertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @slow @require_torch_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowerCAmelCase : Dict = True _lowerCAmelCase : Tuple = model_class(config=_A ) _lowerCAmelCase : List[Any] = self._prepare_for_class(_A ,_A ) _lowerCAmelCase : Dict = torch.jit.trace( _A ,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_A ,os.path.join(_A ,'traced_model.pt' ) ) _lowerCAmelCase : int = torch.jit.load(os.path.join(_A ,'traced_model.pt' ) ,map_location=_A ) loaded(inputs_dict['input_ids'].to(_A ) ,inputs_dict['attention_mask'].to(_A ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = DistilBertModel.from_pretrained('distilbert-base-uncased' ) _lowerCAmelCase : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCAmelCase : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(_A ,attention_mask=_A )[0] _lowerCAmelCase : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,_A ) _lowerCAmelCase : int = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_A ,atol=1E-4 ) )
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _lowerCAmelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __UpperCamelCase : def __init__( self ,_A ,_A=16 ,_A=13 ,_A=7 ,_A=14 ,_A=10 ,_A=19 ,_A=5 ,_A=4 ,_A=True ,_A=16 ,_A=2 ,_A=4 ,_A=4 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=[1, 2, 3, 4, 5] ,_A=25 ,_A=5 ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : int = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Union[str, Any] = prediction_length _lowerCAmelCase : Union[str, Any] = context_length _lowerCAmelCase : List[Any] = cardinality _lowerCAmelCase : int = num_time_features _lowerCAmelCase : Tuple = lags_sequence _lowerCAmelCase : Union[str, Any] = embedding_dimension _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : Optional[Any] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : str = context_length _lowerCAmelCase : Any = prediction_length + label_length _lowerCAmelCase : Any = label_length _lowerCAmelCase : Tuple = moving_average _lowerCAmelCase : Tuple = autocorrelation_factor def __lowerCamelCase ( self ): '''simple docstring''' return AutoformerConfig( d_model=self.d_model ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,prediction_length=self.prediction_length ,context_length=self.context_length ,label_length=self.label_length ,lags_sequence=self.lags_sequence ,num_time_features=self.num_time_features ,num_static_categorical_features=1 ,cardinality=[self.cardinality] ,embedding_dimension=[self.embedding_dimension] ,moving_average=self.moving_average ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = config.context_length + max(config.lags_sequence ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, 1] ,config.cardinality[0] ) _lowerCAmelCase : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, _past_length] ) _lowerCAmelCase : str = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _lowerCAmelCase : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, config.prediction_length] ) _lowerCAmelCase : Optional[Any] = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_config() _lowerCAmelCase : Dict = self.prepare_autoformer_inputs_dict(_A ) return config, inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = AutoformerModel(config=_A ).to(_A ).eval() _lowerCAmelCase : Tuple = model(**_A ) _lowerCAmelCase : Any = outputs.encoder_last_hidden_state _lowerCAmelCase : List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(_A ) _lowerCAmelCase : List[Any] = AutoformerEncoder.from_pretrained(_A ).to(_A ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = model.create_network_inputs(**_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _lowerCAmelCase : Tuple = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) ,dim=-1 ,) _lowerCAmelCase : List[str] = encoder(inputs_embeds=_A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _lowerCAmelCase : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] ,dim=1 ) .unsqueeze(1 ) .repeat(1 ,config.prediction_length ,1 ) ) _lowerCAmelCase : str = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] ,device=enc_input.device ,) _lowerCAmelCase : List[str] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) _lowerCAmelCase : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Dict = model.get_decoder() decoder.save_pretrained(_A ) _lowerCAmelCase : Dict = AutoformerDecoder.from_pretrained(_A ).to(_A ) _lowerCAmelCase : Tuple = decoder( trend=_A ,inputs_embeds=_A ,encoder_hidden_states=_A ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCAmelCase = (AutoformerForPrediction,) if is_torch_available() else () _UpperCAmelCase = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoformerModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(_A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = model_class.from_pretrained(_A ,output_loading_info=_A ) self.assertEqual(info['missing_keys'] ,[] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_A ) @unittest.skip(reason='Model has no tokens embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = inspect.signature(getattr(_A ,'forward' ) ) # The main input is the name of the argument after `self` _lowerCAmelCase : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(_A ) _lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Dict = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(_A )] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = True _lowerCAmelCase : str = getattr(self.model_tester ,'seq_length' ,_A ) _lowerCAmelCase : List[str] = getattr(self.model_tester ,'decoder_seq_length' ,_A ) _lowerCAmelCase : int = getattr(self.model_tester ,'encoder_seq_length' ,_A ) _lowerCAmelCase : List[Any] = getattr(self.model_tester ,'d_model' ,_A ) _lowerCAmelCase : str = getattr(self.model_tester ,'num_attention_heads' ,_A ) _lowerCAmelCase : Optional[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: _lowerCAmelCase : Any = True _lowerCAmelCase : Any = False _lowerCAmelCase : int = True _lowerCAmelCase : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : int = True _lowerCAmelCase : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : List[Any] = outputs.encoder_attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Union[str, Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_A ,_A ) # decoder attentions _lowerCAmelCase : Dict = outputs.decoder_attentions self.assertIsInstance(_A ,(list, tuple) ) self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # cross attentions _lowerCAmelCase : Any = outputs.cross_attentions self.assertIsInstance(_A ,(list, tuple) ) self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # Check attention is always last and order is fine _lowerCAmelCase : str = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Dict = model(**self._prepare_for_class(_A ,_A ) ) self.assertEqual(out_len + 2 ,len(_A ) ) _lowerCAmelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) @is_flaky() def __lowerCamelCase ( self ): '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowerCamelCase__ ( _lowerCamelCase="train-batch.pt" ): '''simple docstring''' _lowerCAmelCase : int = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_lowerCamelCase , repo_type='dataset' ) _lowerCAmelCase : Optional[Any] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) return batch @require_torch @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_A ) _lowerCAmelCase : Dict = prepare_batch() with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model( past_values=batch['past_values'] ,past_time_features=batch['past_time_features'] ,past_observed_mask=batch['past_observed_mask'] ,static_categorical_features=batch['static_categorical_features'] ,future_values=batch['future_values'] ,future_time_features=batch['future_time_features'] ,)[0] _lowerCAmelCase : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape ,_A ) _lowerCAmelCase : Dict = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] ,device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] ,_A ,atol=_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_A ) _lowerCAmelCase : Any = prepare_batch('val-batch.pt' ) with torch.no_grad(): _lowerCAmelCase : List[str] = model( past_values=batch['past_values'] ,past_time_features=batch['past_time_features'] ,past_observed_mask=batch['past_observed_mask'] ,static_categorical_features=batch['static_categorical_features'] ,).encoder_last_hidden_state _lowerCAmelCase : Dict = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape ,_A ) _lowerCAmelCase : Tuple = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] ,device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] ,_A ,atol=_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_A ) _lowerCAmelCase : int = prepare_batch('val-batch.pt' ) with torch.no_grad(): _lowerCAmelCase : Any = model.generate( static_categorical_features=batch['static_categorical_features'] ,past_time_features=batch['past_time_features'] ,past_values=batch['past_values'] ,future_time_features=batch['future_time_features'] ,past_observed_mask=batch['past_observed_mask'] ,) _lowerCAmelCase : List[str] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape ,_A ) _lowerCAmelCase : Dict = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] ,device=_A ) _lowerCAmelCase : Optional[int] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] ,_A ,rtol=1E-1 ) )
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _lowerCAmelCase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } _lowerCAmelCase = {"""facebook/blenderbot_small-90M""": 5_1_2} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = set() _lowerCAmelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Tuple = char _lowerCAmelCase : Dict = set(_lowerCamelCase ) return pairs class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A ,_A="__start__" ,_A="__end__" ,_A="__unk__" ,_A="__null__" ,**_A ,): '''simple docstring''' super().__init__(unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,**_A ) with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Union[str, Any] = json.load(_A ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[int] = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase : Optional[int] = [tuple(merge.split() ) for merge in merges] _lowerCAmelCase : Union[str, Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Dict = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Union[str, Any] = re.sub('([.,!?()])' ,r' \1' ,_A ) _lowerCAmelCase : Any = re.sub('(\')' ,r' \1 ' ,_A ) _lowerCAmelCase : Tuple = re.sub(r'\s{2,}' ,' ' ,_A ) if "\n" in token: _lowerCAmelCase : Optional[Any] = token.replace('\n' ,' __newln__' ) _lowerCAmelCase : Optional[Any] = token.split(' ' ) _lowerCAmelCase : List[str] = [] for token in tokens: if not len(_A ): continue _lowerCAmelCase : str = token.lower() _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) _lowerCAmelCase : str = get_pairs(_A ) if not pairs: words.append(_A ) continue while True: _lowerCAmelCase : str = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Tuple = bigram _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Any = 0 while i < len(_A ): try: _lowerCAmelCase : str = word.index(_A ,_A ) new_word.extend(word[i:j] ) _lowerCAmelCase : Union[str, Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[int] = tuple(_A ) _lowerCAmelCase : str = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[Any] = get_pairs(_A ) _lowerCAmelCase : Any = '@@ '.join(_A ) _lowerCAmelCase : List[str] = word[:-4] _lowerCAmelCase : Any = word words.append(_A ) return " ".join(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = re.findall(r'\S+\n?' ,_A ) for token in words: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = token.lower() return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.decoder.get(_A ,self.unk_token ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ).replace('@@ ' ,'' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Dict = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Tuple = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : Tuple = 0 with open(_A ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return vocab_file, merge_file
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase : def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = question_encoder _lowerCAmelCase : List[str] = generator _lowerCAmelCase : str = self.question_encoder def __lowerCamelCase ( self ,_A ): '''simple docstring''' if os.path.isfile(_A ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_A ,exist_ok=_A ) _lowerCAmelCase : Union[str, Any] = os.path.join(_A ,'question_encoder_tokenizer' ) _lowerCAmelCase : Union[str, Any] = os.path.join(_A ,'generator_tokenizer' ) self.question_encoder.save_pretrained(_A ) self.generator.save_pretrained(_A ) @classmethod def __lowerCamelCase ( cls ,_A ,**_A ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Any = kwargs.pop('config' ,_A ) if config is None: _lowerCAmelCase : Dict = RagConfig.from_pretrained(_A ) _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( _A ,config=config.question_encoder ,subfolder='question_encoder_tokenizer' ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained( _A ,config=config.generator ,subfolder='generator_tokenizer' ) return cls(question_encoder=_A ,generator=_A ) def __call__( self ,*_A ,**_A ): '''simple docstring''' return self.current_tokenizer(*_A ,**_A ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.generator.batch_decode(*_A ,**_A ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.generator.decode(*_A ,**_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.question_encoder def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.generator def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A = None ,_A = "longest" ,_A = None ,_A = True ,**_A ,): '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' ,_A ,) if max_length is None: _lowerCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length _lowerCAmelCase : Optional[int] = self( _A ,add_special_tokens=_A ,return_tensors=_A ,max_length=_A ,padding=_A ,truncation=_A ,**_A ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCAmelCase : str = self( text_target=_A ,add_special_tokens=_A ,return_tensors=_A ,padding=_A ,max_length=_A ,truncation=_A ,**_A ,) _lowerCAmelCase : Dict = labels['input_ids'] return model_inputs
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from collections.abc import Callable def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : float = a _lowerCAmelCase : float = b if function(_lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_lowerCamelCase ) == 0: return b elif ( function(_lowerCamelCase ) * function(_lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _lowerCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCamelCase ) == 0: return mid elif function(_lowerCamelCase ) * function(_lowerCamelCase ) < 0: _lowerCAmelCase : str = mid else: _lowerCAmelCase : List[Any] = mid _lowerCAmelCase : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase = { """vinai/phobert-base""": 2_5_6, """vinai/phobert-large""": 2_5_6, } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Optional[int] = char _lowerCAmelCase : Any = set(_lowerCamelCase ) return pairs class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,_A ,_A ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,**_A ,): '''simple docstring''' super().__init__( bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,**_A ,) _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : Dict = merges_file _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Tuple = 1 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Any = 3 self.add_from_file(_A ) _lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Tuple = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] _lowerCAmelCase : Union[str, Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : str = tuple(_A ) _lowerCAmelCase : int = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) _lowerCAmelCase : Dict = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : str = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : int = bigram _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = 0 while i < len(_A ): try: _lowerCAmelCase : int = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[int] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : int = tuple(_A ) _lowerCAmelCase : Optional[int] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : str = '@@ '.join(_A ) _lowerCAmelCase : Union[str, Any] = word[:-4] _lowerCAmelCase : Dict = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[str] = re.findall(r'\S+\n?' ,_A ) for token in words: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.decoder.get(_A ,self.unk_token ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[str] = ' '.join(_A ).replace('@@ ' ,'' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Any = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file ,_A ) if os.path.abspath(self.merges_file ) != os.path.abspath(_A ): copyfile(self.merges_file ,_A ) return out_vocab_file, out_merge_file def __lowerCamelCase ( self ,_A ): '''simple docstring''' if isinstance(_A ,_A ): try: with open(_A ,'r' ,encoding='utf-8' ) as fd: self.add_from_file(_A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return _lowerCAmelCase : List[str] = f.readlines() for lineTmp in lines: _lowerCAmelCase : List[str] = lineTmp.strip() _lowerCAmelCase : Optional[Any] = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) _lowerCAmelCase : Optional[Any] = line[:idx] _lowerCAmelCase : Optional[Any] = len(self.encoder )
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def __lowerCamelCase ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ort.SessionOptions() _lowerCAmelCase : List[Any] = False return options def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) _lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) _lowerCAmelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default _lowerCAmelCase : List[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=_A ,feature_extractor=_A ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = 'A red cat sitting on a park bench' _lowerCAmelCase : Union[str, Any] = np.random.RandomState(0 ) _lowerCAmelCase : Any = pipe( prompt=_A ,image=_A ,mask_image=_A ,strength=0.7_5 ,guidance_scale=7.5 ,num_inference_steps=15 ,generator=_A ,output_type='np' ,) _lowerCAmelCase : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'hf-internal-testing/tiny-random-t5' _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) _lowerCAmelCase : Optional[Any] = tokenizer('This is me' ,return_tensors='pt' ) _lowerCAmelCase : int = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _lowerCAmelCase : Union[str, Any] = model.generate(**_A ) _lowerCAmelCase : Optional[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) _lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _lowerCAmelCase : Optional[int] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A ,_A ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 'hf-internal-testing/tiny-random-t5' _lowerCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) _lowerCAmelCase : str = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) _lowerCAmelCase : str = model.reverse_bettertransformer() model.save_pretrained(_A )
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PhobertTokenizer _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : str = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] _lowerCAmelCase : Union[str, Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Optional[int] = ['#version: 0.2', 'l à</w>'] _lowerCAmelCase : Tuple = {'unk_token': '<unk>'} _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 'Tôi là VinAI Research' _lowerCAmelCase : Any = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = PhobertTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowerCAmelCase : List[Any] = 'Tôi là VinAI Research' _lowerCAmelCase : Dict = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() _lowerCAmelCase : Optional[int] = tokenizer.tokenize(_A ) print(_A ) self.assertListEqual(_A ,_A ) _lowerCAmelCase : List[Any] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Dict = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,_A )
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") _lowerCAmelCase = logging.getLogger(__name__) @dataclass class __UpperCamelCase : _UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __UpperCamelCase : _UpperCAmelCase = field(default=a__ , metadata={"help": "The input training data file (a text file)."} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _UpperCAmelCase = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCAmelCase = field( default=a__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _UpperCAmelCase = field( default=a__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __lowerCamelCase ( self ): '''simple docstring''' if self.train_file is not None: _lowerCAmelCase : Any = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _lowerCAmelCase : Optional[int] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __UpperCamelCase : _UpperCAmelCase = 42 _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None def __call__( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = 'label' if 'label' in features[0].keys() else 'labels' _lowerCAmelCase : Dict = [feature.pop(_A ) for feature in features] _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Any = len(features[0]['input_ids'] ) _lowerCAmelCase : Any = [ [{k: v[i] for k, v in feature.items()} for i in range(_A )] for feature in features ] _lowerCAmelCase : Any = list(chain(*_A ) ) _lowerCAmelCase : List[str] = self.tokenizer.pad( _A ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten _lowerCAmelCase : Union[str, Any] = {k: v.view(_A ,_A ,-1 ) for k, v in batch.items()} # Add back labels _lowerCAmelCase : Dict = torch.tensor(_A ,dtype=torch.intaa ) return batch def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _lowerCAmelCase : Optional[Any] = {} if data_args.train_file is not None: _lowerCAmelCase : Optional[Any] = data_args.train_file if data_args.validation_file is not None: _lowerCAmelCase : Any = data_args.validation_file _lowerCAmelCase : List[Any] = data_args.train_file.split('.' )[-1] _lowerCAmelCase : str = load_dataset( _lowerCamelCase , data_files=_lowerCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _lowerCAmelCase : List[str] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _lowerCAmelCase : Dict = [f"""ending{i}""" for i in range(4 )] _lowerCAmelCase : Tuple = 'sent1' _lowerCAmelCase : Any = 'sent2' if data_args.max_seq_length is None: _lowerCAmelCase : Optional[int] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _lowerCAmelCase : Any = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowerCAmelCase : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = [[context] * 4 for context in examples[context_name]] _lowerCAmelCase : str = examples[question_header_name] _lowerCAmelCase : Dict = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_lowerCamelCase ) ] # Flatten out _lowerCAmelCase : Tuple = list(chain(*_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = list(chain(*_lowerCamelCase ) ) # Tokenize _lowerCAmelCase : List[str] = tokenizer( _lowerCamelCase , _lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_lowerCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _lowerCAmelCase : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _lowerCAmelCase : Any = min(len(_lowerCamelCase ) , data_args.max_train_samples ) _lowerCAmelCase : Tuple = train_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowerCAmelCase : Any = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _lowerCAmelCase : Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: _lowerCAmelCase : str = min(len(_lowerCamelCase ) , data_args.max_eval_samples ) _lowerCAmelCase : str = eval_dataset.select(range(_lowerCamelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowerCAmelCase : int = eval_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _lowerCAmelCase : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_lowerCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_lowerCamelCase ): _lowerCAmelCase, _lowerCAmelCase : Dict = eval_predictions _lowerCAmelCase : Optional[Any] = np.argmax(_lowerCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _lowerCAmelCase : Optional[int] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Dict = last_checkpoint _lowerCAmelCase : int = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCAmelCase : int = train_result.metrics _lowerCAmelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('train' , _lowerCamelCase ) trainer.save_metrics('train' , _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowerCAmelCase : Optional[Any] = trainer.evaluate() _lowerCAmelCase : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) _lowerCAmelCase : Dict = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics('eval' , _lowerCamelCase ) trainer.save_metrics('eval' , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=2 ,_A=3 ,_A=4 ,_A=2 ,_A=7 ,_A=True ,_A=True ,_A=True ,_A=True ,_A=99 ,_A=36 ,_A=3 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=6 ,_A=6 ,_A=3 ,_A=4 ,_A=None ,_A=1000 ,): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Any = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : str = text_seq_length _lowerCAmelCase : Optional[Any] = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = coordinate_size _lowerCAmelCase : Optional[Any] = shape_size _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : str = num_choices _lowerCAmelCase : Optional[Any] = scope _lowerCAmelCase : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : Dict = text_seq_length _lowerCAmelCase : Optional[int] = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : int = self.text_seq_length + self.image_seq_length def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Union[str, Any] = bbox[i, j, 3] _lowerCAmelCase : Any = bbox[i, j, 1] _lowerCAmelCase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : Tuple = bbox[i, j, 2] _lowerCAmelCase : Any = bbox[i, j, 0] _lowerCAmelCase : Any = t _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Dict = None if self.use_input_mask: _lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) _lowerCAmelCase : Any = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = LayoutLMvaModel(config=_A ) model.to(_A ) model.eval() # text + image _lowerCAmelCase : str = model(_A ,pixel_values=_A ) _lowerCAmelCase : Tuple = model( _A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ) _lowerCAmelCase : Union[str, Any] = model(_A ,bbox=_A ,pixel_values=_A ,token_type_ids=_A ) _lowerCAmelCase : Optional[Any] = model(_A ,bbox=_A ,pixel_values=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase : Union[str, Any] = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase : str = model(pixel_values=_A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Dict = LayoutLMvaForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model( _A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.num_labels _lowerCAmelCase : int = LayoutLMvaForTokenClassification(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model( _A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ,labels=_A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = LayoutLMvaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Union[str, Any] = model( _A ,bbox=_A ,pixel_values=_A ,attention_mask=_A ,token_type_ids=_A ,start_positions=_A ,end_positions=_A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : Optional[Any] = config_and_inputs _lowerCAmelCase : List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' return True def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = LayoutLMvaModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ,_A ,_A ,_A=False ): '''simple docstring''' _lowerCAmelCase : Dict = copy.deepcopy(_A ) if model_class in get_values(_A ): _lowerCAmelCase : int = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(_A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): _lowerCAmelCase : int = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=_A ) elif model_class in get_values(_A ): _lowerCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) _lowerCAmelCase : Dict = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) elif model_class in [ *get_values(_A ), ]: _lowerCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_A ) elif model_class in [ *get_values(_A ), ]: _lowerCAmelCase : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=_A ,) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Dict = type self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = LayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(_A ) _lowerCAmelCase : str = self.default_image_processor _lowerCAmelCase : Tuple = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(images=_A ,return_tensors='pt' ).pixel_values.to(_A ) _lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] ) _lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase : Union[str, Any] = model( input_ids=input_ids.to(_A ) ,bbox=bbox.to(_A ) ,pixel_values=pixel_values.to(_A ) ,) # verify the logits _lowerCAmelCase : Tuple = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape ,_A ) _lowerCAmelCase : str = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,_A ,atol=1E-4 ) )
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = "bit" _UpperCAmelCase = ["preactivation", "bottleneck"] _UpperCAmelCase = ["SAME", "VALID"] def __init__( self ,_A=3 ,_A=64 ,_A=[256, 512, 1024, 2048] ,_A=[3, 4, 6, 3] ,_A="preactivation" ,_A="relu" ,_A=None ,_A=32 ,_A=0.0 ,_A=False ,_A=32 ,_A=1 ,_A=None ,_A=None ,**_A ,): '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCAmelCase : Dict = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : str = embedding_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : Dict = layer_type _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Tuple = global_padding _lowerCAmelCase : Dict = num_groups _lowerCAmelCase : Optional[Any] = drop_path_rate _lowerCAmelCase : Tuple = embedding_dynamic_padding _lowerCAmelCase : Union[str, Any] = output_stride _lowerCAmelCase : Dict = width_factor _lowerCAmelCase : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(_A ) + 1 )] _lowerCAmelCase, _lowerCAmelCase : Dict = get_aligned_output_features_output_indices( out_features=_A ,out_indices=_A ,stage_names=self.stage_names )
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __UpperCamelCase ( a__ ): _UpperCAmelCase = "char" _UpperCAmelCase = "bpe" _UpperCAmelCase = "wp" _lowerCAmelCase = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["image_processor", "char_tokenizer"] _UpperCAmelCase = "ViTImageProcessor" _UpperCAmelCase = "MgpstrTokenizer" def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' _lowerCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,_A ,) _lowerCAmelCase : Union[str, Any] = kwargs.pop('feature_extractor' ) _lowerCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) _lowerCAmelCase : List[Any] = tokenizer _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('gpt2' ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(_A ,_A ) def __call__( self ,_A=None ,_A=None ,_A=None ,**_A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _lowerCAmelCase : Union[str, Any] = self.image_processor(_A ,return_tensors=_A ,**_A ) if text is not None: _lowerCAmelCase : Tuple = self.char_tokenizer(_A ,return_tensors=_A ,**_A ) if text is None: return inputs elif images is None: return encodings else: _lowerCAmelCase : Any = encodings['input_ids'] return inputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = sequences _lowerCAmelCase : List[Any] = char_preds.size(0 ) _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._decode_helper(_A ,'char' ) _lowerCAmelCase, _lowerCAmelCase : Tuple = self._decode_helper(_A ,'bpe' ) _lowerCAmelCase, _lowerCAmelCase : int = self._decode_helper(_A ,'wp' ) _lowerCAmelCase : Dict = [] _lowerCAmelCase : int = [] for i in range(_A ): _lowerCAmelCase : str = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowerCAmelCase : Optional[int] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowerCAmelCase : Optional[Any] = scores.index(max(_A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : Any = final_strs _lowerCAmelCase : Optional[Any] = final_scores _lowerCAmelCase : Optional[int] = char_strs _lowerCAmelCase : int = bpe_strs _lowerCAmelCase : Any = wp_strs return out def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if format == DecodeType.CHARACTER: _lowerCAmelCase : int = self.char_decode _lowerCAmelCase : Any = 1 _lowerCAmelCase : int = '[s]' elif format == DecodeType.BPE: _lowerCAmelCase : Optional[Any] = self.bpe_decode _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : Optional[Any] = '#' elif format == DecodeType.WORDPIECE: _lowerCAmelCase : str = self.wp_decode _lowerCAmelCase : Any = 102 _lowerCAmelCase : Any = '[SEP]' else: raise ValueError(F"""Format {format} is not supported.""" ) _lowerCAmelCase, _lowerCAmelCase : str = [], [] _lowerCAmelCase : Union[str, Any] = pred_logits.size(0 ) _lowerCAmelCase : List[str] = pred_logits.size(1 ) _lowerCAmelCase, _lowerCAmelCase : int = pred_logits.topk(1 ,dim=-1 ,largest=_A ,sorted=_A ) _lowerCAmelCase : Tuple = preds_index.view(-1 ,_A )[:, 1:] _lowerCAmelCase : Union[str, Any] = decoder(_A ) _lowerCAmelCase, _lowerCAmelCase : Any = torch.nn.functional.softmax(_A ,dim=2 ).max(dim=2 ) _lowerCAmelCase : Tuple = preds_max_prob[:, 1:] for index in range(_A ): _lowerCAmelCase : Any = preds_str[index].find(_A ) _lowerCAmelCase : Dict = preds_str[index][:pred_eos] _lowerCAmelCase : List[Any] = preds_index[index].cpu().tolist() _lowerCAmelCase : Dict = pred_index.index(_A ) if eos_token in pred_index else -1 _lowerCAmelCase : int = preds_max_prob[index][: pred_eos_index + 1] _lowerCAmelCase : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_A ) conf_scores.append(_A ) return dec_strs, conf_scores def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = [seq.replace(' ' ,'' ) for seq in self.char_tokenizer.batch_decode(_A )] return decode_strs def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [seq.replace(' ' ,'' ) for seq in self.wp_tokenizer.batch_decode(_A )] return decode_strs
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = filter(lambda _lowerCamelCase : p.requires_grad , model.parameters() ) _lowerCAmelCase : Any = sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowerCAmelCase = logging.getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if metric == "rouge2": _lowerCAmelCase : Dict = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCAmelCase : int = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCAmelCase : List[str] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) _lowerCAmelCase : Union[str, Any] = ModelCheckpoint( dirpath=_lowerCamelCase , filename=_lowerCamelCase , monitor=f"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=_lowerCamelCase , verbose=_lowerCamelCase , ) class __UpperCamelCase ( pl.Callback ): def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=True ): '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _lowerCAmelCase : Union[str, Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCAmelCase : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCAmelCase : str = od / 'test_results.txt' _lowerCAmelCase : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCAmelCase : Union[str, Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _lowerCAmelCase : Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A ,'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue _lowerCAmelCase : Union[str, Any] = metrics[key] if isinstance(_A ,torch.Tensor ): _lowerCAmelCase : int = val.item() _lowerCAmelCase : Optional[Any] = F"""{key}: {val:.6f}\n""" writer.write(_A ) if not save_generations: return if "preds" in metrics: _lowerCAmelCase : Optional[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' try: _lowerCAmelCase : Any = pl_module.model.model.num_parameters() except AttributeError: _lowerCAmelCase : Any = pl_module.model.num_parameters() _lowerCAmelCase : Optional[int] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) return self._write_logs(_A ,_A ,'test' ) @rank_zero_only def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' save_json(pl_module.metrics ,pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" from jiwer import compute_measures import datasets _lowerCAmelCase = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _lowerCAmelCase = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ _lowerCAmelCase = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/jitsi/jiwer/'] ,reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] ,) def __lowerCamelCase ( self ,_A=None ,_A=None ,_A=False ): '''simple docstring''' if concatenate_texts: return compute_measures(_A ,_A )["wer"] else: _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Any = 0 for prediction, reference in zip(_A ,_A ): _lowerCAmelCase : List[str] = compute_measures(_A ,_A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): _UpperCAmelCase = None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): _UpperCAmelCase = PandasConfig def __lowerCamelCase ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A ,(str, list, tuple) ): _lowerCAmelCase : Tuple = data_files if isinstance(_A ,_A ): _lowerCAmelCase : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : List[str] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] _lowerCAmelCase : Any = [] for split_name, files in data_files.items(): if isinstance(_A ,_A ): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : List[str] = [dl_manager.iter_files(_A ) for file in files] splits.append(datasets.SplitGenerator(name=_A ,gen_kwargs={'files': files} ) ) return splits def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : Optional[int] = table_cast(_A ,self.config.features.arrow_schema ) return pa_table def __lowerCamelCase ( self ,_A ): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A ,'rb' ) as f: _lowerCAmelCase : List[Any] = pa.Table.from_pandas(pd.read_pickle(_A ) ) yield i, self._cast_table(_A )
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(_lowerCamelCase ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=300 ): '''simple docstring''' return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowerCAmelCase : str = f"""{elt:.6f}""" if isinstance(_lowerCamelCase , _lowerCamelCase ) else str(_lowerCamelCase ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __UpperCamelCase : _UpperCAmelCase = 5 _UpperCAmelCase = 0.2 def __init__( self ,_A ,_A = None ,_A = True ,_A = None ,_A = 300 ,): '''simple docstring''' _lowerCAmelCase : List[str] = total _lowerCAmelCase : str = '' if prefix is None else prefix _lowerCAmelCase : Optional[int] = leave _lowerCAmelCase : int = parent _lowerCAmelCase : List[Any] = width _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : List[Any] = None def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = value if comment is not None: _lowerCAmelCase : Optional[Any] = comment if self.last_value is None: _lowerCAmelCase : Optional[Any] = time.time() _lowerCAmelCase : Dict = value _lowerCAmelCase : Tuple = None _lowerCAmelCase : Tuple = self.warmup _lowerCAmelCase : Union[str, Any] = 1 self.update_bar(_A ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowerCAmelCase : str = time.time() _lowerCAmelCase : int = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowerCAmelCase : int = self.elapsed_time / (value - self.start_value) else: _lowerCAmelCase : List[str] = None if value >= self.total: _lowerCAmelCase : Tuple = self.total _lowerCAmelCase : Optional[int] = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowerCAmelCase : int = self.average_time_per_item * (self.total - value) self.update_bar(_A ) _lowerCAmelCase : Union[str, Any] = value _lowerCAmelCase : Optional[Any] = current_time if self.average_time_per_item is None: _lowerCAmelCase : Any = 1 else: _lowerCAmelCase : Optional[int] = max(int(self.update_every / self.average_time_per_item ) ,1 ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = ' ' * (len(str(self.total ) ) - len(str(_A ) )) + str(_A ) if self.elapsed_time is None: _lowerCAmelCase : Any = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _lowerCAmelCase : List[Any] = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _lowerCAmelCase : List[Any] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowerCAmelCase : Optional[int] = disp.display(disp.HTML(self.html_code ) ,display_id=_A ) else: self.output.update(disp.HTML(self.html_code ) ) def __lowerCamelCase ( self ): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class __UpperCamelCase ( a__ ): def __init__( self ,_A ,_A=None ): '''simple docstring''' super().__init__(_A ) _lowerCAmelCase : Optional[Any] = None if column_names is None else [column_names] _lowerCAmelCase : Optional[Any] = None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowerCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code ) ,display_id=_A ) else: self.output.update(disp.HTML(self.html_code ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.inner_table is None: _lowerCAmelCase : Dict = [list(values.keys() ), list(values.values() )] else: _lowerCAmelCase : Union[str, Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_A ) _lowerCAmelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=300 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = NotebookProgressBar(_A ,prefix=_A ,parent=self ,width=_A ) return self.child_bar def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = None self.display() class __UpperCamelCase ( a__ ): def __init__( self ): '''simple docstring''' _lowerCAmelCase : int = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : List[Any] = False def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : int = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : int = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _lowerCAmelCase : List[str] = NotebookTrainingTracker(state.max_steps ,_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 ,comment=F"""Epoch {epoch}/{state.num_train_epochs}""" ,force_update=self._force_next_update ,) _lowerCAmelCase : int = False def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' if not has_length(_A ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowerCAmelCase : str = self.training_tracker.add_child(len(_A ) ) else: _lowerCAmelCase : str = NotebookProgressBar(len(_A ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _lowerCAmelCase : Tuple = None def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowerCAmelCase : str = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _lowerCAmelCase : Dict = state.global_step self.training_tracker.write_line(_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ,**_A ): '''simple docstring''' if self.training_tracker is not None: _lowerCAmelCase : Any = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _lowerCAmelCase : str = log['loss'] break if self.first_column == "Epoch": _lowerCAmelCase : Dict = int(state.epoch ) else: _lowerCAmelCase : Optional[Any] = state.global_step _lowerCAmelCase : Optional[Any] = 'eval' for k in metrics: if k.endswith('_loss' ): _lowerCAmelCase : List[Any] = re.sub(r'\_loss$' ,'' ,_A ) _lowerCAmelCase : Dict = metrics.pop('total_flos' ,_A ) _lowerCAmelCase : int = metrics.pop('epoch' ,_A ) _lowerCAmelCase : str = metrics.pop(F"""{metric_key_prefix}_runtime""" ,_A ) _lowerCAmelCase : Dict = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" ,_A ) _lowerCAmelCase : Tuple = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" ,_A ) _lowerCAmelCase : int = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" ,_A ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": _lowerCAmelCase : Optional[int] = v else: _lowerCAmelCase : Tuple = k.split('_' ) _lowerCAmelCase : Optional[int] = ' '.join([part.capitalize() for part in splits[1:]] ) _lowerCAmelCase : str = v self.training_tracker.write_line(_A ) self.training_tracker.remove_child() _lowerCAmelCase : Tuple = None # Evaluation takes a long time so we should force the next update. _lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self ,_A ,_A ,_A ,**_A ): '''simple docstring''' self.training_tracker.update( state.global_step ,comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" ,force_update=_A ) _lowerCAmelCase : List[Any] = None
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _lowerCAmelCase : Tuple = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements _lowerCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = matrix[1][1], matrix[0][0] _lowerCAmelCase, _lowerCAmelCase : Optional[int] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _lowerCAmelCase : str = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix _lowerCAmelCase : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _lowerCAmelCase : Any = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _lowerCAmelCase : Optional[int] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _lowerCAmelCase : Union[str, Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _lowerCAmelCase : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _lowerCAmelCase : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _lowerCAmelCase : Tuple = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _lowerCAmelCase : Tuple = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _lowerCAmelCase : List[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _lowerCAmelCase : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _lowerCAmelCase : Tuple = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): _lowerCAmelCase : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _lowerCAmelCase : Any = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=10 ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for _ in range(_lowerCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=10 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [] for step in range(_lowerCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase : Tuple = os.path.join(_lowerCamelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , _lowerCamelCase ) _lowerCAmelCase : str = torch.load(_lowerCamelCase ) scheduler.load_state_dict(_lowerCamelCase ) return lrs @require_torch class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' self.assertEqual(len(_A ) ,len(_A ) ) for a, b in zip(_A ,_A ): self.assertAlmostEqual(_A ,_A ,delta=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=_A ) _lowerCAmelCase : Tuple = torch.tensor([0.4, 0.2, -0.5] ) _lowerCAmelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _lowerCAmelCase : List[Any] = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(100 ): _lowerCAmelCase : int = criterion(_A ,_A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=_A ) _lowerCAmelCase : str = torch.tensor([0.4, 0.2, -0.5] ) _lowerCAmelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _lowerCAmelCase : int = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=_A ,weight_decay=0.0 ,relative_step=_A ,scale_parameter=_A ,warmup_init=_A ,) for _ in range(1000 ): _lowerCAmelCase : Optional[int] = criterion(_A ,_A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class __UpperCamelCase ( unittest.TestCase ): _UpperCAmelCase = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase = 10 def __lowerCamelCase ( self ,_A ,_A ,_A ,_A=None ): '''simple docstring''' self.assertEqual(len(_A ) ,len(_A ) ) for a, b in zip(_A ,_A ): self.assertAlmostEqual(_A ,_A ,delta=_A ,msg=_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = data _lowerCAmelCase : Dict = scheduler_func(self.optimizer ,**_A ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) _lowerCAmelCase : int = unwrap_schedule(_A ,self.num_steps ) self.assertListAlmostEqual( _A ,_A ,tol=1E-2 ,msg=F"""failed for {scheduler_func} in normal scheduler""" ,) _lowerCAmelCase : Dict = scheduler_func(self.optimizer ,**_A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_A ) # wrap to test picklability of the schedule _lowerCAmelCase : int = unwrap_and_save_reload_schedule(_A ,self.num_steps ) self.assertListEqual(_A ,_A ,msg=F"""failed for {scheduler_func} in save and reload""" ) class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = fn def __call__( self ,*_A ,**_A ): '''simple docstring''' return self.fn(*_A ,**_A ) @classmethod def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = list(map(self ,scheduler.lr_lambdas ) )
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowerCAmelCase = """bart""" _lowerCAmelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' if LOAD_DENSE_INDEX: _lowerCAmelCase : str = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) _lowerCAmelCase : int = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) _lowerCAmelCase : Union[str, Any] = qar_model.eval() else: _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = (None, None) if MODEL_TYPE == "bart": _lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) _lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) _lowerCAmelCase : List[str] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) _lowerCAmelCase : List[str] = sas_model.eval() else: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' if LOAD_DENSE_INDEX: _lowerCAmelCase : Dict = faiss.StandardGpuResources() _lowerCAmelCase : List[str] = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] _lowerCAmelCase : Dict = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) _lowerCAmelCase : Tuple = faiss.IndexFlatIP(128 ) _lowerCAmelCase : List[Any] = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: _lowerCAmelCase, _lowerCAmelCase : List[str] = (None, None) _lowerCAmelCase : Tuple = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) _lowerCAmelCase : Optional[int] = elia['train_eli5'] _lowerCAmelCase : Union[str, Any] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) _lowerCAmelCase : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = load_indexes() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = load_models() _lowerCAmelCase , _lowerCAmelCase = load_train_data() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=10 ): '''simple docstring''' _lowerCAmelCase : List[str] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase, _lowerCAmelCase : Dict = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ): '''simple docstring''' if source == "none": _lowerCAmelCase, _lowerCAmelCase : str = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": _lowerCAmelCase, _lowerCAmelCase : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name='english_wiki40b_snippets_100w' , n_results=_lowerCamelCase , ) _lowerCAmelCase : List[Any] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] _lowerCAmelCase : Any = 'question: {} context: {}'.format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : Optional[Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device='cuda:0' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _lowerCAmelCase = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _lowerCAmelCase = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowerCAmelCase = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _lowerCAmelCase = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _lowerCAmelCase = st.sidebar.checkbox("""Demo options""") if demo_options: _lowerCAmelCase = st.sidebar.selectbox( """""", action_list, index=3, ) _lowerCAmelCase = action_list.index(action_st) _lowerCAmelCase = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _lowerCAmelCase = show_type == """Show full text of passages""" else: _lowerCAmelCase = 3 _lowerCAmelCase = True _lowerCAmelCase = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _lowerCAmelCase = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _lowerCAmelCase = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _lowerCAmelCase = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _lowerCAmelCase = """wiki40b""" _lowerCAmelCase = """dense""" _lowerCAmelCase = """beam""" _lowerCAmelCase = 2 _lowerCAmelCase = 6_4 _lowerCAmelCase = 2_5_6 _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = st.sidebar.checkbox("""Generation options""") if generate_options: _lowerCAmelCase = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _lowerCAmelCase = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _lowerCAmelCase = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) _lowerCAmelCase = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": _lowerCAmelCase = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowerCAmelCase = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _lowerCAmelCase = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _lowerCAmelCase = None # start main text _lowerCAmelCase = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _lowerCAmelCase = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowerCAmelCase = st.text_input("""Enter your question here:""", """""") else: _lowerCAmelCase = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _lowerCAmelCase , _lowerCAmelCase = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) _lowerCAmelCase , _lowerCAmelCase = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) _lowerCAmelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowerCAmelCase = support_list[:1_0] _lowerCAmelCase = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _lowerCAmelCase , _lowerCAmelCase = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: _lowerCAmelCase , _lowerCAmelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _lowerCAmelCase = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _lowerCAmelCase = res[1].strip() if sec_titles == "": _lowerCAmelCase = """[{}]({})""".format(res[0], wiki_url) else: _lowerCAmelCase = sec_titles.split(""" & """) _lowerCAmelCase = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _lowerCAmelCase = find_nearest_training(question) _lowerCAmelCase = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _lowerCAmelCase = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _lowerCAmelCase = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" import qiskit def lowerCamelCase__ ( _lowerCamelCase = 2 ): '''simple docstring''' _lowerCAmelCase : List[str] = qubits # Using Aer's simulator _lowerCAmelCase : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register _lowerCAmelCase : Optional[int] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , _lowerCamelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCamelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCamelCase ) ) , list(range(_lowerCamelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCAmelCase : List[Any] = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1000 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = MgpstrTokenizer _UpperCAmelCase = False _UpperCAmelCase = {} _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # fmt: off _lowerCAmelCase : List[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _lowerCAmelCase : List[str] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 'tester' _lowerCAmelCase : Tuple = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase : List[str] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) _lowerCAmelCase : Dict = tokenizer.encode([special_token] ,add_special_tokens=_A ) self.assertEqual(len(_A ) ,1 ) _lowerCAmelCase : Dict = tokenizer.decode(_A ,skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCAmelCase, _lowerCAmelCase : Tuple = self.get_input_output_texts(_A ) _lowerCAmelCase : Dict = tokenizer.tokenize(_A ) _lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(_A ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(_A ,add_special_tokens=_A ) self.assertListEqual(_A ,_A ) _lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(_A ) self.assertNotEqual(len(_A ) ,0 ) _lowerCAmelCase : int = tokenizer.decode(_A ) self.assertIsInstance(_A ,_A ) self.assertEqual(text_a.replace(' ' ,'' ) ,_A ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def __lowerCamelCase ( self ): '''simple docstring''' pass
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __UpperCamelCase ( a__ ): _UpperCAmelCase = "sew-d" def __init__( self ,_A=32 ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A=2 ,_A=512 ,_A=256 ,_A=True ,_A=True ,_A=("p2c", "c2p") ,_A="layer_norm" ,_A="gelu_python" ,_A=0.1 ,_A=0.1 ,_A=0.1 ,_A=0.0 ,_A=0.1 ,_A=0.0_2 ,_A=1E-7 ,_A=1E-5 ,_A="group" ,_A="gelu" ,_A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,_A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,_A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,_A=False ,_A=128 ,_A=16 ,_A=True ,_A=0.0_5 ,_A=10 ,_A=2 ,_A=0.0 ,_A=10 ,_A=0 ,_A="mean" ,_A=False ,_A=False ,_A=256 ,_A=0 ,_A=1 ,_A=2 ,**_A ,): '''simple docstring''' super().__init__(**_A ,pad_token_id=_A ,bos_token_id=_A ,eos_token_id=_A ) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Any = feat_extract_norm _lowerCAmelCase : Optional[int] = feat_extract_activation _lowerCAmelCase : Optional[int] = list(_A ) _lowerCAmelCase : List[Any] = list(_A ) _lowerCAmelCase : Tuple = list(_A ) _lowerCAmelCase : Dict = conv_bias _lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings _lowerCAmelCase : str = num_conv_pos_embedding_groups _lowerCAmelCase : Optional[Any] = len(self.conv_dim ) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = intermediate_size _lowerCAmelCase : Dict = squeeze_factor _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[int] = position_buckets _lowerCAmelCase : Union[str, Any] = share_att_key _lowerCAmelCase : Tuple = relative_attention _lowerCAmelCase : int = norm_rel_ebd _lowerCAmelCase : str = list(_A ) _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : List[Any] = hidden_dropout _lowerCAmelCase : Optional[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : int = feat_proj_dropout _lowerCAmelCase : Union[str, Any] = final_dropout _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : str = feature_layer_norm_eps _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Tuple = apply_spec_augment _lowerCAmelCase : List[Any] = mask_time_prob _lowerCAmelCase : str = mask_time_length _lowerCAmelCase : Union[str, Any] = mask_time_min_masks _lowerCAmelCase : Any = mask_feature_prob _lowerCAmelCase : List[str] = mask_feature_length _lowerCAmelCase : List[Any] = mask_feature_min_masks # ctc loss _lowerCAmelCase : Optional[Any] = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # sequence classification _lowerCAmelCase : Union[str, Any] = use_weighted_layer_sum _lowerCAmelCase : str = classifier_proj_size @property def __lowerCamelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('-f' ) _lowerCAmelCase : Dict = parser.parse_args() return args.f class __UpperCamelCase ( a__ ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'run_glue_deebert.py' ) with patch.object(_A ,'argv' ,_A ): _lowerCAmelCase : Any = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_A ,0.6_6_6 ) @slow @require_torch_non_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(_A ) _lowerCAmelCase : Optional[int] = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(_A ) _lowerCAmelCase : Any = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(_A )
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations import numpy as np def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = np.shape(_lowerCamelCase ) if rows != columns: _lowerCAmelCase : Dict = ( '\'table\' has to be of square shaped array but got a ' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = np.zeros((rows, columns) ) _lowerCAmelCase : Optional[Any] = np.zeros((rows, columns) ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(_lowerCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _lowerCAmelCase : Optional[Any] = (table[i][j] - total) / upper[j][j] _lowerCAmelCase : Union[str, Any] = 1 for j in range(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(_lowerCamelCase ) ) _lowerCAmelCase : Optional[int] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' debug_launcher(test_script.main ) def __lowerCamelCase ( self ): '''simple docstring''' debug_launcher(test_ops.main )
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=_A ,) assert hasattr(self ,'env' ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings _lowerCAmelCase : Union[str, Any] = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=_A ,instance_count=_A ,instance_type=self.instance_type ,debugger_hook_config=_A ,hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=_A ,py_version='py36' ,) def __lowerCamelCase ( self ,_A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.create_estimator(_A ) # run training estimator.fit() # result dataframe _lowerCAmelCase : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowerCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase : Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,_A )
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _lowerCAmelCase = 1.054_571_817E-34 # unit of ℏ : J * s _lowerCAmelCase = 3E8 # unit of c : m * s^-1 def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: _lowerCAmelCase : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _lowerCAmelCase : Any = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _lowerCAmelCase : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" import pytest _lowerCAmelCase = """__dummy_dataset1__""" _lowerCAmelCase = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = dataset_loading_script_name _lowerCAmelCase : Union[str, Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=_lowerCamelCase ) _lowerCAmelCase : Any = script_dir / f"""{script_name}.py""" with open(_lowerCamelCase , 'w' ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase )
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): def __init__( self ,*_A ,**_A ): '''simple docstring''' warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' ,_A ,) super().__init__(*_A ,**_A )
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCAmelCase = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCAmelCase = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = random.randint(0 , len(_lowerCamelCase ) - 1 ) _lowerCAmelCase : List[str] = parent_a[:random_slice] + parent_a[random_slice:] _lowerCAmelCase : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _lowerCAmelCase : List[Any] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] # Generate more children proportionally to the fitness score. _lowerCAmelCase : List[str] = int(parent_a[1] * 100 ) + 1 _lowerCAmelCase : List[Any] = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = population_score[random.randint(0 , _lowerCamelCase )][0] _lowerCAmelCase, _lowerCAmelCase : int = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: _lowerCAmelCase : Tuple = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. _lowerCAmelCase : Optional[int] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _lowerCAmelCase : Any = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(_lowerCamelCase ) # Generate random starting population. _lowerCAmelCase : List[Any] = [] for _ in range(_lowerCamelCase ): population.append(''.join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. _lowerCAmelCase, _lowerCAmelCase : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowerCAmelCase : Any = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. _lowerCAmelCase : Tuple = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowerCAmelCase : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. _lowerCAmelCase : int = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": _lowerCAmelCase = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) _lowerCAmelCase = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ) @torch.no_grad() def __call__( self ,_A = 1 ,_A = 50 ,_A = None ,_A = "pil" ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = self.unet.config.sample_size _lowerCAmelCase : List[Any] = (batch_size, 3, img_size, img_size) _lowerCAmelCase : List[str] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowerCAmelCase : Optional[Any] = randn_tensor(_A ,generator=_A ,device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowerCAmelCase : Tuple = self.scheduler.schedule[t] _lowerCAmelCase : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowerCAmelCase, _lowerCAmelCase : Any = self.scheduler.add_noise_to_input(_A ,_A ,generator=_A ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowerCAmelCase : Any = self.scheduler.step(_A ,_A ,_A ,_A ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowerCAmelCase : List[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample _lowerCAmelCase : Any = self.scheduler.step_correct( _A ,_A ,_A ,_A ,step_output.prev_sample ,step_output['derivative'] ,) _lowerCAmelCase : List[Any] = step_output.prev_sample _lowerCAmelCase : Any = (sample / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : str = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _lowerCAmelCase : Dict = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=30 ,_A=2 ,_A=3 ,_A=True ,_A=True ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=10 ,_A=0.0_2 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : str = num_patches + 1 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = ViTMSNModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : str = ViTMSNForImageClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model(_A ,labels=_A ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : Dict = ViTMSNForImageClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = ViTMSNModelTester(self ) _lowerCAmelCase : str = ConfigTester(self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(_A ) _lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Tuple = ViTMSNModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_A ) _lowerCAmelCase : Any = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : List[str] = model(**_A ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : int = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_A ,atol=1E-4 ) )
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' with open(_lowerCamelCase ) as metadata_file: _lowerCAmelCase : Union[str, Any] = json.load(_lowerCamelCase ) _lowerCAmelCase : List[str] = LukeConfig(use_entity_aware_attention=_lowerCamelCase , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _lowerCAmelCase : List[str] = torch.load(_lowerCamelCase , map_location='cpu' ) # Load the entity vocab file _lowerCAmelCase : Dict = load_entity_vocab(_lowerCamelCase ) _lowerCAmelCase : Tuple = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase : Optional[Any] = AddedToken('<ent>' , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = AddedToken('<ent2>' , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[Any] = LukeTokenizer.from_pretrained(_lowerCamelCase ) # Initialize the embeddings of the special tokens _lowerCAmelCase : Union[str, Any] = state_dict['embeddings.word_embeddings.weight'] _lowerCAmelCase : Optional[int] = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) _lowerCAmelCase : Dict = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) _lowerCAmelCase : Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase : Union[str, Any] = f"""encoder.layer.{layer_index}.attention.self.""" _lowerCAmelCase : Dict = state_dict[prefix + matrix_name] _lowerCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] _lowerCAmelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase : List[Any] = state_dict['entity_embeddings.entity_embeddings.weight'] _lowerCAmelCase : Tuple = entity_emb[entity_vocab['[MASK]']] _lowerCAmelCase : Union[str, Any] = LukeModel(config=_lowerCamelCase ).eval() _lowerCAmelCase, _lowerCAmelCase : Any = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if not (len(_lowerCamelCase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {', '.join(_lowerCamelCase )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs _lowerCAmelCase : Any = LukeTokenizer.from_pretrained(_lowerCamelCase , task='entity_classification' ) _lowerCAmelCase : Tuple = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) _lowerCAmelCase : Optional[Any] = (39, 42) _lowerCAmelCase : Union[str, Any] = tokenizer(_lowerCamelCase , entity_spans=[span] , add_prefix_space=_lowerCamelCase , return_tensors='pt' ) _lowerCAmelCase : int = model(**_lowerCamelCase ) # Verify word hidden states if model_size == "large": _lowerCAmelCase : Optional[Any] = torch.Size((1, 42, 1024) ) _lowerCAmelCase : Tuple = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _lowerCAmelCase : str = torch.Size((1, 42, 768) ) _lowerCAmelCase : Optional[Any] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _lowerCAmelCase : Optional[Any] = torch.Size((1, 1, 1024) ) _lowerCAmelCase : List[Any] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _lowerCAmelCase : Tuple = torch.Size((1, 1, 768) ) _lowerCAmelCase : Optional[Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_lowerCamelCase ) ) model.save_pretrained(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = {} with open(_lowerCamelCase , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_lowerCamelCase ): _lowerCAmelCase, _lowerCAmelCase : List[str] = line.rstrip().split('\t' ) _lowerCAmelCase : Any = index return entity_vocab if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _lowerCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } _lowerCAmelCase = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A=False ,_A=False ,_A=False ,_A=None ,_A=None ,_A=None ,_A=None ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : str = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) _lowerCAmelCase : Optional[Any] = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCAmelCase : Optional[int] = '<|endoftext|>' if eos_token is None else eos_token _lowerCAmelCase : Any = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCAmelCase : Tuple = unk_token if pad_token is None else pad_token _lowerCAmelCase : Any = eos_token if bos_token is None else bos_token else: _lowerCAmelCase : List[str] = '<pad>' if pad_token is None else pad_token _lowerCAmelCase : Union[str, Any] = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,pad_token=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : Tuple = do_lower_case _lowerCAmelCase : List[str] = remove_space _lowerCAmelCase : List[Any] = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off _lowerCAmelCase : Optional[int] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCAmelCase : List[str] = re.compile( F"""[{''.join(map(_A ,list(range(0 ,9 ) ) + list(range(11 ,32 ) ) + list(range(127 ,160 ) ) + [160, 173, 8203] ) )}]""" ) def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.__dict__.copy() _lowerCAmelCase : List[Any] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.non_printing_characters_re.sub('' ,_A ) # Normalize whitespaces _lowerCAmelCase : Union[str, Any] = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization _lowerCAmelCase : Dict = unicodedata.normalize('NFC' ,_A ) return text def __lowerCamelCase ( self ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.preprocess_text(_A ) return self.sp_model.encode(_A ,out_type=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' return out_string def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : Dict = '' _lowerCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[int] = [] else: current_sub_tokens.append(_A ) _lowerCAmelCase : int = False out_string += self.sp_model.decode(_A ) return out_string def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[str] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __lowerCamelCase ( self ,_A ,_A = False ): '''simple docstring''' if isinstance(_A ,_A ): _lowerCAmelCase : Tuple = self.preprocess_text(_A ) _lowerCAmelCase : Optional[int] = self.sp_model.encode(_A ) else: _lowerCAmelCase : Optional[int] = [self.preprocess_text(_A ) for t in text] _lowerCAmelCase : Optional[Any] = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": _lowerCAmelCase : Dict = torch.tensor(_A ) return token_ids def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.decode(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] _lowerCAmelCase : Any = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(_A ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=_A )
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["pixel_values"] def __init__( self ,_A = True ,_A = None ,_A = PIL.Image.BICUBIC ,_A = True ,_A = None ,_A = 1 / 255 ,_A = True ,_A = True ,_A = None ,_A = None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : int = size if size is not None else {'height': 256, 'width': 256} _lowerCAmelCase : List[Any] = get_size_dict(_A ) _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase : int = get_size_dict(_A ,param_name='crop_size' ) _lowerCAmelCase : int = do_resize _lowerCAmelCase : int = size _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_center_crop _lowerCAmelCase : Dict = crop_size _lowerCAmelCase : Any = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : int = do_normalize _lowerCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self ,_A ,_A ,_A = PIL.Image.BICUBIC ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A ,size=(size['height'], size['width']) ,resample=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A ,size=(size['height'], size['width']) ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' return rescale(_A ,scale=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' return normalize(_A ,mean=_A ,std=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A=None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = ChannelDimension.FIRST ,**_A ,): '''simple docstring''' _lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : str = resample if resample is not None else self.resample _lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Any = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : List[str] = size if size is not None else self.size _lowerCAmelCase : List[str] = get_size_dict(_A ) _lowerCAmelCase : int = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : str = get_size_dict(_A ,param_name='crop_size' ) _lowerCAmelCase : Dict = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : Optional[int] = [to_numpy_array(_A ) for image in images] if do_resize: _lowerCAmelCase : int = [self.resize(image=_A ,size=_A ,resample=_A ) for image in images] if do_center_crop: _lowerCAmelCase : List[Any] = [self.center_crop(image=_A ,size=_A ) for image in images] if do_rescale: _lowerCAmelCase : Optional[Any] = [self.rescale(image=_A ,scale=_A ) for image in images] if do_normalize: _lowerCAmelCase : Union[str, Any] = [self.normalize(image=_A ,mean=_A ,std=_A ) for image in images] _lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(_A ,_A ) for image in images] _lowerCAmelCase : Optional[int] = {'pixel_values': images} return BatchFeature(data=_A ,tensor_type=_A )
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase = 1000 ): '''simple docstring''' _lowerCAmelCase : Dict = 3 _lowerCAmelCase : Optional[Any] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""ConvNextFeatureExtractor"""] _lowerCAmelCase = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=3 ,_A=True ,_A=True ,_A=0.1 ,_A=0.1 ,_A=224 ,_A=1000 ,_A=[3, 3, 6, 4] ,_A=[48, 56, 112, 220] ,): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Optional[int] = layer_depths _lowerCAmelCase : str = embed_dims def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths ,embed_dims=self.embed_dims ,mlp_ratio=4 ,downsamples=[True, True, True, True] ,hidden_act='gelu' ,num_labels=self.num_labels ,down_patch_size=3 ,down_stride=2 ,down_pad=1 ,drop_rate=0.0 ,drop_path_rate=0.0 ,use_layer_scale=_A ,layer_scale_init_value=1E-5 ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = SwiftFormerModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : str = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dims[-1], 7, 7) ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : List[Any] = SwiftFormerForImageClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) _lowerCAmelCase : Optional[int] = SwiftFormerForImageClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = model(_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' ((_lowerCAmelCase), (_lowerCAmelCase), (_lowerCAmelCase)) : Any = self.prepare_config_and_inputs() _lowerCAmelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = SwiftFormerModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester( self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ,num_attention_heads=12 ,num_hidden_layers=12 ,) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(_A ) _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,nn.Linear ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = SwiftFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : Tuple = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.hidden_states _lowerCAmelCase : List[str] = 8 self.assertEqual(len(_A ) ,_A ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_A ) ): self.assertEqual( hidden_states[i].shape ,torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) ,) _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' def _config_zero_init(_A ): _lowerCAmelCase : Optional[Any] = copy.deepcopy(_A ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_A ,_A ,1E-10 ) if isinstance(getattr(_A ,_A ,_A ) ,_A ): _lowerCAmelCase : Tuple = _config_zero_init(getattr(_A ,_A ) ) setattr(_A ,_A ,_A ) return configs_no_init _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = _config_zero_init(_A ) for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(config=_A ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(_A ) _lowerCAmelCase : List[Any] = self.default_image_processor _lowerCAmelCase : str = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : str = model(**_A ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_A ,atol=1E-4 ) )
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase : Any = get_sagemaker_input() else: _lowerCAmelCase : Optional[Any] = get_cluster_input() return config def lowerCamelCase__ ( _lowerCamelCase=None ): '''simple docstring''' if subparsers is not None: _lowerCAmelCase : List[Any] = subparsers.add_parser('config' , description=_lowerCamelCase ) else: _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser('Accelerate config command' , description=_lowerCamelCase ) parser.add_argument( '--config_file' , default=_lowerCamelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = get_user_input() if args.config_file is not None: _lowerCAmelCase : str = args.config_file else: if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : int = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCamelCase ) else: config.to_yaml_file(_lowerCamelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = config_command_parser() _lowerCAmelCase : Dict = parser.parse_args() config_command(_lowerCamelCase ) if __name__ == "__main__": main()
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PegasusTokenizer _UpperCAmelCase = PegasusTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : str = PegasusTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return ("This is a test", "This is a test") def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = '</s>' _lowerCAmelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) ,_A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'</s>' ) self.assertEqual(vocab_keys[-1] ,'v' ) self.assertEqual(len(_A ) ,1103 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1103 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase : int = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) _lowerCAmelCase : str = rust_tokenizer([raw_input_str] ,return_tensors=_A ,add_special_tokens=_A ).input_ids[0] _lowerCAmelCase : List[Any] = py_tokenizer([raw_input_str] ,return_tensors=_A ,add_special_tokens=_A ).input_ids[0] self.assertListEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowerCAmelCase : Optional[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' _lowerCAmelCase : str = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _lowerCAmelCase : Union[str, Any] = tokenizer([raw_input_str] ,return_tensors=_A ).input_ids[0] self.assertListEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _lowerCAmelCase : Dict = 'To ensure a smooth flow of bank resolutions.' _lowerCAmelCase : Dict = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _lowerCAmelCase : str = tokenizer([raw_input_str] ,return_tensors=_A ).input_ids[0] self.assertListEqual(_A ,_A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['This is going to be way too long.' * 150, 'short example'] _lowerCAmelCase : List[Any] = ['not super long but more than 5 tokens', 'tiny'] _lowerCAmelCase : List[Any] = self._large_tokenizer(_A ,padding=_A ,truncation=_A ,return_tensors='pt' ) _lowerCAmelCase : str = self._large_tokenizer( text_target=_A ,max_length=5 ,padding=_A ,truncation=_A ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_A ) == 2 # input_ids, attention_mask. @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = {'input_ids': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,) @require_sentencepiece @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PegasusTokenizer _UpperCAmelCase = PegasusTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Optional[Any] = PegasusTokenizer(_A ,offset=0 ,mask_token_sent=_A ,mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return ("This is a test", "This is a test") def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase : List[str] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) _lowerCAmelCase : List[str] = rust_tokenizer([raw_input_str] ,return_tensors=_A ,add_special_tokens=_A ).input_ids[0] _lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] ,return_tensors=_A ,add_special_tokens=_A ).input_ids[0] self.assertListEqual(_A ,_A ) @require_torch def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ['This is going to be way too long.' * 1000, 'short example'] _lowerCAmelCase : Dict = ['not super long but more than 5 tokens', 'tiny'] _lowerCAmelCase : List[Any] = self._large_tokenizer(_A ,padding=_A ,truncation=_A ,return_tensors='pt' ) _lowerCAmelCase : int = self._large_tokenizer( text_target=_A ,max_length=5 ,padding=_A ,truncation=_A ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_A ) == 2 # input_ids, attention_mask. def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) _lowerCAmelCase : int = self._large_tokenizer(_A ).input_ids self.assertListEqual( _A ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] ,)
16
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = BertTokenizer def __init__( self ,_A=None ,_A=None ,_A=True ,_A="[UNK]" ,_A="[SEP]" ,_A="[PAD]" ,_A="[CLS]" ,_A="[MASK]" ,_A=True ,_A=None ,**_A ,): '''simple docstring''' super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(_A ,normalizer_state.pop('type' ) ) _lowerCAmelCase : Dict = do_lower_case _lowerCAmelCase : Optional[int] = strip_accents _lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars _lowerCAmelCase : Dict = normalizer_class(**_A ) _lowerCAmelCase : Union[str, Any] = do_lower_case def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
16
1
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DebertaTokenizer _UpperCAmelCase = True _UpperCAmelCase = DebertaTokenizerFast def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _lowerCAmelCase : Optional[int] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase : int = {'unk_token': '[UNK]'} _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = 'lower newer' _lowerCAmelCase : Dict = 'lower newer' return input_text, output_text def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = 'lower newer' _lowerCAmelCase : Dict = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCAmelCase : Optional[int] = tokenizer.tokenize(_A ) self.assertListEqual(_A ,_A ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = tokenizer('Hello' ,'World' ) _lowerCAmelCase : Optional[int] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCAmelCase : Optional[Any] = tokenizer.encode('sequence builders' ,add_special_tokens=_A ) _lowerCAmelCase : Optional[Any] = tokenizer.encode('multi-sequence build' ,add_special_tokens=_A ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode( 'sequence builders' ,add_special_tokens=_A ,add_prefix_space=_A ) _lowerCAmelCase : Optional[Any] = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=_A ,add_prefix_space=_A ) _lowerCAmelCase : int = tokenizer.build_inputs_with_special_tokens(_A ) _lowerCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(_A ,_A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _lowerCAmelCase : Dict = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _lowerCAmelCase : Tuple = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _lowerCAmelCase : List[str] = tokenizer(_A ,padding=_A ) _lowerCAmelCase : Dict = [tokenizer.decode(_A ,skip_special_tokens=_A ) for seq in encoding['input_ids']] # fmt: off _lowerCAmelCase : Tuple = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _lowerCAmelCase : List[str] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data ,_A ) for expected, decoded in zip(_A ,_A ): self.assertEqual(_A ,_A )
16
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _lowerCAmelCase : int = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : int = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices.""" ) _lowerCAmelCase : str = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A ,env=os.environ.copy() ) @require_multi_gpu def __lowerCamelCase ( self ): '''simple docstring''' print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _lowerCAmelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices='0,1' ): execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) _lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) _lowerCAmelCase = """""" _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
16
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=13 ,_A=32 ,_A=3 ,_A=4 ,_A=[10, 20, 30, 40] ,_A=[2, 2, 3, 2] ,_A=True ,_A=True ,_A=37 ,_A="gelu" ,_A=10 ,_A=0.0_2 ,_A=["stage2", "stage3", "stage4"] ,_A=[2, 3, 4] ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : Dict = image_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Any = num_stages _lowerCAmelCase : List[str] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Union[str, Any] = num_labels _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : List[Any] = out_features _lowerCAmelCase : Union[str, Any] = out_indices _lowerCAmelCase : int = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_A ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : str = ConvNextModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : str = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = ConvNextForImageClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[str] = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCAmelCase : Tuple = None _lowerCAmelCase : Optional[Any] = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _UpperCAmelCase = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = ConvNextModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self ,config_class=_A ,has_text_modality=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(_A ) _lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : List[str] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : int = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = ConvNextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(_A ) _lowerCAmelCase : Union[str, Any] = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Union[str, Any] = image_processor(images=_A ,return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): _lowerCAmelCase : str = model(**_A ) # verify the logits _lowerCAmelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : List[Any] = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_A ,atol=1E-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase , a__ ): _UpperCAmelCase = (ConvNextBackbone,) if is_torch_available() else () _UpperCAmelCase = ConvNextConfig _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ConvNextModelTester(self )
16
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' create_state_space_tree(_lowerCamelCase , [] , 0 , [0 for i in range(len(_lowerCamelCase ) )] ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' if index == len(_lowerCamelCase ): print(_lowerCamelCase ) return for i in range(len(_lowerCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _lowerCAmelCase : List[str] = True create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1 , _lowerCamelCase ) current_sequence.pop() _lowerCAmelCase : int = False _lowerCAmelCase = [3, 1, 2, 4] generate_all_permutations(sequence) _lowerCAmelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
1
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCAmelCase = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
16
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
16
1
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase = logging.getLogger(__name__) class __UpperCamelCase ( a__ ): def __init__( self ,_A=-1 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = label_idx def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if isinstance(_A ,_A ): _lowerCAmelCase : Any = mode.value _lowerCAmelCase : Optional[Any] = os.path.join(_A ,F"""{mode}.txt""" ) _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = [] with open(_A ,encoding='utf-8' ) as f: _lowerCAmelCase : Any = [] _lowerCAmelCase : Any = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A ) ) guid_index += 1 _lowerCAmelCase : str = [] _lowerCAmelCase : int = [] else: _lowerCAmelCase : int = line.split(' ' ) words.append(splits[0] ) if len(_A ) > 1: labels.append(splits[self.label_idx].replace('\n' ,'' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A ) ) return examples def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(_A ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCAmelCase : int = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(_A ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' ,line.split()[0] ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if path: with open(_A ,'r' ) as f: _lowerCAmelCase : Any = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __UpperCamelCase ( a__ ): def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if path: with open(_A ,'r' ) as f: _lowerCAmelCase : Union[str, Any] = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Any = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __UpperCamelCase ( a__ ): def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if isinstance(_A ,_A ): _lowerCAmelCase : Dict = mode.value _lowerCAmelCase : Dict = os.path.join(_A ,F"""{mode}.txt""" ) _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : str = [] with open(_A ,encoding='utf-8' ) as f: for sentence in parse_incr(_A ): _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Any = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(_A ) == len(_A ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A ) ) guid_index += 1 return examples def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 0 for sentence in parse_incr(_A ): _lowerCAmelCase : str = preds_list[example_id] _lowerCAmelCase : Tuple = '' for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(_A ) example_id += 1 def __lowerCamelCase ( self ,_A ): '''simple docstring''' if path: with open(_A ,'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
16
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = DanceDiffusionPipeline _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } _UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=1_6000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=_A ,use_timestep_embedding=_A ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _lowerCAmelCase : int = IPNDMScheduler() _lowerCAmelCase : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[Any] = DanceDiffusionPipeline(**_A ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : List[str] = pipe(**_A ) _lowerCAmelCase : List[Any] = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowerCAmelCase : Optional[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __lowerCamelCase ( self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def __lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch_device _lowerCAmelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowerCAmelCase : int = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : str = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : str = output.audios _lowerCAmelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : Union[str, Any] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = torch_device _lowerCAmelCase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe(generator=_A ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _lowerCAmelCase : Union[str, Any] = output.audios _lowerCAmelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowerCAmelCase : List[str] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
16
1
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase__ ( _lowerCamelCase=32 , _lowerCamelCase=10 , _lowerCamelCase=100 , _lowerCamelCase=1026 , _lowerCamelCase=True , _lowerCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase="igf_context_pairs.jbl" , ): '''simple docstring''' set_seed(3 ) # generate train_data and objective_set _lowerCAmelCase, _lowerCAmelCase : int = generate_datasets( _lowerCamelCase , _lowerCamelCase , number=_lowerCamelCase , min_len=1026 , trim=_lowerCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? _lowerCAmelCase : int = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model _lowerCAmelCase : Dict = load_gpta('gpt2' ).to(_lowerCamelCase ) print('computing perplexity on objective set' ) _lowerCAmelCase : str = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).item() print('perplexity on objective set:' , _lowerCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=15 , _lowerCamelCase=128 , _lowerCamelCase=100 , _lowerCamelCase="igf_model.pt" , ): '''simple docstring''' set_seed(42 ) # Load pre-trained model _lowerCAmelCase : int = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model _lowerCAmelCase : Optional[int] = SecondaryLearner(_lowerCamelCase ) # Train secondary learner _lowerCAmelCase : int = train_secondary_learner( _lowerCamelCase , _lowerCamelCase , max_epochs=_lowerCamelCase , batch_size=_lowerCamelCase , eval_freq=100 , igf_model_path=_lowerCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=32 , _lowerCamelCase=1000 , _lowerCamelCase=16 , _lowerCamelCase=1.0 , _lowerCamelCase=recopy_gpta , _lowerCamelCase=None , _lowerCamelCase=10 , _lowerCamelCase="gpt2_finetuned.pt" , ): '''simple docstring''' _lowerCAmelCase : str = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) _lowerCAmelCase : Tuple = RandomSampler(_lowerCamelCase ) _lowerCAmelCase : Tuple = DataLoader(_lowerCamelCase , sampler=_lowerCamelCase ) _lowerCAmelCase : List[str] = max_steps // (len(_lowerCamelCase )) + 1 _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCamelCase ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = recopy_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCamelCase ) secondary_learner.eval() _lowerCAmelCase : Tuple = [] _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [] # Compute the performance of the transformer model at the beginning _lowerCAmelCase : Any = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) test_perps.append(_lowerCamelCase ) print('Test perplexity, step' , _lowerCamelCase , ':' , _lowerCamelCase ) for epoch in range(int(_lowerCamelCase ) ): for step, example in enumerate(_lowerCamelCase ): torch.cuda.empty_cache() _lowerCAmelCase : List[str] = random.randint(0 , example.size(2 ) - context_len - 1 ) _lowerCAmelCase : List[Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() _lowerCAmelCase : Optional[int] = model(_lowerCamelCase , labels=_lowerCamelCase ) _lowerCAmelCase : List[str] = True if secondary_learner is not None: _lowerCAmelCase : Dict = secondary_learner.forward( torch.tensor(_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowerCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: _lowerCAmelCase : Union[str, Any] = -1 if predicted_q < threshold: _lowerCAmelCase : List[Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) _lowerCAmelCase : Optional[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() _lowerCAmelCase : str = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: _lowerCAmelCase : Tuple = compute_perplexity(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) test_perps.append(_lowerCamelCase ) print('Test perplexity, step' , _lowerCamelCase , ':' , _lowerCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_lowerCamelCase , default=_lowerCamelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_lowerCamelCase , default=_lowerCamelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_lowerCamelCase , type=_lowerCamelCase , required=_lowerCamelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_lowerCamelCase , type=_lowerCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_lowerCamelCase , default=_lowerCamelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_lowerCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_lowerCamelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_lowerCamelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_lowerCamelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_lowerCamelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_lowerCamelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_lowerCamelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_lowerCamelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_lowerCamelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_lowerCamelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_lowerCamelCase , type=_lowerCamelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_lowerCamelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_lowerCamelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_lowerCamelCase , type=_lowerCamelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_lowerCamelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner _lowerCAmelCase : Optional[int] = joblib.load('data/IGF_values.jbl' ) # Train secondary learner _lowerCAmelCase : str = training_secondary_learner( _lowerCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model _lowerCAmelCase : Any = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model _lowerCAmelCase, _lowerCAmelCase : Any = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_lowerCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCamelCase , secondary_learner=_lowerCamelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
16
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( a__ ): _UpperCAmelCase = (UniPCMultistepScheduler,) _UpperCAmelCase = (("num_inference_steps", 25),) def __lowerCamelCase ( self ,**_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_A ) return config def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = dict(self.forward_default_kwargs ) _lowerCAmelCase : int = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Optional[Any] = self.dummy_sample _lowerCAmelCase : Union[str, Any] = 0.1 * sample _lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Optional[int] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals _lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase, _lowerCAmelCase : str = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=0 ,**_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : List[str] = kwargs.pop('num_inference_steps' ,_A ) _lowerCAmelCase : Union[str, Any] = self.dummy_sample _lowerCAmelCase : Dict = 0.1 * sample _lowerCAmelCase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Any = self.get_scheduler_config() _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) _lowerCAmelCase : int = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase : str = dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Union[str, Any] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCamelCase ( self ,_A=None ,**_A ): '''simple docstring''' if scheduler is None: _lowerCAmelCase : int = self.scheduler_classes[0] _lowerCAmelCase : List[str] = self.get_scheduler_config(**_A ) _lowerCAmelCase : Union[str, Any] = scheduler_class(**_A ) _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : int = scheduler_class(**_A ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : str = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Any = model(_A ,_A ) _lowerCAmelCase : Union[str, Any] = scheduler.step(_A ,_A ,_A ).prev_sample return sample def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _lowerCAmelCase : Any = kwargs.pop('num_inference_steps' ,_A ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : List[str] = scheduler_class(**_A ) _lowerCAmelCase : Any = self.dummy_sample _lowerCAmelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,'set_timesteps' ): _lowerCAmelCase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] _lowerCAmelCase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] _lowerCAmelCase : Any = scheduler.timesteps[5] _lowerCAmelCase : List[str] = scheduler.timesteps[6] _lowerCAmelCase : List[str] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample _lowerCAmelCase : Optional[int] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = UniPCMultistepScheduler(**self.get_scheduler_config() ) _lowerCAmelCase : Optional[Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 _lowerCAmelCase : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCAmelCase : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=_A ) _lowerCAmelCase : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,solver_order=_A ,solver_type=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) _lowerCAmelCase : List[Any] = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def __lowerCamelCase ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def __lowerCamelCase ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.full_loop() _lowerCAmelCase : Tuple = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] _lowerCAmelCase : int = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) _lowerCAmelCase : Tuple = scheduler_class(**_A ) _lowerCAmelCase : Optional[Any] = 10 _lowerCAmelCase : Union[str, Any] = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Tuple = model(_A ,_A ) _lowerCAmelCase : Dict = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa def __lowerCamelCase ( self ,**_A ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _lowerCAmelCase : Dict = self.get_scheduler_config(**_A ) _lowerCAmelCase : str = scheduler_class(**_A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
16
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED _lowerCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _lowerCAmelCase = { """allenai/led-base-16384""": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase : Union[str, Any] = bs[:] _lowerCAmelCase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : str = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = set() _lowerCAmelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Optional[Any] = char return pairs class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A ,_A="replace" ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=False ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else bos_token _lowerCAmelCase : Dict = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else eos_token _lowerCAmelCase : Union[str, Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else sep_token _lowerCAmelCase : Any = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else cls_token _lowerCAmelCase : Tuple = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else unk_token _lowerCAmelCase : Optional[int] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : str = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token super().__init__( errors=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,cls_token=_A ,pad_token=_A ,mask_token=_A ,add_prefix_space=_A ,**_A ,) with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Tuple = json.load(_A ) _lowerCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Optional[Any] = errors # how to handle errors in decoding _lowerCAmelCase : Optional[int] = bytes_to_unicode() _lowerCAmelCase : int = {v: k for k, v in self.byte_encoder.items()} with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Tuple = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Optional[int] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Any = {} _lowerCAmelCase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : int = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : int = tuple(_A ) _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : Dict = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : List[str] = bigram _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Tuple = 0 while i < len(_A ): try: _lowerCAmelCase : int = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : int = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : Tuple = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Tuple = ' '.join(_A ) _lowerCAmelCase : List[Any] = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for token in re.findall(self.pat ,_A ): _lowerCAmelCase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(' ' ) ) return bpe_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.decoder.get(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = ''.join(_A ) _lowerCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : Any = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[str] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : Optional[int] = 0 with open(_A ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Union[str, Any] = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return vocab_file, merge_file def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : List[Any] = [self.cls_token_id] _lowerCAmelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : int = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self ,_A ,_A=False ,**_A ): '''simple docstring''' _lowerCAmelCase : List[str] = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): _lowerCAmelCase : Union[str, Any] = ' ' + text return (text, kwargs) def __lowerCamelCase ( self ,_A ,_A = None ,_A = PaddingStrategy.DO_NOT_PAD ,_A = None ,_A = None ,): '''simple docstring''' _lowerCAmelCase : Any = super()._pad( encoded_inputs=_A ,max_length=_A ,padding_strategy=_A ,pad_to_multiple_of=_A ,return_attention_mask=_A ,) # Load from model defaults if return_attention_mask is None: _lowerCAmelCase : Union[str, Any] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCAmelCase : Optional[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCAmelCase : Any = len(encoded_inputs['global_attention_mask'] ) != len(_A ) if needs_to_be_padded: _lowerCAmelCase : Optional[Any] = len(_A ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCAmelCase : Optional[Any] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _lowerCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
16
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase = {"""UserAgent""": UserAgent().random} def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = script.contents[0] _lowerCAmelCase : Union[str, Any] = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = F"""https://www.instagram.com/{username}/""" _lowerCAmelCase : str = self.get_json() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = requests.get(self.url ,headers=_A ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(_A ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self ): '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["username"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["full_name"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["biography"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["business_email"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["external_url"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def __lowerCamelCase ( self ): '''simple docstring''' return self.user_data["is_private"] def lowerCamelCase__ ( _lowerCamelCase = "github" ): '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(_lowerCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowerCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
16
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): def __init__( self ,*_A ,**_A ): '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' ,_A ,) super().__init__(*_A ,**_A )
16
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """spiece.model"""} _lowerCAmelCase = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _lowerCAmelCase = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 3 _lowerCAmelCase = 4 class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = "left" def __init__( self ,_A ,_A=False ,_A=True ,_A=False ,_A="<s>" ,_A="</s>" ,_A="<unk>" ,_A="<sep>" ,_A="<pad>" ,_A="<cls>" ,_A="<mask>" ,_A=["<eop>", "<eod>"] ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(_A ,lstrip=_A ,rstrip=_A ) if isinstance(_A ,_A ) else mask_token _lowerCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A ,remove_space=_A ,keep_accents=_A ,bos_token=_A ,eos_token=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,additional_special_tokens=_A ,sp_model_kwargs=self.sp_model_kwargs ,**_A ,) _lowerCAmelCase : int = 3 _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : Dict = remove_space _lowerCAmelCase : int = keep_accents _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.__dict__.copy() _lowerCAmelCase : List[str] = None return state def __setstate__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.remove_space: _lowerCAmelCase : str = ' '.join(inputs.strip().split() ) else: _lowerCAmelCase : Dict = inputs _lowerCAmelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _lowerCAmelCase : Optional[Any] = unicodedata.normalize('NFKD' ,_A ) _lowerCAmelCase : Dict = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: _lowerCAmelCase : Tuple = outputs.lower() return outputs def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.preprocess_text(_A ) _lowerCAmelCase : int = self.sp_model.encode(_A ,out_type=_A ) _lowerCAmelCase : int = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowerCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : int = cur_pieces[1:] else: _lowerCAmelCase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.PieceToId(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.sp_model.IdToPiece(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_A ).replace(_A ,' ' ).strip() return out_string def __lowerCamelCase ( self ,_A ,_A = False ,_A = None ,_A = True ,**_A ,): '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop('use_source_tokenizer' ,_A ) _lowerCAmelCase : Dict = self.convert_ids_to_tokens(_A ,skip_special_tokens=_A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) _lowerCAmelCase : Tuple = [] sub_texts.append(_A ) else: current_sub_text.append(_A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase : List[Any] = ''.join(_A ) _lowerCAmelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase : int = self.clean_up_tokenization(_A ) return clean_text else: return text def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self ,_A ,_A = None ,_A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A ,token_ids_a=_A ,already_has_special_tokens=_A ) if token_ids_a is not None: return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1, 1] return ([0] * len(_A )) + [1, 1] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_A ) elif not os.path.isfile(self.vocab_file ): with open(_A ,'wb' ) as fi: _lowerCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
16
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self ,_A ,_A=7 ,_A=3 ,_A=30 ,_A=400 ,_A=True ,_A=None ,_A=0.9 ,_A=None ,_A=True ,_A=[0.5, 0.5, 0.5] ,_A=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 30} _lowerCAmelCase : Any = crop_size if crop_size is not None else {'height': 30, 'width': 30} _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : int = num_channels _lowerCAmelCase : str = min_resolution _lowerCAmelCase : List[str] = max_resolution _lowerCAmelCase : Any = do_resize_and_center_crop _lowerCAmelCase : List[str] = size _lowerCAmelCase : List[Any] = crop_pct _lowerCAmelCase : Optional[Any] = crop_size _lowerCAmelCase : Optional[Any] = do_normalize _lowerCAmelCase : Optional[int] = image_mean _lowerCAmelCase : Optional[int] = image_std def __lowerCamelCase ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = PoolFormerImageProcessingTester(self ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A ,'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_A ,'size' ) ) self.assertTrue(hasattr(_A ,'crop_pct' ) ) self.assertTrue(hasattr(_A ,'do_normalize' ) ) self.assertTrue(hasattr(_A ,'image_mean' ) ) self.assertTrue(hasattr(_A ,'image_std' ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size ,{'height': 30, 'width': 30} ) _lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size ,{'height': 84, 'width': 84} ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A ,Image.Image ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,numpify=_A ) for image in image_inputs: self.assertIsInstance(_A ,np.ndarray ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : Any = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=_A ,torchify=_A ) for image in image_inputs: self.assertIsInstance(_A ,torch.Tensor ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,) # Test batched _lowerCAmelCase : List[Any] = image_processing(_A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) ,)
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
"""simple docstring""" import baseaa def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return baseaa.aaadecode(_lowerCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from collections.abc import Callable class __UpperCamelCase : def __init__( self ,_A = None ): '''simple docstring''' _lowerCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _lowerCAmelCase : dict = {} # Stores current size of heap. _lowerCAmelCase : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _lowerCAmelCase : Union[str, Any] = key or (lambda _A : x) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Tuple = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _lowerCAmelCase, _lowerCAmelCase : Tuple = self.arr[j], self.arr[i] def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self._left(_A ) _lowerCAmelCase : str = self._right(_A ) _lowerCAmelCase : Tuple = i if left is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : int = left if right is not None and not self._cmp(_A ,_A ): _lowerCAmelCase : Optional[int] = right return valid_parent def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self._parent(_A ) while parent is not None and not self._cmp(_A ,_A ): self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : List[str] = parent, self._parent(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A ,_A ) _lowerCAmelCase, _lowerCAmelCase : Optional[int] = valid_parent, self._get_valid_parent(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : int = self.pos_map[item] _lowerCAmelCase : Dict = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' if item not in self.pos_map: return _lowerCAmelCase : List[str] = self.pos_map[item] del self.pos_map[item] _lowerCAmelCase : Dict = self.arr[self.size - 1] _lowerCAmelCase : Optional[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: _lowerCAmelCase : Any = [item, self.key(_A )] _lowerCAmelCase : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowerCamelCase ( self ): '''simple docstring''' return self.arr[0] if self.size else None def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __UpperCamelCase : _UpperCAmelCase = LEDConfig _UpperCAmelCase = {} _UpperCAmelCase = "gelu" def __init__( self ,_A ,_A=13 ,_A=7 ,_A=True ,_A=False ,_A=99 ,_A=32 ,_A=2 ,_A=4 ,_A=37 ,_A=0.1 ,_A=0.1 ,_A=20 ,_A=2 ,_A=1 ,_A=0 ,_A=4 ,): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : List[str] = eos_token_id _lowerCAmelCase : Union[str, Any] = pad_token_id _lowerCAmelCase : List[Any] = bos_token_id _lowerCAmelCase : Dict = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _lowerCAmelCase : Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _lowerCAmelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _lowerCAmelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _lowerCAmelCase : Any = tf.concat([input_ids, eos_tensor] ,axis=1 ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) _lowerCAmelCase : Tuple = prepare_led_inputs_dict(_A ,_A ,_A ) _lowerCAmelCase : Dict = tf.concat( [tf.zeros_like(_A )[:, :-1], tf.ones_like(_A )[:, -1:]] ,axis=-1 ,) _lowerCAmelCase : Any = global_attention_mask return config, inputs_dict def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFLEDModel(config=_A ).get_decoder() _lowerCAmelCase : Tuple = inputs_dict['input_ids'] _lowerCAmelCase : Union[str, Any] = input_ids[:1, :] _lowerCAmelCase : int = inputs_dict['attention_mask'][:1, :] _lowerCAmelCase : Dict = 1 # first forward pass _lowerCAmelCase : str = model(_A ,attention_mask=_A ,use_cache=_A ) _lowerCAmelCase, _lowerCAmelCase : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowerCAmelCase : List[str] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _lowerCAmelCase : str = tf.concat([input_ids, next_tokens] ,axis=-1 ) _lowerCAmelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _lowerCAmelCase : Optional[int] = model(_A ,attention_mask=_A )[0] _lowerCAmelCase : int = model(_A ,attention_mask=_A ,past_key_values=_A )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _lowerCAmelCase : Tuple = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_A ,_A ,rtol=1E-3 ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase : Optional[Any] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () _UpperCAmelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = TFLEDModelTester(self ) _lowerCAmelCase : Optional[Any] = ConfigTester(self ,config_class=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = tf.zeros_like(inputs_dict['attention_mask'] ) _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict['global_attention_mask'] ,) _lowerCAmelCase : int = True _lowerCAmelCase : int = self.model_tester.seq_length _lowerCAmelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_A ): _lowerCAmelCase : Optional[Any] = outputs.decoder_attentions self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(_A ): _lowerCAmelCase : List[Any] = [t.numpy() for t in outputs.encoder_attentions] _lowerCAmelCase : Dict = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(_A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: _lowerCAmelCase : Dict = True _lowerCAmelCase : Any = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Any = model_class(_A ) _lowerCAmelCase : Union[str, Any] = model(self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : List[str] = len(_A ) self.assertEqual(config.output_hidden_states ,_A ) check_encoder_attentions_output(_A ) if self.is_encoder_decoder: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : List[str] = model(self._prepare_for_class(_A ,_A ) ) self.assertEqual(config.output_hidden_states ,_A ) check_decoder_attentions_output(_A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _lowerCAmelCase : Tuple = True _lowerCAmelCase : Optional[Any] = model_class(_A ) _lowerCAmelCase : Any = model(self._prepare_for_class(_A ,_A ) ) self.assertEqual(config.output_hidden_states ,_A ) check_encoder_attentions_output(_A ) # Check attention is always last and order is fine _lowerCAmelCase : Any = True _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Union[str, Any] = model_class(_A ) _lowerCAmelCase : Optional[Any] = model(self._prepare_for_class(_A ,_A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(_A ) ) self.assertEqual(model.config.output_hidden_states ,_A ) check_encoder_attentions_output(_A ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return tf.constant(_lowerCamelCase , dtype=tf.intaa ) _lowerCAmelCase = 1E-4 @slow @require_tf class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _lowerCAmelCase : Dict = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase : Dict = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase : Union[str, Any] = prepare_led_inputs_dict(model.config ,_A ,_A ) _lowerCAmelCase : Union[str, Any] = model(**_A )[0] _lowerCAmelCase : Optional[Any] = (1, 1024, 768) self.assertEqual(output.shape ,_A ) # change to expected output here _lowerCAmelCase : Tuple = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] ,) tf.debugging.assert_near(output[:, :3, :3] ,_A ,atol=1E-3 ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _lowerCAmelCase : List[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase : Any = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _lowerCAmelCase : List[str] = prepare_led_inputs_dict(model.config ,_A ,_A ) _lowerCAmelCase : List[str] = model(**_A )[0] _lowerCAmelCase : List[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape ,_A ) # change to expected output here _lowerCAmelCase : Dict = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] ,) tf.debugging.assert_near(output[:, :3, :3] ,_A ,atol=1E-3 ,rtol=1E-3 )
16
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( a__ ): _UpperCAmelCase = 42 class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 32 ,_A = 64 ,_A = 20 ,_A = 768 ,_A=77 ,_A=4 ,_A = 0.0 ,_A = "silu" ,_A = None ,_A = None ,_A = "linear" ,_A = "prd" ,_A = None ,_A = None ,_A = None ,): '''simple docstring''' super().__init__() _lowerCAmelCase : Any = num_attention_heads _lowerCAmelCase : Optional[int] = attention_head_dim _lowerCAmelCase : Tuple = num_attention_heads * attention_head_dim _lowerCAmelCase : Optional[Any] = additional_embeddings _lowerCAmelCase : Union[str, Any] = time_embed_dim or inner_dim _lowerCAmelCase : Union[str, Any] = embedding_proj_dim or embedding_dim _lowerCAmelCase : Optional[int] = clip_embed_dim or embedding_dim _lowerCAmelCase : int = Timesteps(_A ,_A ,0 ) _lowerCAmelCase : int = TimestepEmbedding(_A ,_A ,out_dim=_A ,act_fn=_A ) _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) if embedding_proj_norm_type is None: _lowerCAmelCase : Optional[Any] = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowerCAmelCase : Tuple = nn.Linear(_A ,_A ) if encoder_hid_proj_type is None: _lowerCAmelCase : int = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase : List[Any] = nn.Linear(_A ,_A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,_A ) ) if added_emb_type == "prd": _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,1 ,_A ) ) elif added_emb_type is None: _lowerCAmelCase : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowerCAmelCase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A ,_A ,_A ,dropout=_A ,activation_fn='gelu' ,attention_bias=_A ,) for d in range(_A ) ] ) if norm_in_type == "layer": _lowerCAmelCase : Any = nn.LayerNorm(_A ) elif norm_in_type is None: _lowerCAmelCase : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowerCAmelCase : Union[str, Any] = nn.LayerNorm(_A ) _lowerCAmelCase : int = nn.Linear(_A ,_A ) _lowerCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCAmelCase : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' ,_A ,persistent=_A ) _lowerCAmelCase : Tuple = nn.Parameter(torch.zeros(1 ,_A ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 ,_A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = {} def fn_recursive_add_processors(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,_A ,_A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A ,_A ,_A ) return processors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A ,_A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(_A ,_A ,_A ): if hasattr(_A ,'set_processor' ): if not isinstance(_A ,_A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,_A ,_A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,_A = None ,_A = True ,): '''simple docstring''' _lowerCAmelCase : str = hidden_states.shape[0] _lowerCAmelCase : int = timestep if not torch.is_tensor(_A ): _lowerCAmelCase : str = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _lowerCAmelCase : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase : Optional[int] = timesteps * torch.ones(_A ,dtype=timesteps.dtype ,device=timesteps.device ) _lowerCAmelCase : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase : Any = timesteps_projected.to(dtype=self.dtype ) _lowerCAmelCase : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: _lowerCAmelCase : int = self.embedding_proj_norm(_A ) _lowerCAmelCase : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _lowerCAmelCase : Any = self.proj_in(_A ) _lowerCAmelCase : Dict = self.positional_embedding.to(hidden_states.dtype ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCAmelCase : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCAmelCase : Any = hidden_states[:, None, :] _lowerCAmelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A ,-1 ,-1 ) additional_embeds.append(_A ) _lowerCAmelCase : List[str] = torch.cat( _A ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase : Any = F.pad( _A ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCAmelCase : Union[str, Any] = F.pad(_A ,(0, self.additional_embeddings) ,value=0.0 ) _lowerCAmelCase : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCAmelCase : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowerCAmelCase : Any = self.norm_in(_A ) for block in self.transformer_blocks: _lowerCAmelCase : int = block(_A ,attention_mask=_A ) _lowerCAmelCase : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: _lowerCAmelCase : Optional[int] = hidden_states[:, -1] else: _lowerCAmelCase : Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
16
1
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = """https://openaipublic.azureedge.net/jukebox/models/""" _lowerCAmelCase = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : int = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _lowerCAmelCase : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _lowerCAmelCase : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _lowerCAmelCase : str = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _lowerCAmelCase : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _lowerCAmelCase : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {} import re _lowerCAmelCase : Optional[Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Union[str, Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Tuple = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : Optional[int] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _lowerCAmelCase : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _lowerCAmelCase : List[str] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : int = re_encoder_block_conv_in.match(_lowerCamelCase ) _lowerCAmelCase : int = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_encoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : Union[str, Any] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Optional[int] = prefix + resnet_block _lowerCAmelCase : Dict = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : str = re_encoder_block_proj_out.match(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = regex_match.groups() _lowerCAmelCase : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" _lowerCAmelCase : Any = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = re_decoder_block_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : Dict = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Dict = regex_match.groups() _lowerCAmelCase : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 _lowerCAmelCase : Dict = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" _lowerCAmelCase : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : List[Any] = prefix + resnet_block _lowerCAmelCase : str = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Any = re_decoder_block_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[Any] = regex_match.groups() _lowerCAmelCase : str = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" _lowerCAmelCase : str = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): _lowerCAmelCase : List[Any] = re_prior_cond_conv_out.match(_lowerCamelCase ) _lowerCAmelCase : Any = regex_match.groups() _lowerCAmelCase : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Any = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" _lowerCAmelCase : List[str] = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_resnet.match(_lowerCamelCase ) _lowerCAmelCase : Tuple = regex_match.groups() _lowerCAmelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 _lowerCAmelCase : Tuple = {'1': 1, '3': 2}[groups[-2]] _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" _lowerCAmelCase : List[str] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" _lowerCAmelCase : Dict = prefix + resnet_block _lowerCAmelCase : List[str] = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): _lowerCAmelCase : Dict = re_prior_cond_proj_in.match(_lowerCamelCase ) _lowerCAmelCase : List[str] = regex_match.groups() _lowerCAmelCase : List[Any] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" _lowerCAmelCase : Dict = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: _lowerCAmelCase : Optional[Any] = original_key _lowerCAmelCase : List[Any] = replace_key(_lowerCamelCase ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: _lowerCAmelCase : Dict = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) _lowerCAmelCase : Optional[int] = original_key _lowerCAmelCase : Union[str, Any] = original_key _lowerCAmelCase : Optional[Any] = value return new_dict @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase=None , _lowerCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): _lowerCAmelCase : str = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_lowerCamelCase ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_lowerCamelCase ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) _lowerCAmelCase : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] _lowerCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : List[str] = JukeboxModel(_lowerCamelCase ) _lowerCAmelCase : int = [] _lowerCAmelCase : Any = {} for i, dict_name in enumerate(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] _lowerCAmelCase : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): _lowerCAmelCase : int = old_dic[k] elif k.endswith('.w' ): _lowerCAmelCase : Tuple = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _lowerCAmelCase : str = old_dic[k] else: _lowerCAmelCase : Optional[Any] = old_dic[k] _lowerCAmelCase : List[str] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" _lowerCAmelCase : Tuple = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) _lowerCAmelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
16
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["vqvae"] def __init__( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ,mel=_A ,vqvae=_A ) def __lowerCamelCase ( self ): '''simple docstring''' return 50 if isinstance(self.scheduler ,_A ) else 1000 @torch.no_grad() def __call__( self ,_A = 1 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = None ,_A = 0 ,_A = 0 ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A=True ,): '''simple docstring''' _lowerCAmelCase : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase : Optional[Any] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) ,generator=_A ,device=self.device ,) _lowerCAmelCase : Dict = noise _lowerCAmelCase : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A ,_A ) _lowerCAmelCase : Union[str, Any] = self.mel.audio_slice_to_image(_A ) _lowerCAmelCase : int = np.frombuffer(input_image.tobytes() ,dtype='uint8' ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase : int = (input_image / 255) * 2 - 1 _lowerCAmelCase : str = torch.tensor(input_image[np.newaxis, :, :] ,dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase : List[Any] = self.vqvae.encode(torch.unsqueeze(_A ,0 ) ).latent_dist.sample( generator=_A )[0] _lowerCAmelCase : Tuple = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase : List[Any] = self.scheduler.add_noise(_A ,_A ,self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase : Optional[Any] = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase : Optional[int] = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase : int = self.scheduler.add_noise(_A ,_A ,torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet ,_A ): _lowerCAmelCase : str = self.unet(_A ,_A ,_A )['sample'] else: _lowerCAmelCase : Any = self.unet(_A ,_A )['sample'] if isinstance(self.scheduler ,_A ): _lowerCAmelCase : Union[str, Any] = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,eta=_A ,generator=_A ,)['prev_sample'] else: _lowerCAmelCase : Any = self.scheduler.step( model_output=_A ,timestep=_A ,sample=_A ,generator=_A ,)['prev_sample'] if mask is not None: if mask_start > 0: _lowerCAmelCase : Any = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase : Optional[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase : Any = self.vqvae.decode(_A )['sample'] _lowerCAmelCase : Any = (images / 2 + 0.5).clamp(0 ,1 ) _lowerCAmelCase : Tuple = images.cpu().permute(0 ,2 ,3 ,1 ).numpy() _lowerCAmelCase : Any = (images * 255).round().astype('uint8' ) _lowerCAmelCase : Any = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A ,mode='RGB' ).convert('L' ) for _ in images) ) _lowerCAmelCase : Dict = [self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) ,**ImagePipelineOutput(_A ) ) @torch.no_grad() def __lowerCamelCase ( self ,_A ,_A = 50 ): '''simple docstring''' assert isinstance(self.scheduler ,_A ) self.scheduler.set_timesteps(_A ) _lowerCAmelCase : Dict = np.array( [np.frombuffer(image.tobytes() ,dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase : Dict = (sample / 255) * 2 - 1 _lowerCAmelCase : List[str] = torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps ,(0,) ) ): _lowerCAmelCase : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase : Optional[int] = self.scheduler.alphas_cumprod[t] _lowerCAmelCase : Dict = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase : Union[str, Any] = 1 - alpha_prod_t _lowerCAmelCase : Union[str, Any] = self.unet(_A ,_A )['sample'] _lowerCAmelCase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCamelCase ( _A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : int = acos(torch.dot(torch.flatten(_A ) ,torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
16
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=7 ,_A=True ,_A=True ,_A=False ,_A=True ,_A=99 ,_A=32 ,_A=5 ,_A=4 ,_A=37 ,_A="gelu" ,_A=0.1 ,_A=0.1 ,_A=512 ,_A=16 ,_A=2 ,_A=0.0_2 ,_A=3 ,_A=4 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : str = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Tuple = type_vocab_size _lowerCAmelCase : Dict = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : str = num_labels _lowerCAmelCase : Any = num_choices _lowerCAmelCase : Dict = scope def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCAmelCase : List[Any] = None if self.use_input_mask: _lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] ,self.num_choices ) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_A ,initializer_range=self.initializer_range ,pad_token_id=1 ,new_decoder_architecture=_A ,) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = FalconModel(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A ) _lowerCAmelCase : Dict = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = True _lowerCAmelCase : str = FalconModel(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,) _lowerCAmelCase : Union[str, Any] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,) _lowerCAmelCase : Optional[Any] = model(_A ,attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = FalconForCausalLM(config=_A ) model.to(_A ) model.eval() _lowerCAmelCase : Tuple = model(_A ,attention_mask=_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : int = True _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : int = FalconForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass _lowerCAmelCase : Optional[int] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,use_cache=_A ,) _lowerCAmelCase : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and _lowerCAmelCase : Dict = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowerCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) _lowerCAmelCase : str = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,output_hidden_states=_A ,)['hidden_states'][0] _lowerCAmelCase : Optional[Any] = model( _A ,attention_mask=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,past_key_values=_A ,output_hidden_states=_A ,)['hidden_states'][0] # select random slice _lowerCAmelCase : List[Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A ,_A ,atol=1E-3 ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ( _lowerCAmelCase ), ) : int = config_and_inputs _lowerCAmelCase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): _UpperCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = FalconModelTester(self ) _lowerCAmelCase : int = ConfigTester(self ,config_class=_A ,hidden_size=37 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, *_lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _lowerCAmelCase : Optional[int] = alibi self.model_tester.create_and_check_model(_A ,*_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[Any] = input_dict['input_ids'] _lowerCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(_A ) _lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : List[Any] = model(_A ,attention_mask=_A ,labels=_A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = 3 _lowerCAmelCase : Dict = 'single_label_classification' _lowerCAmelCase : Union[str, Any] = input_dict['input_ids'] _lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(_A ) _lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowerCAmelCase : Optional[int] = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ,attention_mask=_A ,labels=_A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[str] = input_dict['input_ids'] _lowerCAmelCase : int = FalconForCausalLM(_A ) model.to(_A ) model.eval() _lowerCAmelCase : Optional[Any] = model(_A ,use_cache=_A ) _lowerCAmelCase : str = input_ids.shape[0] _lowerCAmelCase : Optional[Any] = model._convert_to_rw_cache(result.past_key_values ) _lowerCAmelCase : int = model._convert_cache_to_standard_format(_A ,_A ) for layer in range(len(_A ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = 3 _lowerCAmelCase : Optional[Any] = 'multi_label_classification' _lowerCAmelCase : List[str] = input_dict['input_ids'] _lowerCAmelCase : Optional[Any] = input_ids.ne(1 ).to(_A ) _lowerCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase : Tuple = FalconForSequenceClassification(_A ) model.to(_A ) model.eval() _lowerCAmelCase : int = model(_A ,attention_mask=_A ,labels=_A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_generative_model_classes: _lowerCAmelCase, _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_A ,'use_cache' ): return _lowerCAmelCase : Dict = model_class(_A ).to(_A ) if "use_cache" not in inputs: _lowerCAmelCase : Tuple = True _lowerCAmelCase : Any = model(**_A ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _lowerCAmelCase : List[Any] = ( getattr(_A ,'decoder_layers' ,_A ) or getattr(_A ,'num_decoder_layers' ,_A ) or config.num_hidden_layers ) _lowerCAmelCase : Dict = getattr(_A ,'num_kv_heads' ,config.num_attention_heads ) _lowerCAmelCase : Any = getattr(_A ,'d_model' ,config.hidden_size ) _lowerCAmelCase : Dict = embed_dim // num_attention_heads _lowerCAmelCase : Optional[Any] = outputs['past_key_values'] self.assertEqual(len(_A ) ,_A ) _lowerCAmelCase, _lowerCAmelCase : Any = inputs['input_ids'].shape for i in range(_A ): if config.new_decoder_architecture: _lowerCAmelCase : int = config.num_attention_heads elif config.multi_query: _lowerCAmelCase : Tuple = 1 self.assertEqual(len(past_kv[0] ) ,2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape ,(batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) _lowerCAmelCase : int = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(_A ) _lowerCAmelCase : str = tokenizer('My favorite food is' ,return_tensors='pt' ).to(_A ) _lowerCAmelCase : int = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) _lowerCAmelCase : Optional[int] = model.generate(**_A ,do_sample=_A ,max_new_tokens=19 ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(_A )[0] self.assertEqual(_A ,_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : Optional[Any] = FalconForCausalLM.from_pretrained(_A ) model.eval() model.to(_A ) _lowerCAmelCase : Optional[Any] = tokenizer('My favorite food is' ,return_tensors='pt' ).to(_A ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_A ,do_sample=_A ,max_new_tokens=4 ) model.generate(**_A ,do_sample=_A ,max_new_tokens=4 ) model.generate(**_A ,num_beams=2 ,max_new_tokens=4 ) @slow def __lowerCamelCase ( self ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_A ) _lowerCAmelCase : List[Any] = FalconForCausalLM.from_pretrained(_A ) model.eval() model.to(device=_A ) _lowerCAmelCase : Optional[Any] = tokenizer('My favorite food is' ,return_tensors='pt' ).to(_A ) # Test results are the same with and without cache _lowerCAmelCase : Optional[int] = model.generate(**_A ,do_sample=_A ,max_new_tokens=20 ,use_cache=_A ) _lowerCAmelCase : Union[str, Any] = model.generate(**_A ,do_sample=_A ,max_new_tokens=20 ,use_cache=_A ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
16
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } _lowerCAmelCase = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } _lowerCAmelCase = """</w>""" _lowerCAmelCase = """@@ """ def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Any = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self ,_A ,_A="<s>" ,_A="<pad>" ,_A="</s>" ,_A="<unk>" ,_A=False ,_A=None ,**_A ,): '''simple docstring''' super().__init__( unk_token=_A ,bos_token=_A ,eos_token=_A ,pad_token=_A ,do_lower_case=_A ,**_A ,) _lowerCAmelCase : List[Any] = do_lower_case with open(_A ,encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : Optional[int] = json.load(_A ) _lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Tuple = None else: with open(_A ,encoding='utf-8' ) as merges_handle: _lowerCAmelCase : Optional[Any] = merges_handle.read().split('\n' )[:-1] _lowerCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] _lowerCAmelCase : List[Any] = dict(zip(_A ,range(len(_A ) ) ) ) _lowerCAmelCase : Union[str, Any] = {} @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.decoder ) def __lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : str = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _lowerCAmelCase : str = get_pairs(_A ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(_A ,key=lambda _A : self.bpe_ranks.get(_A ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase, _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Dict = 0 while i < len(_A ): try: _lowerCAmelCase : Dict = word.index(_A ,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : Optional[Any] = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Optional[Any] = tuple(_A ) _lowerCAmelCase : List[str] = new_word if len(_A ) == 1: break else: _lowerCAmelCase : List[str] = get_pairs(_A ) _lowerCAmelCase : Any = ' '.join(_A ) if word == "\n " + BPE_TOKEN_MERGES: _lowerCAmelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(_A ): _lowerCAmelCase : Dict = word.replace(_A ,'' ) _lowerCAmelCase : str = word.replace(' ' ,_A ) _lowerCAmelCase : str = word return word def __lowerCamelCase ( self ,_A ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: _lowerCAmelCase : Optional[Any] = text.lower() _lowerCAmelCase : Tuple = text.split() _lowerCAmelCase : Union[str, Any] = [] for token in text: if token: split_tokens.extend(list(self.bpe(_A ).split(' ' ) ) ) return split_tokens def __lowerCamelCase ( self ,_A ): '''simple docstring''' return self.encoder.get(_A ,self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : int = self.decoder.get(_A ,self.unk_token ) return result def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ' '.join(_A ) # make sure @@ tokens are concatenated _lowerCAmelCase : int = ''.join(string.split(_A ) ) return string def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase : List[Any] = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( _A ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_A ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_A ,ensure_ascii=_A ) + '\n' ) _lowerCAmelCase : str = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_A ,'w' ,encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Dict = token_index writer.write(' '.join(_A ) + '\n' ) index += 1 return (vocab_file, merges_file)
16
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _lowerCAmelCase = logging.getLogger(__name__) def lowerCamelCase__ ( _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase = 10 , _lowerCamelCase = 2 ): '''simple docstring''' def get_dataset(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _lowerCAmelCase : Any = get_dataset(_lowerCamelCase ) _lowerCAmelCase : str = get_dataset(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , batch_size=_lowerCamelCase , num_workers=4 ) _lowerCAmelCase : int = DataLoader(_lowerCamelCase , shuffle=_lowerCamelCase , batch_size=_lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = [] for epoch in range(_lowerCamelCase ): # Train quickly model.train() for batch in dataloader: _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = batch _lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase ) _lowerCAmelCase : int = torch.nn.functional.mse_loss(_lowerCamelCase , _lowerCamelCase ) accelerator.backward(_lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __UpperCamelCase ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Parameter(torch.randn(1 ) ) _lowerCAmelCase : Dict = nn.Parameter(torch.randn(1 ) ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return x * self.a + self.b class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : Union[str, Any] = DummyModel() _lowerCAmelCase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = dummy_dataloaders() _lowerCAmelCase : str = ProjectConfiguration(total_limit=1 ,project_dir=_A ,automatic_checkpoint_naming=_A ) # Train baseline _lowerCAmelCase : Any = Accelerator(project_config=_A ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = accelerator.prepare( _A ,_A ,_A ,_A ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : int = DummyModel() _lowerCAmelCase : Any = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _lowerCAmelCase, _lowerCAmelCase : Dict = dummy_dataloaders() # Train baseline _lowerCAmelCase : Any = Accelerator() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = accelerator.prepare( _A ,_A ,_A ,_A ) # Save initial _lowerCAmelCase : Any = os.path.join(_A ,'initial' ) accelerator.save_state(_A ) ((_lowerCAmelCase), (_lowerCAmelCase)) : List[Any] = model.a.item(), model.b.item() _lowerCAmelCase : Any = optimizer.state_dict() _lowerCAmelCase : Any = train(3 ,_A ,_A ,_A ,_A ) ((_lowerCAmelCase), (_lowerCAmelCase)) : List[Any] = model.a.item(), model.b.item() _lowerCAmelCase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCAmelCase : Dict = DummyModel() _lowerCAmelCase : Any = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _lowerCAmelCase, _lowerCAmelCase : int = dummy_dataloaders() _lowerCAmelCase : str = Accelerator() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = accelerator.prepare( _A ,_A ,_A ,_A ) accelerator.load_state(_A ) ((_lowerCAmelCase), (_lowerCAmelCase)) : List[str] = model.a.item(), model.b.item() _lowerCAmelCase : Any = optimizer.state_dict() self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) _lowerCAmelCase : List[str] = train(2 ,_A ,_A ,_A ,_A ) # Save everything _lowerCAmelCase : List[str] = os.path.join(_A ,'checkpoint' ) accelerator.save_state(_A ) # Load everything back in and make sure all states work accelerator.load_state(_A ) test_rands += train(1 ,_A ,_A ,_A ,_A ) ((_lowerCAmelCase), (_lowerCAmelCase)) : Tuple = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : int = DummyModel() _lowerCAmelCase : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = dummy_dataloaders() _lowerCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_A ) # Train baseline _lowerCAmelCase : List[Any] = Accelerator(project_dir=_A ,project_config=_A ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = accelerator.prepare( _A ,_A ,_A ,_A ) # Save initial accelerator.save_state() ((_lowerCAmelCase), (_lowerCAmelCase)) : Union[str, Any] = model.a.item(), model.b.item() _lowerCAmelCase : str = optimizer.state_dict() _lowerCAmelCase : Optional[Any] = train(3 ,_A ,_A ,_A ,_A ) ((_lowerCAmelCase), (_lowerCAmelCase)) : int = model.a.item(), model.b.item() _lowerCAmelCase : Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) _lowerCAmelCase : List[Any] = DummyModel() _lowerCAmelCase : Tuple = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _lowerCAmelCase, _lowerCAmelCase : Dict = dummy_dataloaders() _lowerCAmelCase : Dict = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_A ) _lowerCAmelCase : List[str] = Accelerator(project_dir=_A ,project_config=_A ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = accelerator.prepare( _A ,_A ,_A ,_A ) accelerator.load_state(os.path.join(_A ,'checkpoints' ,'checkpoint_0' ) ) ((_lowerCAmelCase), (_lowerCAmelCase)) : List[str] = model.a.item(), model.b.item() _lowerCAmelCase : List[str] = optimizer.state_dict() self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) _lowerCAmelCase : Dict = train(2 ,_A ,_A ,_A ,_A ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_A ,'checkpoints' ,'checkpoint_1' ) ) test_rands += train(1 ,_A ,_A ,_A ,_A ) ((_lowerCAmelCase), (_lowerCAmelCase)) : str = model.a.item(), model.b.item() _lowerCAmelCase : Dict = optimizer.state_dict() self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) self.assertEqual(_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.tensor([1, 2, 3] ) _lowerCAmelCase : Union[str, Any] = torch.tensor([2, 3, 4] ) _lowerCAmelCase : str = DummyModel() _lowerCAmelCase : Union[str, Any] = torch.optim.Adam(net.parameters() ) _lowerCAmelCase : Any = Accelerator() with self.assertRaises(_A ) as ve: accelerator.register_for_checkpointing(_A ,_A ,_A ,_A ) _lowerCAmelCase : int = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : str = DummyModel() _lowerCAmelCase : Optional[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _lowerCAmelCase : Any = torch.optim.lr_scheduler.StepLR(_A ,step_size=1 ,gamma=0.9_9 ) _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = dummy_dataloaders() _lowerCAmelCase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=_A ) # Train baseline _lowerCAmelCase : Optional[Any] = Accelerator(project_dir=_A ,project_config=_A ) _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = accelerator.prepare( _A ,_A ,_A ,_A ,_A ) # Save initial accelerator.save_state() _lowerCAmelCase : str = scheduler.state_dict() train(3 ,_A ,_A ,_A ,_A ,_A ) self.assertNotEqual(_A ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_A ,'checkpoints' ,'checkpoint_0' ) ) self.assertEqual(_A ,scheduler.state_dict() ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowerCAmelCase : Any = DummyModel() _lowerCAmelCase : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_A ,total_limit=2 ) # Train baseline _lowerCAmelCase : int = Accelerator(project_dir=_A ,project_config=_A ) _lowerCAmelCase : Dict = accelerator.prepare(_A ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_A ,'checkpoints' ,'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_A ,'checkpoints' ,'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_A ,'checkpoints' ,'checkpoint_10' ) ) ) @require_cuda def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_A ,env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = """/tmp/accelerate/state_checkpointing""" _lowerCAmelCase = DummyModel() _lowerCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) _lowerCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _lowerCAmelCase , _lowerCAmelCase = dummy_dataloaders() _lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _lowerCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _lowerCAmelCase = group["""params"""][0].device break assert param_device.type == accelerator.device.type _lowerCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: _lowerCAmelCase = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: _lowerCAmelCase = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
16
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
1
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCAmelCase : List[str] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" _lowerCAmelCase : Optional[Any] = str(bin(_lowerCamelCase ) )[2:] _lowerCAmelCase : Optional[int] = max(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) , b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self ,_A ,_A=3 ,_A=32 ,_A=3 ,_A=10 ,_A=[10, 20, 30, 40] ,_A=[1, 1, 2, 1] ,_A=True ,_A=True ,_A="relu" ,_A=3 ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = embeddings_size _lowerCAmelCase : Optional[int] = hidden_sizes _lowerCAmelCase : str = depths _lowerCAmelCase : str = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : Dict = scope _lowerCAmelCase : Union[str, Any] = len(_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] ,self.num_labels ) _lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFResNetModel(config=_A ) _lowerCAmelCase : List[str] = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Dict = TFResNetForImageClassification(_A ) _lowerCAmelCase : int = model(_A ,labels=_A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = config_and_inputs _lowerCAmelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): _UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFResNetModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self ,config_class=_A ,has_text_modality=_A ) def __lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): '''simple docstring''' pass def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(_A ,_A ,_A ): _lowerCAmelCase : int = model_class(_A ) _lowerCAmelCase : int = model(**self._prepare_for_class(_A ,_A ) ) _lowerCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(_A ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase : Optional[int] = layer_type _lowerCAmelCase : Tuple = True check_hidden_states_output(_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(_A ,_A ,_A ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __lowerCamelCase ( self ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFResNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : Tuple = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : int = image_processor(images=_A ,return_tensors='tf' ) # forward pass _lowerCAmelCase : int = model(**_A ) # verify the logits _lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,_A ) _lowerCAmelCase : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_A ,atol=1E-4 ) )
16
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return [ord(_lowerCamelCase ) - 96 for elem in plain] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , _lowerCamelCase ) print('Decoded:' , decode(_lowerCamelCase ) ) if __name__ == "__main__": main()
16
"""simple docstring""" from __future__ import annotations from collections.abc import Callable _lowerCAmelCase = list[list[float | int]] def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : float for row in range(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = matrix[row][col] _lowerCAmelCase : Tuple = vector[row][0] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Any = 0 while row < size and col < size: # pivoting _lowerCAmelCase : Optional[int] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowerCamelCase , _lowerCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowerCAmelCase, _lowerCAmelCase : Tuple = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowerCamelCase ): _lowerCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowerCamelCase ): for row in range(_lowerCamelCase ): _lowerCAmelCase : int = augmented[row][col] / augmented[col][col] for cola in range(_lowerCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowerCamelCase ) ] def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) _lowerCAmelCase : Matrix = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix = [[0] for _ in range(_lowerCamelCase )] _lowerCAmelCase : Matrix _lowerCAmelCase : int _lowerCAmelCase : int _lowerCAmelCase : int for x_val, y_val in enumerate(_lowerCamelCase ): for col in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = (x_val + 1) ** (size - col - 1) _lowerCAmelCase : Optional[int] = y_val _lowerCAmelCase : List[Any] = solve(_lowerCamelCase , _lowerCamelCase ) def interpolated_func(_lowerCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowerCamelCase ) ) return interpolated_func def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase__ ( _lowerCamelCase = question_function , _lowerCamelCase = 10 ): '''simple docstring''' _lowerCAmelCase : list[int] = [func(_lowerCamelCase ) for x_val in range(1 , order + 1 )] _lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowerCAmelCase : int = 0 _lowerCAmelCase : Callable[[int], int] _lowerCAmelCase : int for poly in polynomials: _lowerCAmelCase : Any = 1 while func(_lowerCamelCase ) == poly(_lowerCamelCase ): x_val += 1 ret += poly(_lowerCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
16
1
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Union[str, Any] = np.zeros((n + 1,) ) _lowerCAmelCase : Union[str, Any] = ya _lowerCAmelCase : Union[str, Any] = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) _lowerCAmelCase : Any = y[k] + ( (step_size / 2) * (ode_func(_lowerCamelCase , y[k] ) + ode_func(x + step_size , _lowerCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : Dict = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = set() for token in tokens: _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : str = bert_tokens _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : Dict = True if is_chinese(bert_word[start] ): _lowerCAmelCase : str = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Tuple = '##' + bert_word[j] _lowerCAmelCase : Optional[int] = start + i _lowerCAmelCase : Any = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : int = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : List[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: _lowerCAmelCase : int = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _lowerCAmelCase = parser.parse_args() main(args)
16
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 if start < end: _lowerCAmelCase : Optional[Any] = randint(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Dict = a[end] _lowerCAmelCase : int = a[pivot] _lowerCAmelCase : List[str] = temp _lowerCAmelCase, _lowerCAmelCase : Any = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = randint(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = a[end] _lowerCAmelCase : Tuple = a[pivot] _lowerCAmelCase : str = temp _lowerCAmelCase : Tuple = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowerCAmelCase : str = new_pivot_index + 1 _lowerCAmelCase : Tuple = a[new_pivot_index] _lowerCAmelCase : Optional[Any] = a[index] _lowerCAmelCase : int = temp _lowerCAmelCase : str = a[new_pivot_index + 1] _lowerCAmelCase : List[Any] = a[end] _lowerCAmelCase : Tuple = temp return new_pivot_index + 1, count _lowerCAmelCase = TemporaryFile() _lowerCAmelCase = 1_0_0 # 1000 elements are to be sorted _lowerCAmelCase , _lowerCAmelCase = 0, 1 # mean and standard deviation _lowerCAmelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array _lowerCAmelCase = np.load(outfile) _lowerCAmelCase = len(M) - 1 _lowerCAmelCase = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
16
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = LDMTextToImagePipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _UpperCAmelCase = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = False def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) _lowerCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=_A ,set_alpha_to_one=_A ,) torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=(32, 64) ,in_channels=3 ,out_channels=3 ,down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') ,up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') ,latent_channels=4 ,) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _lowerCAmelCase : Tuple = CLIPTextModel(_A ) _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' if str(_A ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_A ) else: _lowerCAmelCase : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = LDMTextToImagePipeline(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs(_A ) _lowerCAmelCase : Any = pipe(**_A ).images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _lowerCAmelCase : Tuple = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.manual_seed(_A ) _lowerCAmelCase : Union[str, Any] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = self.get_inputs(_A ) _lowerCAmelCase : List[Any] = pipe(**_A ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : str = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) _lowerCAmelCase : Dict = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ,_A ,_A=torch.floataa ,_A=0 ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.manual_seed(_A ) _lowerCAmelCase : Optional[int] = np.random.RandomState(_A ).standard_normal((1, 4, 32, 32) ) _lowerCAmelCase : List[Any] = torch.from_numpy(_A ).to(device=_A ,dtype=_A ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : str = self.get_inputs(_A ) _lowerCAmelCase : Union[str, Any] = pipe(**_A ).images[0] _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) _lowerCAmelCase : List[str] = np.abs(expected_image - image ).max() assert max_diff < 1E-3
16
1