code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int) ->List[str]: """simple docstring""" _lowerCamelCase : str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , """tf_padding""")) self.parent.assertTrue(hasattr(lowercase_ , """depth_multiplier""")) class __snake_case : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : str=13 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=32 , _UpperCamelCase : List[str]=0.2_5 , _UpperCamelCase : int=8 , _UpperCamelCase : str=8 , _UpperCamelCase : Tuple=6 , _UpperCamelCase : Dict=32 , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[str]=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Any="relu6" , _UpperCamelCase : Optional[Any]=1280 , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Union[str, Any]=10 , _UpperCamelCase : List[Any]=None , ) ->int: """simple docstring""" _lowerCamelCase : Any = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : str = num_channels _lowerCamelCase : Dict = image_size _lowerCamelCase : int = depth_multiplier _lowerCamelCase : Union[str, Any] = depth_divisible_by _lowerCamelCase : List[str] = min_depth _lowerCamelCase : str = expand_ratio _lowerCamelCase : Dict = tf_padding _lowerCamelCase : Union[str, Any] = output_stride _lowerCamelCase : Tuple = first_layer_is_expansion _lowerCamelCase : str = finegrained_output _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier) _lowerCamelCase : List[Any] = classifier_dropout_prob _lowerCamelCase : Any = use_labels _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Tuple = num_labels _lowerCamelCase : int = initializer_range _lowerCamelCase : Any = scope def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : List[str] = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : int = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _lowerCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = MobileNetVaModel(config=lowercase_) model.to(lowercase_) model.eval() _lowerCamelCase : Dict = model(lowercase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : int) ->int: """simple docstring""" _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Tuple = MobileNetVaForImageClassification(lowercase_) model.to(lowercase_) model.eval() _lowerCamelCase : int = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Any) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Dict = self.num_labels _lowerCamelCase : Any = MobileNetVaForSemanticSegmentation(lowercase_) model.to(lowercase_) model.eval() _lowerCamelCase : Union[str, Any] = model(lowercase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCamelCase : str = model(lowercase_ , labels=lowercase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = config_and_inputs _lowerCamelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _snake_case = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = MobileNetVaModelTester(self) _lowerCamelCase : Optional[Any] = MobileNetVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""") def _SCREAMING_SNAKE_CASE ( self : int) ->Dict: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""") def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""") def _SCREAMING_SNAKE_CASE ( self : int) ->List[str]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(lowercase_) _lowerCamelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : str = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" def check_hidden_states_output(_UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]): _lowerCamelCase : Tuple = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): _lowerCamelCase : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_)) _lowerCamelCase : List[str] = outputs.hidden_states _lowerCamelCase : Union[str, Any] = 16 self.assertEqual(len(lowercase_) , lowercase_) _lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = MobileNetVaModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""") if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" _lowerCamelCase : Dict = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""").to(lowercase_) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : List[str] = image_processor(images=lowercase_ , return_tensors="""pt""").to(lowercase_) # forward pass with torch.no_grad(): _lowerCamelCase : Any = model(**lowercase_) # verify the logits _lowerCamelCase : Optional[Any] = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape , lowercase_) _lowerCamelCase : int = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") _lowerCamelCase : Any = model.to(lowercase_) _lowerCamelCase : Dict = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""") _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Union[str, Any] = image_processor(images=lowercase_ , return_tensors="""pt""").to(lowercase_) # forward pass with torch.no_grad(): _lowerCamelCase : List[str] = model(**lowercase_) _lowerCamelCase : Any = outputs.logits # verify the logits _lowerCamelCase : Optional[int] = torch.Size((1, 21, 65, 65)) self.assertEqual(logits.shape , lowercase_) _lowerCamelCase : Optional[Any] = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4))
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase : Any ={ "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowerCAmelCase : Any ={ "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } lowerCAmelCase : Any ={ "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } lowerCAmelCase : List[Any] ={ "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } lowerCAmelCase : str ={ "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } lowerCAmelCase : Optional[Any] ={ "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def A__ ( __A ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def A__ ( __A , __A , __A , __A , __A=False ): '''simple docstring''' _lowerCamelCase : Tuple = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] _lowerCamelCase : int = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] _lowerCamelCase : Dict = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] _lowerCamelCase : str = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] _lowerCamelCase : int = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] _lowerCamelCase : List[str] = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] _lowerCamelCase : Tuple = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] _lowerCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] _lowerCamelCase : Optional[Any] = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] _lowerCamelCase : List[Any] = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: _lowerCamelCase : Optional[Any] = checkpoint[F"""{old_prefix}.skip_connection.weight"""] _lowerCamelCase : List[Any] = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def A__ ( __A , __A , __A , __A , __A=None ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) _lowerCamelCase : Union[str, Any] = checkpoint[F"""{old_prefix}.norm.weight"""] _lowerCamelCase : Optional[Any] = checkpoint[F"""{old_prefix}.norm.bias"""] _lowerCamelCase : Optional[int] = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Union[str, Any] = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Tuple = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Tuple = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : int = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) _lowerCamelCase : int = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = torch.load(snake_case__ , map_location="""cpu""" ) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[str] = checkpoint["""time_embed.0.weight"""] _lowerCamelCase : List[str] = checkpoint["""time_embed.0.bias"""] _lowerCamelCase : Any = checkpoint["""time_embed.2.weight"""] _lowerCamelCase : Tuple = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _lowerCamelCase : Dict = checkpoint["""label_emb.weight"""] _lowerCamelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.weight"""] _lowerCamelCase : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""] _lowerCamelCase : Tuple = unet_config["""down_block_types"""] _lowerCamelCase : Tuple = unet_config["""layers_per_block"""] _lowerCamelCase : Dict = unet_config["""attention_head_dim"""] _lowerCamelCase : int = unet_config["""block_out_channels"""] _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[Any] = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _lowerCamelCase : Tuple = channels_list[i] _lowerCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _lowerCamelCase : Optional[int] = F"""down_blocks.{i}.resnets.{j}""" _lowerCamelCase : Union[str, Any] = F"""input_blocks.{current_layer}.0""" _lowerCamelCase : List[Any] = True if j == 0 and downsample_block_has_skip else False _lowerCamelCase : Tuple = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _lowerCamelCase : List[Any] = F"""down_blocks.{i}.resnets.{j}""" _lowerCamelCase : Optional[int] = F"""input_blocks.{current_layer}.0""" _lowerCamelCase : Optional[int] = True if j == 0 and downsample_block_has_skip else False _lowerCamelCase : Optional[Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) _lowerCamelCase : Any = F"""down_blocks.{i}.attentions.{j}""" _lowerCamelCase : Tuple = F"""input_blocks.{current_layer}.1""" _lowerCamelCase : int = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _lowerCamelCase : Any = F"""down_blocks.{i}.downsamplers.0""" _lowerCamelCase : int = F"""input_blocks.{current_layer}.0""" _lowerCamelCase : int = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 _lowerCamelCase : Dict = current_channels # hardcoded the mid-block for now _lowerCamelCase : Any = """mid_block.resnets.0""" _lowerCamelCase : Any = """middle_block.0""" _lowerCamelCase : Dict = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : Tuple = """mid_block.attentions.0""" _lowerCamelCase : Dict = """middle_block.1""" _lowerCamelCase : Any = convert_attention(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : int = """mid_block.resnets.1""" _lowerCamelCase : str = """middle_block.2""" _lowerCamelCase : Tuple = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : Any = 0 _lowerCamelCase : str = unet_config["""up_block_types"""] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCamelCase : List[str] = F"""up_blocks.{i}.resnets.{j}""" _lowerCamelCase : Tuple = F"""output_blocks.{current_layer}.0""" _lowerCamelCase : List[Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _lowerCamelCase : List[str] = F"""up_blocks.{i}.upsamplers.0""" _lowerCamelCase : Union[str, Any] = F"""output_blocks.{current_layer-1}.1""" _lowerCamelCase : Any = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCamelCase : Optional[int] = F"""up_blocks.{i}.resnets.{j}""" _lowerCamelCase : Any = F"""output_blocks.{current_layer}.0""" _lowerCamelCase : List[str] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_skip=snake_case__ ) _lowerCamelCase : int = F"""up_blocks.{i}.attentions.{j}""" _lowerCamelCase : Optional[int] = F"""output_blocks.{current_layer}.1""" _lowerCamelCase : Union[str, Any] = convert_attention( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _lowerCamelCase : Union[str, Any] = F"""up_blocks.{i}.upsamplers.0""" _lowerCamelCase : Any = F"""output_blocks.{current_layer-1}.2""" _lowerCamelCase : Union[str, Any] = convert_resnet(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _lowerCamelCase : Dict = checkpoint["""out.0.weight"""] _lowerCamelCase : Optional[Any] = checkpoint["""out.0.bias"""] _lowerCamelCase : int = checkpoint["""out.2.weight"""] _lowerCamelCase : int = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") lowerCAmelCase : List[str] =parser.parse_args() lowerCAmelCase : Tuple =strabool(args.class_cond) lowerCAmelCase : Optional[Any] =os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase : List[Any] =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase : Dict =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase : List[Any] =TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowerCAmelCase : List[str] =None lowerCAmelCase : Tuple =con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase : Optional[Any] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase : List[Any] =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase : List[Any] =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase : List[Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") lowerCAmelCase : List[str] =CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase : int =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __snake_case : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any]=13 , _UpperCamelCase : Dict=7 , _UpperCamelCase : Any=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str=99 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Optional[Any]=37 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Any=0.1 , _UpperCamelCase : str=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : int=16 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : str=4 , _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=1000 , ) ->int: """simple docstring""" _lowerCamelCase : List[Any] = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : Dict = is_training _lowerCamelCase : Optional[int] = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : Union[str, Any] = num_choices _lowerCamelCase : str = scope _lowerCamelCase : str = range_bbox def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) # convert bbox to numpy since TF does not support item assignment _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase : List[Any] = bbox[i, j, 3] _lowerCamelCase : Tuple = bbox[i, j, 1] _lowerCamelCase : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase : int = bbox[i, j, 2] _lowerCamelCase : List[Any] = bbox[i, j, 0] _lowerCamelCase : List[Any] = t _lowerCamelCase : List[Any] = tf.convert_to_tensor(UpperCAmelCase__) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : Dict = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : Optional[int] = None _lowerCamelCase : Dict = None _lowerCamelCase : Tuple = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : str = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : str = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = TFLayoutLMModel(config=UpperCAmelCase__) _lowerCamelCase : Union[str, Any] = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) _lowerCamelCase : Tuple = model(UpperCAmelCase__ , UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) _lowerCamelCase : Dict = model(UpperCAmelCase__ , UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] = TFLayoutLMForMaskedLM(config=UpperCAmelCase__) _lowerCamelCase : Optional[int] = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any]) ->str: """simple docstring""" _lowerCamelCase : Tuple = self.num_labels _lowerCamelCase : List[Any] = TFLayoutLMForSequenceClassification(config=UpperCAmelCase__) _lowerCamelCase : Any = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]) ->Tuple: """simple docstring""" _lowerCamelCase : Any = self.num_labels _lowerCamelCase : int = TFLayoutLMForTokenClassification(config=UpperCAmelCase__) _lowerCamelCase : Optional[int] = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[int] = TFLayoutLMForQuestionAnswering(config=UpperCAmelCase__) _lowerCamelCase : Dict = model(UpperCAmelCase__ , UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Any = config_and_inputs _lowerCamelCase : Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _snake_case = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _snake_case = False _snake_case = True _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Any = TFLayoutLMModelTester(self) _lowerCamelCase : List[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Any = TFLayoutLMModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @unittest.skip("""Onnx compliancy broke with TF 2.10""") def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: """simple docstring""" pass def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowerCamelCase : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowerCamelCase : int = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowerCamelCase : str = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowerCamelCase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" _lowerCamelCase : List[Any] = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""") _lowerCamelCase : int = prepare_layoutlm_batch_inputs() # forward pass _lowerCamelCase : Dict = model(input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) # test the sequence output on [0, :3, :3] _lowerCamelCase : Tuple = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-3)) # test the pooled output on [1, :3] _lowerCamelCase : Dict = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , UpperCAmelCase__ , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2) _lowerCamelCase : int = prepare_layoutlm_batch_inputs() # forward pass _lowerCamelCase : Tuple = model( input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=tf.convert_to_tensor([1, 1]) , ) # test whether we get a loss as a scalar _lowerCamelCase : Optional[Any] = outputs.loss _lowerCamelCase : Optional[int] = (2,) self.assertEqual(loss.shape , UpperCAmelCase__) # test the shape of the logits _lowerCamelCase : Union[str, Any] = outputs.logits _lowerCamelCase : Optional[int] = (2, 2) self.assertEqual(logits.shape , UpperCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" _lowerCamelCase : List[str] = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13) _lowerCamelCase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowerCamelCase : Tuple = model( input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) # test the shape of the logits _lowerCamelCase : str = outputs.logits _lowerCamelCase : List[str] = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape , UpperCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""") _lowerCamelCase : str = prepare_layoutlm_batch_inputs() # forward pass _lowerCamelCase : Union[str, Any] = model(input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) # test the shape of the logits _lowerCamelCase : Optional[int] = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape , UpperCAmelCase__) self.assertEqual(outputs.end_logits.shape , UpperCAmelCase__)
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] = None , ) ->Optional[Any]: """simple docstring""" super().__init__() self.register_modules(transformer=snake_case__ , vae=snake_case__ , scheduler=snake_case__) # create a imagenet -> id dictionary for easier use _lowerCamelCase : Union[str, Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""","""): _lowerCamelCase : Optional[int] = int(snake_case__) _lowerCamelCase : Optional[Any] = dict(sorted(self.labels.items())) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" if not isinstance(snake_case__ , snake_case__): _lowerCamelCase : int = list(snake_case__) for l in label: if l not in self.labels: raise ValueError( F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple = 4.0 , _UpperCamelCase : int = None , _UpperCamelCase : List[str] = 50 , _UpperCamelCase : Any = "pil" , _UpperCamelCase : Dict = True , ) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = len(snake_case__) _lowerCamelCase : Any = self.transformer.config.sample_size _lowerCamelCase : List[Any] = self.transformer.config.in_channels _lowerCamelCase : List[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=snake_case__ , device=self.device , dtype=self.transformer.dtype , ) _lowerCamelCase : str = torch.cat([latents] * 2) if guidance_scale > 1 else latents _lowerCamelCase : List[str] = torch.tensor(snake_case__ , device=self.device).reshape(-1) _lowerCamelCase : Optional[Any] = torch.tensor([1000] * batch_size , device=self.device) _lowerCamelCase : int = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(snake_case__) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: _lowerCamelCase : Optional[Any] = latent_model_input[: len(snake_case__) // 2] _lowerCamelCase : Tuple = torch.cat([half, half] , dim=0) _lowerCamelCase : Optional[int] = self.scheduler.scale_model_input(snake_case__ , snake_case__) _lowerCamelCase : Union[str, Any] = t if not torch.is_tensor(snake_case__): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowerCamelCase : Any = latent_model_input.device.type == "mps" if isinstance(snake_case__ , snake_case__): _lowerCamelCase : Tuple = torch.floataa if is_mps else torch.floataa else: _lowerCamelCase : Tuple = torch.intaa if is_mps else torch.intaa _lowerCamelCase : List[Any] = torch.tensor([timesteps] , dtype=snake_case__ , device=latent_model_input.device) elif len(timesteps.shape) == 0: _lowerCamelCase : Dict = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCamelCase : Optional[int] = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output _lowerCamelCase : Optional[Any] = self.transformer( snake_case__ , timestep=snake_case__ , class_labels=snake_case__).sample # perform guidance if guidance_scale > 1: _lowerCamelCase : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowerCamelCase : Dict = torch.split(snake_case__ , len(snake_case__) // 2 , dim=0) _lowerCamelCase : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowerCamelCase : Tuple = torch.cat([half_eps, half_eps] , dim=0) _lowerCamelCase : Optional[int] = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowerCamelCase : Dict = torch.split(snake_case__ , snake_case__ , dim=1) else: _lowerCamelCase : str = noise_pred # compute previous image: x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step(snake_case__ , snake_case__ , snake_case__).prev_sample if guidance_scale > 1: _lowerCamelCase : Any = latent_model_input.chunk(2 , dim=0) else: _lowerCamelCase : List[str] = latent_model_input _lowerCamelCase : Any = 1 / self.vae.config.scaling_factor * latents _lowerCamelCase : Dict = self.vae.decode(snake_case__).sample _lowerCamelCase : Dict = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCamelCase : Tuple = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": _lowerCamelCase : Tuple = self.numpy_to_pil(snake_case__) if not return_dict: return (samples,) return ImagePipelineOutput(images=snake_case__)
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase : int =TypeVar("_T") class __snake_case ( Generic[_T] ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : List[Any] = None) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = list(iterable or []) _lowerCamelCase : str = [] def __len__( self : Dict) ->Union[str, Any]: """simple docstring""" return len(self._stacka) + len(self._stacka) def __repr__( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" return F"""Queue({tuple(self._stacka[::-1] + self._stacka)})""" def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int) ->Tuple: """simple docstring""" self._stacka.append(SCREAMING_SNAKE_CASE_) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Optional[int] = self._stacka.pop _lowerCamelCase : List[str] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop()) if not self._stacka: raise IndexError("""Queue is empty""") return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __snake_case ( _snake_case ): '''simple docstring''' _snake_case = """pix2struct_text_model""" _snake_case = ["""past_key_values"""] _snake_case = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , _UpperCamelCase : List[str]=5_0244 , _UpperCamelCase : str=768 , _UpperCamelCase : Union[str, Any]=64 , _UpperCamelCase : Optional[int]=2048 , _UpperCamelCase : Optional[int]=12 , _UpperCamelCase : Dict=12 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : Dict=128 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Any=1E-6 , _UpperCamelCase : List[Any]=1.0 , _UpperCamelCase : Any="gelu_new" , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=False , _UpperCamelCase : Tuple=0 , _UpperCamelCase : Tuple=1 , _UpperCamelCase : List[str]=False , _UpperCamelCase : List[str]=True , **_UpperCamelCase : str , ) ->str: """simple docstring""" _lowerCamelCase : int = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : int = d_kv _lowerCamelCase : Any = d_ff _lowerCamelCase : int = num_layers _lowerCamelCase : List[str] = num_heads _lowerCamelCase : Any = relative_attention_num_buckets _lowerCamelCase : Union[str, Any] = relative_attention_max_distance _lowerCamelCase : str = dropout_rate _lowerCamelCase : str = layer_norm_epsilon _lowerCamelCase : Optional[Any] = initializer_factor _lowerCamelCase : Any = use_cache _lowerCamelCase : Dict = eos_token_id _lowerCamelCase : Dict = decoder_start_token_id # for backwards compatibility _lowerCamelCase : List[str] = dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , _UpperCamelCase : Any , **_UpperCamelCase : Optional[int]) ->Tuple: """simple docstring""" cls._set_token_in_kwargs(snake_case_) _lowerCamelCase : Dict = cls.get_config_dict(snake_case_ , **snake_case_) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""") == "pix2struct": _lowerCamelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(snake_case_ , **snake_case_) class __snake_case ( _snake_case ): '''simple docstring''' _snake_case = """pix2struct_vision_model""" def __init__( self : Optional[int] , _UpperCamelCase : List[Any]=768 , _UpperCamelCase : str=768 , _UpperCamelCase : Optional[Any]=2048 , _UpperCamelCase : Union[str, Any]=64 , _UpperCamelCase : Optional[int]=12 , _UpperCamelCase : Tuple=12 , _UpperCamelCase : List[str]="gelu_new" , _UpperCamelCase : str=1E-6 , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : List[Any]=1E-1_0 , _UpperCamelCase : Any=1.0 , _UpperCamelCase : str=4096 , _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : int=128 , **_UpperCamelCase : Any , ) ->Dict: """simple docstring""" super().__init__(**snake_case_) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Dict = patch_embed_hidden_size _lowerCamelCase : Tuple = d_ff _lowerCamelCase : Tuple = dropout_rate _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Any = initializer_range _lowerCamelCase : List[str] = initializer_factor _lowerCamelCase : Tuple = attention_dropout _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : int = dense_act_fn _lowerCamelCase : int = seq_len _lowerCamelCase : Optional[Any] = relative_attention_num_buckets _lowerCamelCase : str = relative_attention_max_distance _lowerCamelCase : List[Any] = d_kv @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , _UpperCamelCase : Tuple , **_UpperCamelCase : str) ->int: """simple docstring""" cls._set_token_in_kwargs(snake_case_) _lowerCamelCase : str = cls.get_config_dict(snake_case_ , **snake_case_) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""") == "pix2struct": _lowerCamelCase : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , """model_type""") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(snake_case_ , **snake_case_) class __snake_case ( _snake_case ): '''simple docstring''' _snake_case = """pix2struct""" _snake_case = True def __init__( self : List[Any] , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=1.0 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Optional[int]=True , **_UpperCamelCase : Optional[Any] , ) ->int: """simple docstring""" super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_) if text_config is None: _lowerCamelCase : List[str] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""") if vision_config is None: _lowerCamelCase : Optional[Any] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""") _lowerCamelCase : Tuple = PixaStructTextConfig(**snake_case_) _lowerCamelCase : Optional[int] = PixaStructVisionConfig(**snake_case_) _lowerCamelCase : List[str] = self.text_config.decoder_start_token_id _lowerCamelCase : List[str] = self.text_config.pad_token_id _lowerCamelCase : Dict = self.text_config.eos_token_id _lowerCamelCase : Union[str, Any] = initializer_factor _lowerCamelCase : str = initializer_range _lowerCamelCase : Any = self.initializer_range _lowerCamelCase : Optional[int] = self.initializer_range _lowerCamelCase : List[str] = is_vqa @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , **_UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_) def _SCREAMING_SNAKE_CASE ( self : Any) ->Any: """simple docstring""" _lowerCamelCase : List[str] = copy.deepcopy(self.__dict__) _lowerCamelCase : str = self.text_config.to_dict() _lowerCamelCase : Optional[int] = self.vision_config.to_dict() _lowerCamelCase : Optional[int] = self.__class__.model_type return output
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : str=13 , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Any=99 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : Any=4 , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : List[Any]=512 , _UpperCamelCase : Optional[Any]=16 , _UpperCamelCase : int=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Any=3 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Optional[Any]=None , ) ->Any: """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : List[Any] = use_input_mask _lowerCamelCase : Union[str, Any] = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : Dict = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : int = num_choices _lowerCamelCase : Dict = scope def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : Dict = None _lowerCamelCase : List[Any] = None _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = NystromformerModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) _lowerCamelCase : Any = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__) _lowerCamelCase : Any = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any) ->Any: """simple docstring""" _lowerCamelCase : Tuple = NystromformerForMaskedLM(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : List[Any]) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = NystromformerForQuestionAnswering(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : int = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = self.num_labels _lowerCamelCase : Any = NystromformerForSequenceClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : Optional[Any] = NystromformerForTokenClassification(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : int = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Any = self.num_choices _lowerCamelCase : List[str] = NystromformerForMultipleChoice(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() _lowerCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : int = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Union[str, Any] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Dict = self.prepare_config_and_inputs() ( _lowerCamelCase ) : Union[str, Any] = config_and_inputs _lowerCamelCase : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->str: """simple docstring""" _lowerCamelCase : List[Any] = NystromformerModelTester(self) _lowerCamelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = NystromformerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Dict = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): _lowerCamelCase : Tuple = model(UpperCAmelCase__)[0] _lowerCamelCase : int = torch.Size((1, 6, 768)) self.assertEqual(output.shape , UpperCAmelCase__) _lowerCamelCase : Dict = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = '''the [MASK] of Belgium is Brussels''' _lowerCamelCase : Dict = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : Optional[int] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""") _lowerCamelCase : List[Any] = tokenizer(UpperCAmelCase__ , return_tensors="""pt""") with torch.no_grad(): _lowerCamelCase : Optional[int] = model(encoding.input_ids).logits _lowerCamelCase : Tuple = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(UpperCAmelCase__) , """capital""")
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={ "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __snake_case ( __UpperCAmelCase ): '''simple docstring''' _snake_case = "xglm" _snake_case = ["past_key_values"] _snake_case = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , _UpperCamelCase : List[str]=25_6008 , _UpperCamelCase : Any=2048 , _UpperCamelCase : List[str]=1024 , _UpperCamelCase : List[str]=4096 , _UpperCamelCase : List[str]=24 , _UpperCamelCase : List[Any]=16 , _UpperCamelCase : int="gelu" , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : int=True , _UpperCamelCase : List[str]=2 , _UpperCamelCase : List[str]=1 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : int=2 , **_UpperCamelCase : Tuple , ) ->List[Any]: """simple docstring""" _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : str = d_model _lowerCamelCase : Any = ffn_dim _lowerCamelCase : Optional[Any] = num_layers _lowerCamelCase : List[Any] = attention_heads _lowerCamelCase : Optional[Any] = activation_function _lowerCamelCase : Dict = dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : List[str] = activation_dropout _lowerCamelCase : Optional[int] = layerdrop _lowerCamelCase : List[str] = init_std _lowerCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : Union[str, Any] = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCAmelCase : Optional[Any] ={ 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __snake_case ( lowerCamelCase__ ): '''simple docstring''' _snake_case : Dict = 'facebook/nllb-200-distilled-600M' _snake_case : int = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) _snake_case : str = 'translator' _snake_case : List[Any] = AutoTokenizer _snake_case : Optional[Any] = AutoModelForSeqaSeqLM _snake_case : Any = LANGUAGE_CODES _snake_case : Optional[int] = ['text', 'text', 'text'] _snake_case : List[Any] = ['text'] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : Any , _UpperCamelCase : List[Any]) ->int: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(F"""{src_lang} is not a supported language.""") if tgt_lang not in self.lang_to_code: raise ValueError(F"""{tgt_lang} is not a supported language.""") _lowerCamelCase : List[str] = self.lang_to_code[src_lang] _lowerCamelCase : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowerCamelCase , return_tensors="""pt""" , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Optional[Any]) ->int: """simple docstring""" return self.model.generate(**__lowerCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Dict) ->Any: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowerCamelCase)
701
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
0
'''simple docstring''' def A__ ( ): '''simple docstring''' return 1 def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def A__ ( __A ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def A__ ( __A = 200 ): '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCAmelCase : List[str] =logging.get_logger(__name__) class __snake_case ( snake_case__ ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Union[str, Any] , _UpperCamelCase : Any = True , _UpperCamelCase : List[Any] = 1 / 255 , _UpperCamelCase : Tuple = True , _UpperCamelCase : Any = 8 , **_UpperCamelCase : Tuple , ) ->Tuple: """simple docstring""" super().__init__(**lowercase_) _lowerCamelCase : int = do_rescale _lowerCamelCase : Dict = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Dict = pad_size def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] = None , **_UpperCamelCase : Dict) ->Dict: """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[Any] = None) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = get_image_size(lowercase_) _lowerCamelCase : Optional[Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Any = (old_width // size + 1) * size - old_width return pad(lowercase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] = None , _UpperCamelCase : Union[str, Any] = None , _UpperCamelCase : Optional[Any] = None , _UpperCamelCase : Tuple = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Any] = ChannelDimension.FIRST , **_UpperCamelCase : Union[str, Any] , ) ->int: """simple docstring""" _lowerCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : int = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Optional[int] = make_list_of_images(lowercase_) if not valid_images(lowercase_): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(lowercase_) for image in images] if do_rescale: _lowerCamelCase : List[Any] = [self.rescale(image=lowercase_ , scale=lowercase_) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase_ , size=lowercase_) for image in images] _lowerCamelCase : int = [to_channel_dimension_format(lowercase_ , lowercase_) for image in images] _lowerCamelCase : Dict = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_)
703
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
0
from torch import nn class __snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str) ->Union[str, Any]: """simple docstring""" super().__init__() _lowerCamelCase : str = class_size _lowerCamelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _lowerCamelCase : Union[str, Any] = nn.Linear(A_ , A_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[str] = self.mlp(A_) return logits
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
from __future__ import annotations def A__ ( __A ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowerCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowerCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
705
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A__ ( __A ): '''simple docstring''' def wrapper(*__A , **__A ): _lowerCamelCase : int = timeit.default_timer() _lowerCamelCase : Optional[int] = func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[Any] = timeit.default_timer() - starttime return delta _lowerCamelCase : Optional[Any] = func.__name__ return wrapper def A__ ( __A , __A=100 , __A=None ): '''simple docstring''' _lowerCamelCase : str = [] _lowerCamelCase : Dict = seq_shapes or {} for i in range(_SCREAMING_SNAKE_CASE ): _lowerCamelCase : Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_SCREAMING_SNAKE_CASE , _ArrayXD ): _lowerCamelCase : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_SCREAMING_SNAKE_CASE , datasets.Value ): if v.dtype == "string": _lowerCamelCase : Optional[Any] = """The small grey turtle was surprisingly fast when challenged.""" else: _lowerCamelCase : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_SCREAMING_SNAKE_CASE , datasets.Sequence ): while isinstance(_SCREAMING_SNAKE_CASE , datasets.Sequence ): _lowerCamelCase : Dict = v.feature _lowerCamelCase : Dict = seq_shapes[k] _lowerCamelCase : List[Any] = np.random.rand(*_SCREAMING_SNAKE_CASE ).astype(v.dtype ) _lowerCamelCase : Tuple = data dummy_data.append((i, example) ) return dummy_data def A__ ( __A , __A , __A=100 , __A=None ): '''simple docstring''' _lowerCamelCase : str = generate_examples(_SCREAMING_SNAKE_CASE , num_examples=_SCREAMING_SNAKE_CASE , seq_shapes=_SCREAMING_SNAKE_CASE ) with ArrowWriter(features=_SCREAMING_SNAKE_CASE , path=_SCREAMING_SNAKE_CASE ) as writer: for key, record in dummy_data: _lowerCamelCase : Tuple = features.encode_example(_SCREAMING_SNAKE_CASE ) writer.write(_SCREAMING_SNAKE_CASE ) _lowerCamelCase , _lowerCamelCase : Dict = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _lowerCamelCase : List[Any] = datasets.Dataset.from_file(filename=_SCREAMING_SNAKE_CASE , info=datasets.DatasetInfo(features=_SCREAMING_SNAKE_CASE ) ) return dataset
706
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase : List[Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCAmelCase : Any =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A__ ( __A , __A , __A , __A , __A ): for attribute in key.split(""".""" ): _lowerCamelCase : str = getattr(__A , __A ) if weight_type is not None: _lowerCamelCase : List[str] = getattr(__A , __A ).shape else: _lowerCamelCase : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : Any = value elif weight_type == "weight_g": _lowerCamelCase : List[str] = value elif weight_type == "weight_v": _lowerCamelCase : str = value elif weight_type == "bias": _lowerCamelCase : Union[str, Any] = value else: _lowerCamelCase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def A__ ( __A , __A ): _lowerCamelCase : Dict = [] _lowerCamelCase : int = fairseq_model.state_dict() _lowerCamelCase : Any = hf_model.feature_extractor _lowerCamelCase : Dict = hf_model.adapter for name, value in fairseq_dict.items(): _lowerCamelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == """group""" , ) _lowerCamelCase : Union[str, Any] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(__A , __A , __A , __A ) _lowerCamelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCamelCase : Dict = True if "*" in mapped_key: _lowerCamelCase : Union[str, Any] = name.split(__A )[0].split(""".""" )[-2] _lowerCamelCase : Dict = mapped_key.replace("""*""" , __A ) if "weight_g" in name: _lowerCamelCase : Any = """weight_g""" elif "weight_v" in name: _lowerCamelCase : int = """weight_v""" elif "bias" in name: _lowerCamelCase : Any = """bias""" elif "weight" in name: _lowerCamelCase : int = """weight""" else: _lowerCamelCase : int = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def A__ ( __A , __A , __A , __A , __A ): _lowerCamelCase : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] _lowerCamelCase : Union[str, Any] = name.split(""".""" ) _lowerCamelCase : Union[str, Any] = int(items[0] ) _lowerCamelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowerCamelCase : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def A__ ( __A , __A , __A , __A ): _lowerCamelCase : Any = full_name.split("""adaptor.""" )[-1] _lowerCamelCase : Optional[Any] = name.split(""".""" ) if items[1].isdigit(): _lowerCamelCase : Tuple = int(items[1] ) else: _lowerCamelCase : Tuple = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" _lowerCamelCase : List[str] = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" _lowerCamelCase : Dict = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" _lowerCamelCase : List[Any] = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" _lowerCamelCase : Dict = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__A , __A ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" _lowerCamelCase : List[str] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" _lowerCamelCase : Tuple = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__A ) def A__ ( __A ): _lowerCamelCase : Any = emb.weight.shape _lowerCamelCase : Any = nn.Linear(__A , __A , bias=__A ) _lowerCamelCase : Any = emb.weight.data return lin_layer @torch.no_grad() def A__ ( __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): _lowerCamelCase : Tuple = WavaVecaConfig.from_pretrained( __A , add_adapter=__A , adapter_stride=__A , adapter_kernel_size=__A , use_auth_token=__A , output_hidden_size=__A , ) _lowerCamelCase : int = MBartConfig.from_pretrained(__A ) # load model _lowerCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) _lowerCamelCase : Optional[Any] = model[0].eval() # load feature extractor _lowerCamelCase : int = WavaVecaFeatureExtractor.from_pretrained(__A , use_auth_token=__A ) # set weights for wav2vec2 encoder _lowerCamelCase : str = WavaVecaModel(__A ) recursively_load_weights_wavaveca(model.encoder , __A ) # load decoder weights _lowerCamelCase : List[str] = MBartForCausalLM(__A ) _lowerCamelCase : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _lowerCamelCase : Optional[Any] = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Optional[int] = MBartaaTokenizer(__A ) tokenizer.save_pretrained(__A ) _lowerCamelCase : Optional[int] = hf_wavavec.config.to_dict() _lowerCamelCase : Dict = tokenizer.pad_token_id _lowerCamelCase : Union[str, Any] = tokenizer.bos_token_id _lowerCamelCase : Any = tokenizer.eos_token_id _lowerCamelCase : List[str] = """mbart50""" _lowerCamelCase : Optional[Any] = """wav2vec2""" _lowerCamelCase : Optional[int] = tokenizer.eos_token_id _lowerCamelCase : int = 250_004 _lowerCamelCase : List[str] = tokenizer.eos_token_id _lowerCamelCase : Dict = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCAmelCase : Tuple =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
707
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import math def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : Optional[Any] = 2 _lowerCamelCase : Optional[int] = int(math.sqrt(lowerCAmelCase__ ) ) # Size of every segment _lowerCamelCase : Optional[int] = [True] * (end + 1) _lowerCamelCase : str = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase__ ) for i in range(start * start , end + 1 , lowerCAmelCase__ ): _lowerCamelCase : Union[str, Any] = False start += 1 prime += in_prime _lowerCamelCase : List[Any] = end + 1 _lowerCamelCase : Union[str, Any] = min(2 * end , lowerCAmelCase__ ) while low <= n: _lowerCamelCase : Union[str, Any] = [True] * (high - low + 1) for each in in_prime: _lowerCamelCase : Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase__ , high + 1 , lowerCAmelCase__ ): _lowerCamelCase : Optional[Any] = False for j in range(len(lowerCAmelCase__ ) ): if temp[j] is True: prime.append(j + low ) _lowerCamelCase : str = high + 1 _lowerCamelCase : Dict = min(high + end , lowerCAmelCase__ ) return prime print(sieve(10**6))
708
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __snake_case : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Any , ) ->Any: """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : Dict = 13 _lowerCamelCase : Tuple = 7 _lowerCamelCase : Any = True _lowerCamelCase : Tuple = True _lowerCamelCase : Tuple = True _lowerCamelCase : Dict = 99 _lowerCamelCase : List[str] = 32 _lowerCamelCase : int = 2 _lowerCamelCase : Optional[Any] = 4 _lowerCamelCase : Tuple = 37 _lowerCamelCase : Optional[int] = """gelu""" _lowerCamelCase : Union[str, Any] = 0.1 _lowerCamelCase : Tuple = 0.1 _lowerCamelCase : Union[str, Any] = 512 _lowerCamelCase : Any = 16 _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Any = 0.0_2 _lowerCamelCase : List[str] = 3 _lowerCamelCase : int = 4 _lowerCamelCase : Optional[int] = None def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : List[Any] = None if self.use_input_mask: _lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : Any = None _lowerCamelCase : Tuple = None if self.use_labels: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Dict = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: """simple docstring""" ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : int = self.prepare_config_and_inputs() _lowerCamelCase : Tuple = True _lowerCamelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]) ->str: """simple docstring""" _lowerCamelCase : Optional[int] = TFEsmModel(config=lowerCamelCase_) _lowerCamelCase : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : List[str] = model(lowerCamelCase_) _lowerCamelCase : str = [input_ids, input_mask] _lowerCamelCase : str = model(lowerCamelCase_) _lowerCamelCase : Tuple = model(lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Dict , ) ->Tuple: """simple docstring""" _lowerCamelCase : str = True _lowerCamelCase : Any = TFEsmModel(config=lowerCamelCase_) _lowerCamelCase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _lowerCamelCase : List[str] = model(lowerCamelCase_) _lowerCamelCase : Dict = [input_ids, input_mask] _lowerCamelCase : Tuple = model(lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_) # Also check the case where encoder outputs are not passed _lowerCamelCase : str = model(lowerCamelCase_ , attention_mask=lowerCamelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Tuple) ->Dict: """simple docstring""" _lowerCamelCase : Any = TFEsmForMaskedLM(config=lowerCamelCase_) _lowerCamelCase : int = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int) ->str: """simple docstring""" _lowerCamelCase : Optional[int] = self.num_labels _lowerCamelCase : Union[str, Any] = TFEsmForTokenClassification(config=lowerCamelCase_) _lowerCamelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCamelCase : str = model(lowerCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : int = config_and_inputs _lowerCamelCase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case ( a__ , a__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _snake_case = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : Optional[Any] = TFEsmModelTester(self) _lowerCamelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_) def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_) def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = TFEsmModel.from_pretrained(lowerCamelCase_) self.assertIsNotNone(lowerCamelCase_) @unittest.skip("""Protein models do not support embedding resizing.""") def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" pass @unittest.skip("""Protein models do not support embedding resizing.""") def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(lowerCamelCase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCamelCase : Optional[Any] = model.get_bias() assert isinstance(lowerCamelCase_ , lowerCamelCase_) for k, v in name.items(): assert isinstance(lowerCamelCase_ , tf.Variable) else: _lowerCamelCase : int = model.get_output_embeddings() assert x is None _lowerCamelCase : str = model.get_bias() assert name is None @require_tf class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : List[Any] = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""") _lowerCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCamelCase : Dict = model(lowerCamelCase_)[0] _lowerCamelCase : Dict = [1, 6, 33] self.assertEqual(list(output.numpy().shape) , lowerCamelCase_) # compare the actual values for a slice. _lowerCamelCase : Optional[Any] = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""") _lowerCamelCase : int = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) _lowerCamelCase : Union[str, Any] = model(lowerCamelCase_)[0] # compare the actual values for a slice. _lowerCamelCase : int = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
709
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[str] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class __snake_case ( lowercase_ ): '''simple docstring''' _snake_case = '''swinv2''' _snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , _UpperCamelCase : Dict=224 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : List[str]=96 , _UpperCamelCase : str=[2, 2, 6, 2] , _UpperCamelCase : Tuple=[3, 6, 12, 24] , _UpperCamelCase : List[str]=7 , _UpperCamelCase : str=4.0 , _UpperCamelCase : List[str]=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Optional[int]=1E-5 , _UpperCamelCase : Dict=32 , **_UpperCamelCase : str , ) ->Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase__) _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : Dict = depths _lowerCamelCase : str = len(UpperCamelCase__) _lowerCamelCase : int = num_heads _lowerCamelCase : Optional[Any] = window_size _lowerCamelCase : Any = mlp_ratio _lowerCamelCase : Dict = qkv_bias _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : str = drop_path_rate _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Optional[int] = use_absolute_embeddings _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : Dict = int(embed_dim * 2 ** (len(UpperCamelCase__) - 1)) _lowerCamelCase : Optional[Any] = (0, 0, 0, 0)
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __snake_case : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : List[str]=13 , _UpperCamelCase : Dict=7 , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Any=True , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Tuple=33 , _UpperCamelCase : Dict=32 , _UpperCamelCase : Optional[int]=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Tuple=37 , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Tuple=512 , _UpperCamelCase : int=16 , _UpperCamelCase : Any=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : int=4 , _UpperCamelCase : Any=None , ) ->int: """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : List[Any] = seq_length _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : str = use_input_mask _lowerCamelCase : int = use_token_type_ids _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : int = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Optional[int] = type_vocab_size _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : List[str] = num_labels _lowerCamelCase : Any = num_choices _lowerCamelCase : Optional[Any] = scope def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : Optional[Any] = None if self.use_input_mask: _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : str = None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Any = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = EsmModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() _lowerCamelCase : str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_) _lowerCamelCase : List[Any] = model(lowerCAmelCase_) _lowerCamelCase : Dict = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Dict) ->Any: """simple docstring""" _lowerCamelCase : Tuple = EsmForMaskedLM(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() _lowerCamelCase : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Tuple) ->str: """simple docstring""" _lowerCamelCase : str = self.num_labels _lowerCamelCase : Tuple = EsmForTokenClassification(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() _lowerCamelCase : Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Tuple = config_and_inputs _lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = False _snake_case = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _snake_case = () _snake_case = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Dict = EsmModelTester(self) _lowerCamelCase : Any = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : int = type self.model_tester.create_and_check_model(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : str = EsmModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] _lowerCamelCase : Optional[Any] = EsmEmbeddings(config=lowerCAmelCase_) _lowerCamelCase : int = torch.as_tensor([[12, 31, 13, model.padding_idx]]) _lowerCamelCase : Union[str, Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ]) _lowerCamelCase : Tuple = create_position_ids_from_input_ids(lowerCAmelCase_ , model.padding_idx) self.assertEqual(position_ids.shape , expected_positions.shape) self.assertTrue(torch.all(torch.eq(lowerCAmelCase_ , lowerCAmelCase_))) def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0] _lowerCamelCase : int = EsmEmbeddings(config=lowerCAmelCase_) _lowerCamelCase : List[str] = torch.empty(2 , 4 , 30) _lowerCamelCase : List[str] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _lowerCamelCase : List[Any] = torch.as_tensor([expected_single_positions, expected_single_positions]) _lowerCamelCase : Optional[int] = embeddings.create_position_ids_from_inputs_embeds(lowerCAmelCase_) self.assertEqual(position_ids.shape , expected_positions.shape) self.assertTrue(torch.all(torch.eq(lowerCAmelCase_ , lowerCAmelCase_))) @unittest.skip("""Esm does not support embedding resizing""") def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""") def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" pass @require_torch class __snake_case ( __UpperCAmelCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: """simple docstring""" with torch.no_grad(): _lowerCamelCase : int = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""") model.eval() _lowerCamelCase : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]]) _lowerCamelCase : Union[str, Any] = model(lowerCAmelCase_)[0] _lowerCamelCase : str = 33 _lowerCamelCase : Optional[Any] = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape , lowerCAmelCase_) _lowerCamelCase : Any = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: """simple docstring""" with torch.no_grad(): _lowerCamelCase : List[str] = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""") model.eval() _lowerCamelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) _lowerCamelCase : Optional[Any] = model(lowerCAmelCase_)[0] # compare the actual values for a slice. _lowerCamelCase : str = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4))
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=13 , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : Dict=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=99 , _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : List[Any]=5 , _UpperCamelCase : Dict=4 , _UpperCamelCase : List[str]=37 , _UpperCamelCase : int="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : int=512 , _UpperCamelCase : int=16 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : List[str]=0.0_2 , _UpperCamelCase : Any=4 , ) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : str = is_training _lowerCamelCase : Dict = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : int = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Optional[int] = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Optional[Any] = num_choices def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : List[str] = None if self.use_attention_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : str = None if self.use_token_type_ids: _lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : int = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : Any) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict) ->Any: """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase : Optional[int] = config_and_inputs _lowerCamelCase : List[str] = True _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __snake_case ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Dict = FlaxRobertaPreLayerNormModelTester(self) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase : Tuple = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_UpperCAmelCase) _lowerCamelCase : List[Any] = model(np.ones((1, 1))) self.assertIsNotNone(_UpperCAmelCase) @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : List[str] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_UpperCAmelCase) _lowerCamelCase : Optional[int] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa) _lowerCamelCase : Dict = model(_UpperCAmelCase)[0] _lowerCamelCase : Any = [1, 11, 5_0265] self.assertEqual(list(output.shape) , _UpperCAmelCase) # compare the actual values for a slice. _lowerCamelCase : int = np.array( [[[40.4880, 18.0199, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 10.7085], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: """simple docstring""" _lowerCamelCase : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_UpperCAmelCase) _lowerCamelCase : str = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa) _lowerCamelCase : Optional[Any] = model(_UpperCAmelCase)[0] # compare the actual values for a slice. _lowerCamelCase : Union[str, Any] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4))
712
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A__ ( __A=None , __A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCAmelCase__ ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case = field( default=_a , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case = field( default=_a , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case = field( default=_a , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case = field( default=_a , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case = field( default=_a , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case = list_field( default=_a , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def A__ ( __A ): '''simple docstring''' try: int(UpperCAmelCase__ ) return True except ValueError: return False def A__ ( __A ): '''simple docstring''' try: float(UpperCAmelCase__ ) return True except ValueError: return False class __snake_case : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = args _lowerCamelCase : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline="""""") as csv_file: _lowerCamelCase : Optional[int] = csv.DictReader(_A) for row in reader: _lowerCamelCase : List[str] = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""])) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""])) if can_convert_to_int(row["""result"""]): # value is not None _lowerCamelCase : List[Any] = int(row["""result"""]) elif can_convert_to_float(row["""result"""]): # value is not None _lowerCamelCase : str = float(row["""result"""]) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = plt.subplots() _lowerCamelCase : Tuple = """Time usage""" if self.args.is_time else """Memory usage""" _lowerCamelCase : Union[str, Any] = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""") ax.set_yscale("""log""") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): _lowerCamelCase : Optional[int] = sorted(set(self.result_dict[model_name]["""bsz"""])) _lowerCamelCase : Any = sorted(set(self.result_dict[model_name]["""seq_len"""])) _lowerCamelCase : Optional[int] = self.result_dict[model_name]["""result"""] ((_lowerCamelCase) , (_lowerCamelCase)) : Dict = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _lowerCamelCase : str = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _lowerCamelCase : Union[str, Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_A , ) else: _lowerCamelCase : List[str] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_lowerCamelCase) , (_lowerCamelCase)) : Any = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _lowerCamelCase : Optional[int] = np.asarray(_A , _A)[: len(_A)] plt.scatter( _A , _A , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""") plt.plot(_A , _A , """--""") title_str += F""" {label_model_name} vs.""" _lowerCamelCase : int = title_str[:-4] _lowerCamelCase : Tuple = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(_A) plt.xlabel(_A) plt.ylabel(_A) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = HfArgumentParser(UpperCAmelCase__ ) _lowerCamelCase : str = parser.parse_args_into_dataclasses()[0] _lowerCamelCase : List[Any] = Plot(args=UpperCAmelCase__ ) plot.plot() if __name__ == "__main__": main()
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[str] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCAmelCase : Tuple ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowerCAmelCase : Any ={"facebook/blenderbot-3B": 128} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] _snake_case = BlenderbotTokenizer def __init__( self : str , _UpperCamelCase : Any=None , _UpperCamelCase : int=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : List[Any]="replace" , _UpperCamelCase : int="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Dict="</s>" , _UpperCamelCase : Any="<s>" , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : Dict="<pad>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : List[str]=False , _UpperCamelCase : Union[str, Any]=True , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]: """simple docstring""" super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , __UpperCamelCase) != add_prefix_space: _lowerCamelCase : Tuple = getattr(__UpperCamelCase , pre_tok_state.pop("""type""")) _lowerCamelCase : Tuple = add_prefix_space _lowerCamelCase : str = pre_tok_class(**__UpperCamelCase) _lowerCamelCase : str = add_prefix_space _lowerCamelCase : List[Any] = """post_processor""" _lowerCamelCase : Optional[Any] = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : int = tuple(state["""sep"""]) if "cls" in state: _lowerCamelCase : str = tuple(state["""cls"""]) _lowerCamelCase : Any = False if state.get("""add_prefix_space""" , __UpperCamelCase) != add_prefix_space: _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : int = True if state.get("""trim_offsets""" , __UpperCamelCase) != trim_offsets: _lowerCamelCase : int = trim_offsets _lowerCamelCase : Union[str, Any] = True if changes_to_apply: _lowerCamelCase : List[str] = getattr(__UpperCamelCase , state.pop("""type""")) _lowerCamelCase : Union[str, Any] = component_class(**__UpperCamelCase) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase) if isinstance(__UpperCamelCase , __UpperCamelCase) else value _lowerCamelCase : int = value def _SCREAMING_SNAKE_CASE ( self : Tuple , *_UpperCamelCase : Dict , **_UpperCamelCase : Optional[int]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , __UpperCamelCase) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , *_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any]) ->Tuple: """simple docstring""" _lowerCamelCase : str = kwargs.get("""is_split_into_words""" , __UpperCamelCase) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase) return tuple(__UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->int: """simple docstring""" _lowerCamelCase : int = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->Optional[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : "Conversation") ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase) _lowerCamelCase : Dict = """ """.join(__UpperCamelCase) _lowerCamelCase : Union[str, Any] = self.encode(__UpperCamelCase) if len(__UpperCamelCase) > self.model_max_length: _lowerCamelCase : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""") return input_ids
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
def A__ ( __A = 10 , __A = 22 ): '''simple docstring''' _lowerCamelCase : List[str] = range(1 , _UpperCamelCase ) _lowerCamelCase : List[str] = range(1 , _UpperCamelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase : Tuple ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any ={ """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Tuple ={ """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } lowerCAmelCase : List[Any] ={ """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class __snake_case ( __UpperCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ElectraTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Tuple="[UNK]" , _UpperCamelCase : Optional[Any]="[SEP]" , _UpperCamelCase : Optional[int]="[PAD]" , _UpperCamelCase : Tuple="[CLS]" , _UpperCamelCase : Optional[int]="[MASK]" , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , _UpperCamelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , _UpperCamelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _UpperCamelCase) != tokenize_chinese_chars ): _lowerCamelCase : List[Any] = getattr(_UpperCamelCase , normalizer_state.pop("""type""")) _lowerCamelCase : List[str] = do_lower_case _lowerCamelCase : Optional[int] = strip_accents _lowerCamelCase : Optional[int] = tokenize_chinese_chars _lowerCamelCase : List[str] = normalizer_class(**_UpperCamelCase) _lowerCamelCase : int = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] = None) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[str] = [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int , _UpperCamelCase : str = None) ->str: """simple docstring""" _lowerCamelCase : List[Any] = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase) return tuple(_UpperCamelCase)
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase : Dict =False lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : str ="ybelkada/fonts" def A__ ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ """Pix2StructImageProcessor. Please upgrade torch.""" ) def A__ ( __A , __A , __A ): '''simple docstring''' requires_backends(__A , ["""torch"""] ) _check_torch_version() _lowerCamelCase : Optional[int] = image_tensor.unsqueeze(0 ) _lowerCamelCase : Optional[int] = torch.nn.functional.unfold(__A , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _lowerCamelCase : Dict = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __A , __A , -1 ) _lowerCamelCase : str = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def A__ ( __A , __A = 36 , __A = "black" , __A = "white" , __A = 5 , __A = 5 , __A = 5 , __A = 5 , __A = None , __A = None , ): '''simple docstring''' requires_backends(__A , """vision""" ) # Add new lines so that each line is no more than 80 characters. _lowerCamelCase : Union[str, Any] = textwrap.TextWrapper(width=80 ) _lowerCamelCase : str = wrapper.wrap(text=__A ) _lowerCamelCase : Dict = '''\n'''.join(__A ) if font_bytes is not None and font_path is None: _lowerCamelCase : Tuple = io.BytesIO(__A ) elif font_path is not None: _lowerCamelCase : str = font_path else: _lowerCamelCase : List[str] = hf_hub_download(__A , """Arial.TTF""" ) _lowerCamelCase : List[Any] = ImageFont.truetype(__A , encoding="""UTF-8""" , size=__A ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowerCamelCase : Union[str, Any] = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , __A ) ) _lowerCamelCase : Union[str, Any] = temp_draw.textbbox((0, 0) , __A , __A ) # Create the actual image with a bit of padding around the text. _lowerCamelCase : Optional[Any] = text_width + left_padding + right_padding _lowerCamelCase : Dict = text_height + top_padding + bottom_padding _lowerCamelCase : Dict = Image.new("""RGB""" , (image_width, image_height) , __A ) _lowerCamelCase : int = ImageDraw.Draw(__A ) draw.text(xy=(left_padding, top_padding) , text=__A , fill=__A , font=__A ) return image def A__ ( __A , __A , **__A ): '''simple docstring''' requires_backends(__A , """vision""" ) # Convert to PIL image if necessary _lowerCamelCase : Union[str, Any] = to_pil_image(__A ) _lowerCamelCase : List[str] = render_text(__A , **__A ) _lowerCamelCase : Union[str, Any] = max(header_image.width , image.width ) _lowerCamelCase : Optional[Any] = int(image.height * (new_width / image.width) ) _lowerCamelCase : Any = int(header_image.height * (new_width / header_image.width) ) _lowerCamelCase : Dict = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _lowerCamelCase : Tuple = to_numpy_array(__A ) if infer_channel_dimension_format(__A ) == ChannelDimension.LAST: _lowerCamelCase : List[Any] = to_channel_dimension_format(__A , ChannelDimension.LAST ) return new_image class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ["flattened_patches"] def __init__( self : Dict , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : int = 2048 , _UpperCamelCase : bool = False , **_UpperCamelCase : Union[str, Any] , ) ->None: """simple docstring""" super().__init__(**lowerCamelCase__) _lowerCamelCase : str = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : int = do_convert_rgb _lowerCamelCase : List[Any] = max_patches _lowerCamelCase : Tuple = is_vqa def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : dict , **_UpperCamelCase : int) ->np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , """torch""") _check_torch_version() # convert to torch _lowerCamelCase : Optional[int] = to_channel_dimension_format(lowerCamelCase__ , ChannelDimension.FIRST) _lowerCamelCase : List[Any] = torch.from_numpy(lowerCamelCase__) _lowerCamelCase : Optional[Any] = patch_size['''height'''], patch_size['''width'''] _lowerCamelCase : int = get_image_size(lowerCamelCase__) # maximize scale s.t. _lowerCamelCase : Optional[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) _lowerCamelCase : Dict = max(min(math.floor(scale * image_height / patch_height) , lowerCamelCase__) , 1) _lowerCamelCase : Union[str, Any] = max(min(math.floor(scale * image_width / patch_width) , lowerCamelCase__) , 1) _lowerCamelCase : List[Any] = max(num_feasible_rows * patch_height , 1) _lowerCamelCase : Any = max(num_feasible_cols * patch_width , 1) _lowerCamelCase : Dict = torch.nn.functional.interpolate( image.unsqueeze(0) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=lowerCamelCase__ , antialias=lowerCamelCase__ , ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] _lowerCamelCase : str = torch_extract_patches(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) _lowerCamelCase : int = patches.shape _lowerCamelCase : Tuple = patches_shape[1] _lowerCamelCase : Tuple = patches_shape[2] _lowerCamelCase : Tuple = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowerCamelCase : Tuple = patches.reshape([rows * columns, depth]) # [rows * columns, 1] _lowerCamelCase : int = torch.arange(lowerCamelCase__).reshape([rows, 1]).repeat(1 , lowerCamelCase__).reshape([rows * columns, 1]) _lowerCamelCase : Union[str, Any] = torch.arange(lowerCamelCase__).reshape([1, columns]).repeat(lowerCamelCase__ , 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowerCamelCase : Any = row_ids.to(torch.floataa) _lowerCamelCase : Any = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowerCamelCase : Union[str, Any] = torch.cat([row_ids, col_ids, patches] , -1) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowerCamelCase : List[str] = torch.nn.functional.pad(lowerCamelCase__ , [0, 0, 0, max_patches - (rows * columns)]).float() _lowerCamelCase : Any = to_numpy_array(lowerCamelCase__) return result def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str]) ->np.ndarray: """simple docstring""" if image.dtype == np.uinta: _lowerCamelCase : List[str] = image.astype(np.floataa) # take mean across the whole `image` _lowerCamelCase : Dict = np.mean(lowerCamelCase__) _lowerCamelCase : Dict = np.std(lowerCamelCase__) _lowerCamelCase : str = max(lowerCamelCase__ , 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , **lowerCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Dict[str, int]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : Tuple , ) ->ImageInput: """simple docstring""" _lowerCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase : Any = patch_size if patch_size is not None else self.patch_size _lowerCamelCase : Dict = max_patches if max_patches is not None else self.max_patches _lowerCamelCase : Optional[Any] = self.is_vqa if kwargs.get("""data_format""" , lowerCamelCase__) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """) _lowerCamelCase : Optional[int] = make_list_of_images(lowerCamelCase__) if not valid_images(lowerCamelCase__): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase : Union[str, Any] = [convert_to_rgb(lowerCamelCase__) for image in images] # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(lowerCamelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""") _lowerCamelCase : Optional[int] = kwargs.pop("""font_bytes""" , lowerCamelCase__) _lowerCamelCase : Any = kwargs.pop("""font_path""" , lowerCamelCase__) if isinstance(lowerCamelCase__ , lowerCamelCase__): _lowerCamelCase : Union[str, Any] = [header_text] * len(lowerCamelCase__) _lowerCamelCase : Dict = [ render_header(lowerCamelCase__ , header_text[i] , font_bytes=lowerCamelCase__ , font_path=lowerCamelCase__) for i, image in enumerate(lowerCamelCase__) ] if do_normalize: _lowerCamelCase : Tuple = [self.normalize(image=lowerCamelCase__) for image in images] # convert to torch tensor and permute _lowerCamelCase : List[Any] = [ self.extract_flattened_patches(image=lowerCamelCase__ , max_patches=lowerCamelCase__ , patch_size=lowerCamelCase__) for image in images ] # create attention mask in numpy _lowerCamelCase : Tuple = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] _lowerCamelCase : List[str] = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=lowerCamelCase__) return encoded_outputs
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : str , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : str=30 , _UpperCamelCase : Any=400 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=0.9 , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Dict=[0.5, 0.5, 0.5] , _UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , ) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 30} _lowerCamelCase : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} _lowerCamelCase : List[str] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : str = num_channels _lowerCamelCase : Any = min_resolution _lowerCamelCase : Optional[int] = max_resolution _lowerCamelCase : Dict = do_resize_and_center_crop _lowerCamelCase : Optional[Any] = size _lowerCamelCase : List[Any] = crop_pct _lowerCamelCase : List[str] = crop_size _lowerCamelCase : List[str] = do_normalize _lowerCamelCase : Dict = image_mean _lowerCamelCase : Tuple = image_std def _SCREAMING_SNAKE_CASE ( self : Any) ->Any: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __snake_case ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' _snake_case = PoolFormerImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" _lowerCamelCase : Any = PoolFormerImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCamelCase , """do_resize_and_center_crop""")) self.assertTrue(hasattr(_UpperCamelCase , """size""")) self.assertTrue(hasattr(_UpperCamelCase , """crop_pct""")) self.assertTrue(hasattr(_UpperCamelCase , """do_normalize""")) self.assertTrue(hasattr(_UpperCamelCase , """image_mean""")) self.assertTrue(hasattr(_UpperCamelCase , """image_std""")) def _SCREAMING_SNAKE_CASE ( self : int) ->List[str]: """simple docstring""" _lowerCamelCase : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 30}) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30}) _lowerCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCamelCase : List[Any] = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray) # Test not batched input _lowerCamelCase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCamelCase : int = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCamelCase : Any = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
import pytest import datasets # Import fixture modules as plugins lowerCAmelCase : Any =["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def A__ ( __A , __A ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def A__ ( __A ): '''simple docstring''' config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=UpperCamelCase__ ) def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = tmp_path_factory.getbasetemp() / """cache""" _lowerCamelCase : str = test_hf_cache_home / """datasets""" _lowerCamelCase : str = test_hf_cache_home / """metrics""" _lowerCamelCase : Optional[int] = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(UpperCamelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(UpperCamelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(UpperCamelCase__ ) ) _lowerCamelCase : int = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(UpperCamelCase__ ) ) _lowerCamelCase : List[str] = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(UpperCamelCase__ ) ) @pytest.fixture(autouse=UpperCamelCase__ , scope="""session""" ) def A__ ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase__ ) def A__ ( __A ): '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , UpperCamelCase__ ) @pytest.fixture def A__ ( __A ): '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , UpperCamelCase__ )
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' from __future__ import annotations def A__ ( __A , __A ): '''simple docstring''' if len(lowerCamelCase__ ) == 0: return False _lowerCamelCase : Tuple = len(lowerCamelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCamelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase : Dict =input("Enter numbers separated by comma:\n").strip() lowerCAmelCase : List[str] =[int(item.strip()) for item in user_input.split(",")] lowerCAmelCase : List[str] =int(input("Enter the number to be found in the list:\n").strip()) lowerCAmelCase : Union[str, Any] ="" if binary_search(sequence, target) else "not " print(F"""{target} was {not_str}found in {sequence}""")
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
from collections import defaultdict def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 1 _lowerCamelCase : str = True for v in tree[start]: if v not in visited: ret += dfs(__A ) if ret % 2 == 0: cuts.append(__A ) return ret def A__ ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": lowerCAmelCase , lowerCAmelCase : Union[str, Any] =10, 9 lowerCAmelCase : List[str] =defaultdict(list) lowerCAmelCase : Union[str, Any] ={} lowerCAmelCase : List[Any] =[] lowerCAmelCase : List[str] =0 lowerCAmelCase : Optional[Any] =[(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
import argparse import struct import unittest class __snake_case : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : bytes) ->None: """simple docstring""" _lowerCamelCase : str = data # Initialize hash values _lowerCamelCase : Any = [ 0x6a09_e667, 0xbb67_ae85, 0x3c6e_f372, 0xa54f_f53a, 0x510e_527f, 0x9b05_688c, 0x1f83_d9ab, 0x5be0_cd19, ] # Initialize round constants _lowerCamelCase : int = [ 0x428a_2f98, 0x7137_4491, 0xb5c0_fbcf, 0xe9b5_dba5, 0x3956_c25b, 0x59f1_11f1, 0x923f_82a4, 0xab1c_5ed5, 0xd807_aa98, 0x1283_5b01, 0x2431_85be, 0x550c_7dc3, 0x72be_5d74, 0x80de_b1fe, 0x9bdc_06a7, 0xc19b_f174, 0xe49b_69c1, 0xefbe_4786, 0x0fc1_9dc6, 0x240c_a1cc, 0x2de9_2c6f, 0x4a74_84aa, 0x5cb0_a9dc, 0x76f9_88da, 0x983e_5152, 0xa831_c66d, 0xb003_27c8, 0xbf59_7fc7, 0xc6e0_0bf3, 0xd5a7_9147, 0x06ca_6351, 0x1429_2967, 0x27b7_0a85, 0x2e1b_2138, 0x4d2c_6dfc, 0x5338_0d13, 0x650a_7354, 0x766a_0abb, 0x81c2_c92e, 0x9272_2c85, 0xa2bf_e8a1, 0xa81a_664b, 0xc24b_8b70, 0xc76c_51a3, 0xd192_e819, 0xd699_0624, 0xf40e_3585, 0x106a_a070, 0x19a4_c116, 0x1e37_6c08, 0x2748_774c, 0x34b0_bcb5, 0x391c_0cb3, 0x4ed8_aa4a, 0x5b9c_ca4f, 0x682e_6ff3, 0x748f_82ee, 0x78a5_636f, 0x84c8_7814, 0x8cc7_0208, 0x90be_fffa, 0xa450_6ceb, 0xbef9_a3f7, 0xc671_78f2, ] _lowerCamelCase : Union[str, Any] = self.preprocessing(self.data) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : bytes) ->bytes: """simple docstring""" _lowerCamelCase : Optional[int] = b"""\x80""" + (b"""\x00""" * (63 - (len(_UpperCamelCase) + 8) % 64)) _lowerCamelCase : List[Any] = struct.pack(""">Q""" , (len(_UpperCamelCase) * 8)) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->None: """simple docstring""" _lowerCamelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCamelCase : Dict = list(struct.unpack(""">16L""" , _UpperCamelCase)) # add 48 0-ed integers words += [0] * 48 _lowerCamelCase : Optional[int] = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCamelCase : Tuple = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) _lowerCamelCase : Any = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) _lowerCamelCase : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCamelCase : Optional[int] = self.ror(_UpperCamelCase , 6) ^ self.ror(_UpperCamelCase , 11) ^ self.ror(_UpperCamelCase , 25) _lowerCamelCase : str = (e & f) ^ ((~e & 0xffff_ffff) & g) _lowerCamelCase : Union[str, Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCamelCase : List[str] = self.ror(_UpperCamelCase , 2) ^ self.ror(_UpperCamelCase , 13) ^ self.ror(_UpperCamelCase , 22) _lowerCamelCase : List[str] = (a & b) ^ (a & c) ^ (b & c) _lowerCamelCase : Dict = (sa + maj) % 0x1_0000_0000 _lowerCamelCase : List[str] = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCamelCase : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values _lowerCamelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes) ] _lowerCamelCase : Union[str, Any] = """""".join([hex(_UpperCamelCase)[2:].zfill(8) for value in self.hashes]) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int) ->int: """simple docstring""" return 0xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->None: """simple docstring""" import hashlib _lowerCamelCase : str = bytes("""Test String""" , """utf-8""") self.assertEqual(SHAaaa(_UpperCamelCase).hash , hashlib.shaaaa(_UpperCamelCase).hexdigest()) def A__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : Union[str, Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _lowerCamelCase : Tuple = f.read() else: _lowerCamelCase : List[Any] = bytes(__A , """utf-8""" ) print(SHAaaa(__A ).hash ) if __name__ == "__main__": main()
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase : List[str] =["text", "image", "audio"] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(__A , __A ): inputs.append(create_inputs(__A ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[str] = [] for output in outputs: if isinstance(__A , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__A , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__A , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class __snake_case : '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""")) self.assertTrue(hasattr(self.tool , """outputs""")) _lowerCamelCase : Dict = self.tool.inputs for _input in inputs: if isinstance(_input , _UpperCamelCase): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) _lowerCamelCase : Union[str, Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def _SCREAMING_SNAKE_CASE ( self : str) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = create_inputs(self.tool.inputs) _lowerCamelCase : Optional[int] = self.tool(*_UpperCamelCase) # There is a single output if len(self.tool.outputs) == 1: _lowerCamelCase : Optional[Any] = [outputs] self.assertListEqual(output_types(_UpperCamelCase) , self.tool.outputs) def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""")) self.assertTrue(hasattr(self.tool , """default_checkpoint""")) self.assertTrue(self.tool.description.startswith("""This is a tool that""")) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" _lowerCamelCase : str = create_inputs(self.tool.inputs) _lowerCamelCase : Union[str, Any] = self.tool(*_UpperCamelCase) if not isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Union[str, Any] = [outputs] self.assertEqual(len(_UpperCamelCase) , len(self.tool.outputs)) for output, output_type in zip(_UpperCamelCase , self.tool.outputs): _lowerCamelCase : str = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : int = create_inputs(self.tool.inputs) _lowerCamelCase : str = [] for _input, input_type in zip(_UpperCamelCase , self.tool.inputs): if isinstance(_UpperCamelCase , _UpperCamelCase): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error _lowerCamelCase : Tuple = self.tool(*_UpperCamelCase) if not isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : int = [outputs] self.assertEqual(len(_UpperCamelCase) , len(self.tool.outputs))
701
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase : List[str] =random.Random() def A__ ( __A , __A=1.0 , __A=None , __A=None ): '''simple docstring''' if rng is None: _lowerCamelCase : str = global_rng _lowerCamelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : str=7 , _UpperCamelCase : Dict=400 , _UpperCamelCase : str=2000 , _UpperCamelCase : str=10 , _UpperCamelCase : Any=160 , _UpperCamelCase : List[Any]=8 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : List[Any]=4000 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Dict=True , ) ->List[Any]: """simple docstring""" _lowerCamelCase : str = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Optional[int] = min_seq_length _lowerCamelCase : Optional[Any] = max_seq_length _lowerCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : Optional[int] = padding_value _lowerCamelCase : Any = sampling_rate _lowerCamelCase : Optional[Any] = return_attention_mask _lowerCamelCase : str = do_normalize _lowerCamelCase : int = feature_size _lowerCamelCase : Dict = chunk_length _lowerCamelCase : Optional[int] = hop_length def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Dict=False , _UpperCamelCase : int=False) ->Union[str, Any]: """simple docstring""" def _flatten(_UpperCamelCase : Optional[Any]): return list(itertools.chain(*_UpperCamelCase)) if equal_length: _lowerCamelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size _lowerCamelCase : Union[str, Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _lowerCamelCase : Dict = [np.asarray(_UpperCamelCase) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = WhisperFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : int = WhisperFeatureExtractionTester(self) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: """simple docstring""" _lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[str] = feat_extract_first.save_pretrained(_UpperCamelCase)[0] check_json_file_has_correct_format(_UpperCamelCase) _lowerCamelCase : Tuple = self.feature_extraction_class.from_pretrained(_UpperCamelCase) _lowerCamelCase : Tuple = feat_extract_first.to_dict() _lowerCamelCase : Any = feat_extract_second.to_dict() _lowerCamelCase : Optional[Any] = feat_extract_first.mel_filters _lowerCamelCase : Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase)) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] = os.path.join(_UpperCamelCase , """feat_extract.json""") feat_extract_first.to_json_file(_UpperCamelCase) _lowerCamelCase : List[str] = self.feature_extraction_class.from_json_file(_UpperCamelCase) _lowerCamelCase : Optional[Any] = feat_extract_first.to_dict() _lowerCamelCase : Dict = feat_extract_second.to_dict() _lowerCamelCase : List[Any] = feat_extract_first.mel_filters _lowerCamelCase : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase)) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _lowerCamelCase : List[Any] = [np.asarray(_UpperCamelCase) for speech_input in speech_inputs] # Test feature size _lowerCamelCase : Tuple = feature_extractor(_UpperCamelCase , padding="""max_length""" , return_tensors="""np""").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input _lowerCamelCase : Tuple = feature_extractor(speech_inputs[0] , return_tensors="""np""").input_features _lowerCamelCase : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""").input_features self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) # Test batched _lowerCamelCase : Dict = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features _lowerCamelCase : Optional[Any] = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) # Test 2-D numpy arrays are batched. _lowerCamelCase : Any = [floats_list((1, x))[0] for x in (800, 800, 800)] _lowerCamelCase : Tuple = np.asarray(_UpperCamelCase) _lowerCamelCase : List[str] = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features _lowerCamelCase : List[str] = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) # Test truncation required _lowerCamelCase : Union[str, Any] = [floats_list((1, x))[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200)] _lowerCamelCase : Optional[int] = [np.asarray(_UpperCamelCase) for speech_input in speech_inputs] _lowerCamelCase : List[str] = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase : int = [np.asarray(_UpperCamelCase) for speech_input in speech_inputs_truncated] _lowerCamelCase : Tuple = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features _lowerCamelCase : Dict = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: """simple docstring""" import torch _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _lowerCamelCase : int = np.random.rand(100 , 32).astype(np.floataa) _lowerCamelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : List[str] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""") self.assertTrue(np_processed.input_features.dtype == np.floataa) _lowerCamelCase : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""") # automatic decoding with librispeech _lowerCamelCase : Any = ds.sort("""id""").select(range(_UpperCamelCase))[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ]) # fmt: on _lowerCamelCase : Union[str, Any] = self._load_datasamples(1) _lowerCamelCase : Dict = WhisperFeatureExtractor() _lowerCamelCase : Any = feature_extractor(_UpperCamelCase , return_tensors="""pt""").input_features self.assertEqual(input_features.shape , (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _UpperCamelCase , atol=1E-4)) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _lowerCamelCase : List[str] = self._load_datasamples(1)[0] _lowerCamelCase : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _lowerCamelCase : Optional[int] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_UpperCamelCase)[0] self.assertTrue(np.all(np.mean(_UpperCamelCase) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(_UpperCamelCase) - 1) < 1E-3))
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase : List[Any] ={ "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A__ ( __A ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A__ ( __A , __A ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Tuple = False elif args.student_type == "gpt2": _lowerCamelCase : Union[str, Any] = False def A__ ( __A , __A ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Dict = False def A__ ( ): '''simple docstring''' _lowerCamelCase : Any = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=__A , required=__A , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=__A , required=__A , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=__A , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__A , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=__A , required=__A , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=__A , type=__A , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__A , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=__A , required=__A , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=__A , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=__A , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=__A , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=__A , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=__A , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=__A , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=__A , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=__A , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=__A , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=__A , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=__A , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=__A , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=__A , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=__A , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__A , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=__A , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__A , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5E-4 , type=__A , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__A , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__A , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=__A , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__A , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=__A , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=__A , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=__A , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=__A , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=__A , default=4_000 , help="""Checkpoint interval.""" ) _lowerCamelCase : Dict = parser.parse_args() sanity_checks(__A ) # ARGS # init_gpu_params(__A ) set_seed(__A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(__A ) , __A , indent=4 ) git_log(args.dump_path ) _lowerCamelCase : List[str] = MODEL_CLASSES[args.student_type] _lowerCamelCase : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCamelCase : Dict = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCamelCase : str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCamelCase : Union[str, Any] = tokenizer.all_special_tokens.index(__A ) _lowerCamelCase : Optional[int] = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) _lowerCamelCase : List[str] = special_tok_ids _lowerCamelCase : int = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , """rb""" ) as fp: _lowerCamelCase : Dict = pickle.load(__A ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , """rb""" ) as fp: _lowerCamelCase : int = pickle.load(__A ) _lowerCamelCase : List[str] = np.maximum(__A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCamelCase : Tuple = 0.0 # do not predict special tokens _lowerCamelCase : Optional[Any] = torch.from_numpy(__A ) else: _lowerCamelCase : int = None _lowerCamelCase : Tuple = LmSeqsDataset(params=__A , data=__A ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) _lowerCamelCase : Dict = student_config_class.from_pretrained(args.student_config ) _lowerCamelCase : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) _lowerCamelCase : Any = student_model_class.from_pretrained(args.student_pretrained_weights , config=__A ) else: _lowerCamelCase : Dict = student_model_class(__A ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("""Student loaded.""" ) # TEACHER # _lowerCamelCase : Optional[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__A ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__A , __A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__A , __A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCamelCase : Optional[Any] = Distiller( params=__A , dataset=__A , token_probs=__A , student=__A , teacher=__A ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
703
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __snake_case ( __lowerCAmelCase ): '''simple docstring''' @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""") _lowerCamelCase : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""") _lowerCamelCase : Union[str, Any] = bertabert.config.encoder.vocab_size _lowerCamelCase : List[Any] = tokenizer.sep_token_id _lowerCamelCase : Any = tokenizer.cls_token_id _lowerCamelCase : Optional[Any] = 128 _lowerCamelCase : Dict = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""") _lowerCamelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""") _lowerCamelCase : List[Any] = train_dataset.select(range(32)) _lowerCamelCase : Tuple = val_dataset.select(range(16)) _lowerCamelCase : Tuple = 4 def _map_to_encoder_decoder_inputs(_UpperCamelCase : Optional[Any]): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCamelCase : Dict = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCamelCase , max_length=512) _lowerCamelCase : Any = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCamelCase , max_length=128) _lowerCamelCase : Dict = inputs.input_ids _lowerCamelCase : str = inputs.attention_mask _lowerCamelCase : Tuple = outputs.input_ids _lowerCamelCase : Optional[int] = outputs.input_ids.copy() _lowerCamelCase : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _lowerCamelCase : List[str] = outputs.attention_mask assert all(len(_UpperCamelCase) == 512 for x in inputs.input_ids) assert all(len(_UpperCamelCase) == 128 for x in outputs.input_ids) return batch def _compute_metrics(_UpperCamelCase : str): _lowerCamelCase : List[str] = pred.label_ids _lowerCamelCase : str = pred.predictions # all unnecessary tokens are removed _lowerCamelCase : List[str] = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = sum([int(pred_str[i] == label_str[i]) for i in range(len(_UpperCamelCase))]) / len(_UpperCamelCase) return {"accuracy": accuracy} # map train dataset _lowerCamelCase : Any = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCamelCase , batch_size=_UpperCamelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _lowerCamelCase : Tuple = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCamelCase , batch_size=_UpperCamelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _lowerCamelCase : int = self.get_auto_remove_tmp_dir() _lowerCamelCase : Dict = SeqaSeqTrainingArguments( output_dir=_UpperCamelCase , per_device_train_batch_size=_UpperCamelCase , per_device_eval_batch_size=_UpperCamelCase , predict_with_generate=_UpperCamelCase , evaluation_strategy="""steps""" , do_train=_UpperCamelCase , do_eval=_UpperCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowerCamelCase : Dict = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # start training trainer.train()
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase : List[Any] =open # noqa: we just need to have a builtin inside this module to test it properly
705
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[str]) ->str: """simple docstring""" _lowerCamelCase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""") _lowerCamelCase : List[Any] = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2) _lowerCamelCase : Tuple = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" for example in examples: _lowerCamelCase : Any = video_classifier(_UpperCamelCase) self.assertEqual( _UpperCamelCase , [ {"""score""": ANY(_UpperCamelCase), """label""": ANY(_UpperCamelCase)}, {"""score""": ANY(_UpperCamelCase), """label""": ANY(_UpperCamelCase)}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _lowerCamelCase : Any = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10}) _lowerCamelCase : str = pipeline( """video-classification""" , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4) _lowerCamelCase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""") _lowerCamelCase : str = video_classifier(_UpperCamelCase , top_k=2) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4) , [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}] , ) _lowerCamelCase : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4) , [ [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" pass
706
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
0
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
707
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase : Tuple ="\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowerCAmelCase : List[Any] ="\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" lowerCAmelCase : Any ="\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" if version.parse(scb.__version__) < version.parse("""1.4.12"""): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""), }) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : int = CHRF.CHAR_ORDER , _UpperCamelCase : int = CHRF.WORD_ORDER , _UpperCamelCase : int = CHRF.BETA , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , ) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = len(references[0]) if any(len(_UpperCamelCase) != references_per_prediction for refs in references): raise ValueError("""Sacrebleu requires the same number of references for each prediction""") _lowerCamelCase : str = [[refs[i] for refs in references] for i in range(_UpperCamelCase)] _lowerCamelCase : List[Any] = CHRF(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = sb_chrf.corpus_score(_UpperCamelCase , _UpperCamelCase) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
708
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : str ={ "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =[ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase : Tuple =sys.version_info >= (3, 10) def A__ ( __A=None , __A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=__A ) @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class __snake_case : '''simple docstring''' _snake_case = False _snake_case = True _snake_case = None class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'titi' _snake_case = 'toto' class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'titi' _snake_case = 'toto' _snake_case = 42 @dataclass class __snake_case : '''simple docstring''' _snake_case = 'toto' def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = BasicEnum(self.foo) @dataclass class __snake_case : '''simple docstring''' _snake_case = 'toto' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = MixedTypeEnum(self.foo) @dataclass class __snake_case : '''simple docstring''' _snake_case = None _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'help message'} ) _snake_case = None _snake_case = list_field(default=[] ) _snake_case = list_field(default=[] ) @dataclass class __snake_case : '''simple docstring''' _snake_case = list_field(default=[] ) _snake_case = list_field(default=[1, 2, 3] ) _snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) _snake_case = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field() _snake_case = field() _snake_case = field() def _SCREAMING_SNAKE_CASE ( self : Dict) ->Any: """simple docstring""" _lowerCamelCase : Dict = BasicEnum(self.required_enum) @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = field() _snake_case = None _snake_case = field(default='toto' , metadata={'help': 'help message'} ) _snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class __snake_case : '''simple docstring''' _snake_case = False _snake_case = True _snake_case = None @dataclass class __snake_case : '''simple docstring''' _snake_case = None _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'help message'} ) _snake_case = None _snake_case = list_field(default=[] ) _snake_case = list_field(default=[] ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser) ->Tuple: """simple docstring""" self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): _lowerCamelCase : Optional[Any] = {k: v for k, v in vars(_UpperCamelCase).items() if k != """container"""} _lowerCamelCase : Any = {k: v for k, v in vars(_UpperCamelCase).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _UpperCamelCase) and yy.get("""choices""" , _UpperCamelCase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_UpperCamelCase) , yy["""type"""](_UpperCamelCase)) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : List[Any] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--bar""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--baz""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--flag""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""") self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (_lowerCamelCase ) : Tuple = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase) self.assertFalse(example.flag) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_UpperCamelCase) expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCamelCase , help="""help message""") self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: """simple docstring""" _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""") expected.add_argument("""--baz""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""") # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_UpperCamelCase , dest="""baz""") expected.add_argument("""--opt""" , type=_UpperCamelCase , default=_UpperCamelCase) _lowerCamelCase : List[str] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase) for dataclass_type in dataclass_types: _lowerCamelCase : Optional[Any] = HfArgumentParser(_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = parser.parse_args([]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : Any = parser.parse_args(["""--foo""", """--no_baz"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : Union[str, Any] = parser.parse_args(["""--foo""", """--baz"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) _lowerCamelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" _lowerCamelCase : int = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42]) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Dict = parser.parse_args([]) self.assertEqual(args.foo , """toto""") _lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) _lowerCamelCase : Tuple = parser.parse_args(["""--foo""", """titi"""]) self.assertEqual(args.foo , """titi""") _lowerCamelCase : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) _lowerCamelCase : List[str] = parser.parse_args(["""--foo""", """42"""]) self.assertEqual(args.foo , 42) _lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" @dataclass class __snake_case : '''simple docstring''' _snake_case = 'toto' _lowerCamelCase : List[Any] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42]) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Tuple = parser.parse_args([]) self.assertEqual(args.foo , """toto""") _lowerCamelCase : Any = parser.parse_args(["""--foo""", """titi"""]) self.assertEqual(args.foo , """titi""") _lowerCamelCase : str = parser.parse_args(["""--foo""", """42"""]) self.assertEqual(args.foo , 42) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_UpperCamelCase) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_UpperCamelCase) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCamelCase) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = parser.parse_args([]) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3]) , ) _lowerCamelCase : Any = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split()) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7])) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_UpperCamelCase , type=_UpperCamelCase) expected.add_argument("""--bar""" , default=_UpperCamelCase , type=_UpperCamelCase , help="""help message""") expected.add_argument("""--baz""" , default=_UpperCamelCase , type=_UpperCamelCase) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_UpperCamelCase) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_UpperCamelCase) _lowerCamelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase) for dataclass_type in dataclass_types: _lowerCamelCase : Tuple = HfArgumentParser(_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = parser.parse_args([]) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[])) _lowerCamelCase : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split()) self.assertEqual(_UpperCamelCase , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3])) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" _lowerCamelCase : str = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument("""--required_str""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""]) , choices=["""titi""", """toto"""] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_UpperCamelCase , required=_UpperCamelCase) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""]) , choices=["""titi""", """toto"""] , required=_UpperCamelCase , ) expected.add_argument("""--opt""" , type=_UpperCamelCase , default=_UpperCamelCase) expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCamelCase , help="""help message""") expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCamelCase) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : List[Any] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } _lowerCamelCase : int = parser.parse_dict(_UpperCamelCase)[0] _lowerCamelCase : List[Any] = BasicExample(**_UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Tuple = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : str = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : List[str] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = os.path.join(_UpperCamelCase , """temp_json""") os.mkdir(_UpperCamelCase) with open(temp_local_path + """.json""" , """w+""") as f: json.dump(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json"""))[0] _lowerCamelCase : Dict = BasicExample(**_UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = HfArgumentParser(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : int = os.path.join(_UpperCamelCase , """temp_yaml""") os.mkdir(_UpperCamelCase) with open(temp_local_path + """.yaml""" , """w+""") as f: yaml.dump(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + """.yaml"""))[0] _lowerCamelCase : Any = BasicExample(**_UpperCamelCase) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[int] = HfArgumentParser(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase)
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[Any] ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] lowerCAmelCase : Optional[Any] =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCamelCase : Dict , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[int]=None , **_UpperCamelCase : Union[str, Any]) ->int: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : Optional[Any] = eval_examples _lowerCamelCase : Dict = post_process_function _lowerCamelCase : int = quant_trainer_args _lowerCamelCase : Union[str, Any] = 128 # default number of calibration samples def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[int]=None) ->Optional[int]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""") _lowerCamelCase : Union[str, Any] = calib_dataset if calib_dataset is not None else self.calib_dataset _lowerCamelCase : str = self._remove_unused_columns(_UpperCamelCase , description="""Calibration""") return DataLoader( _UpperCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset _lowerCamelCase : Optional[int] = self.get_calib_dataloader(_UpperCamelCase) _lowerCamelCase : List[str] = self.model quant_trainer.configure_model(_UpperCamelCase , self.quant_trainer_args , calib=_UpperCamelCase) model.eval() quant_trainer.enable_calibration(_UpperCamelCase) logger.info("""***** Running calibration *****""") logger.info(F""" Num examples = {self.calib_num}""") logger.info(F""" Batch size = {calib_dataloader.batch_size}""") for step, inputs in enumerate(_UpperCamelCase): # Prediction step _lowerCamelCase : List[Any] = self.prediction_step(_UpperCamelCase , _UpperCamelCase , prediction_loss_only=_UpperCamelCase) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_UpperCamelCase , self.quant_trainer_args) _lowerCamelCase : Any = model def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : str = "eval") ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset _lowerCamelCase : Dict = self.get_eval_dataloader(_UpperCamelCase) _lowerCamelCase : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowerCamelCase : Dict = self.compute_metrics _lowerCamelCase : List[str] = None _lowerCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCamelCase : List[Any] = eval_loop( _UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCamelCase , ) finally: _lowerCamelCase : List[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _lowerCamelCase : Dict = self.post_process_function(_UpperCamelCase , _UpperCamelCase , output.predictions) _lowerCamelCase : int = self.compute_metrics(_UpperCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): _lowerCamelCase : List[str] = metrics.pop(_UpperCamelCase) self.log(_UpperCamelCase) else: _lowerCamelCase : List[Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _lowerCamelCase : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCamelCase) return metrics def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : str = "test") ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = self.get_test_dataloader(_UpperCamelCase) # Temporarily disable metric computation, we will do it in the loop here. _lowerCamelCase : Optional[int] = self.compute_metrics _lowerCamelCase : Dict = None _lowerCamelCase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCamelCase : Union[str, Any] = eval_loop( _UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCamelCase , ) finally: _lowerCamelCase : Tuple = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _lowerCamelCase : Optional[Any] = self.post_process_function(_UpperCamelCase , _UpperCamelCase , output.predictions , """predict""") _lowerCamelCase : Union[str, Any] = self.compute_metrics(_UpperCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): _lowerCamelCase : List[Any] = metrics.pop(_UpperCamelCase) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[str]="./") ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.eval_dataset _lowerCamelCase : List[Any] = self.get_eval_dataloader(_UpperCamelCase) _lowerCamelCase : Optional[Any] = next(iter(_UpperCamelCase)) # saving device - to make it consistent _lowerCamelCase : Dict = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") # convert to tuple _lowerCamelCase : Optional[Any] = tuple(v.to(_UpperCamelCase) for k, v in batch.items()) logger.info("""Converting model to be onnx compatible""") from pytorch_quantization.nn import TensorQuantizer _lowerCamelCase : Optional[int] = True _lowerCamelCase : Union[str, Any] = self.model.to(_UpperCamelCase) model.eval() model.float() _lowerCamelCase : Any = model.module if hasattr(_UpperCamelCase , """module""") else model quant_trainer.configure_model(_UpperCamelCase , self.quant_trainer_args) _lowerCamelCase : Tuple = os.path.join(_UpperCamelCase , """model.onnx""") logger.info(F"""exporting model to {output_model_file}""") _lowerCamelCase : List[str] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , export_params=_UpperCamelCase , opset_version=13 , do_constant_folding=_UpperCamelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=_UpperCamelCase , ) logger.info("""onnx export finished""")
712
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A__ ( __A ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A__ ( ): '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" _lowerCamelCase : List[str] = [1, 2, 3] with pytest.raises(__A ): with parallel_backend("""unsupported backend""" ): map_nested(__A , __A , num_proc=2 ) with pytest.raises(__A ): with parallel_backend("""unsupported backend""" ): map_nested(__A , __A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [1, 2] _lowerCamelCase : str = {"""a""": 1, """b""": 2} _lowerCamelCase : Dict = {"""a""": [1, 2], """b""": [3, 4]} _lowerCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2} _lowerCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} _lowerCamelCase : Dict = [2, 3] _lowerCamelCase : str = {"""a""": 2, """b""": 3} _lowerCamelCase : Tuple = {"""a""": [2, 3], """b""": [4, 5]} _lowerCamelCase : Union[str, Any] = {"""a""": {"""1""": 2}, """b""": 3} _lowerCamelCase : List[Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[int] = TapasConfig.from_json_file(__A ) # set absolute/relative position embeddings parameter _lowerCamelCase : List[str] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _lowerCamelCase : Optional[int] = TapasForQuestionAnswering(config=__A ) elif task == "WTQ": # run_task_main.py hparams _lowerCamelCase : int = 4 _lowerCamelCase : Union[str, Any] = True # hparam_utils.py hparams _lowerCamelCase : Any = 0.664_694 _lowerCamelCase : int = 0.207_951 _lowerCamelCase : Union[str, Any] = 0.121_194 _lowerCamelCase : int = True _lowerCamelCase : List[Any] = True _lowerCamelCase : List[str] = False _lowerCamelCase : Tuple = 0.0_352_513 _lowerCamelCase : Tuple = TapasForQuestionAnswering(config=__A ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _lowerCamelCase : Dict = 4 _lowerCamelCase : List[str] = False # hparam_utils.py hparams _lowerCamelCase : str = 36.4_519 _lowerCamelCase : Any = 0.903_421 _lowerCamelCase : int = 222.088 _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Any = 0.763_141 _lowerCamelCase : List[str] = TapasForQuestionAnswering(config=__A ) elif task == "TABFACT": _lowerCamelCase : List[str] = TapasForSequenceClassification(config=__A ) elif task == "MLM": _lowerCamelCase : int = TapasForMaskedLM(config=__A ) elif task == "INTERMEDIATE_PRETRAINING": _lowerCamelCase : Union[str, Any] = TapasModel(config=__A ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__A , __A , __A ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__A ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) _lowerCamelCase : List[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(__A ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase : List[str] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
lowerCAmelCase : Optional[int] =[0, 2, 4, 6, 8] lowerCAmelCase : Tuple =[1, 3, 5, 7, 9] def A__ ( __A , __A , __A , __A ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _lowerCamelCase : Union[str, Any] = 0 for digit in range(10 ): _lowerCamelCase : Optional[int] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __A , __A ) return result _lowerCamelCase : Optional[Any] = 0 for digita in range(10 ): _lowerCamelCase : Tuple = digita if (remainder + digita) % 2 == 0: _lowerCamelCase : Tuple = ODD_DIGITS else: _lowerCamelCase : Optional[int] = EVEN_DIGITS for digita in other_parity_digits: _lowerCamelCase : Tuple = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __A , __A , ) return result def A__ ( __A = 9 ): '''simple docstring''' _lowerCamelCase : List[str] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__A , 0 , [0] * length , __A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
import qiskit def A__ ( __A = 2 ): '''simple docstring''' _lowerCamelCase : str = qubits # Using Aer's simulator _lowerCamelCase : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register _lowerCamelCase : Dict = qiskit.QuantumCircuit(__A , __A ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __A ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __A ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__A ) ) , list(range(__A ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCamelCase : Dict = qiskit.execute(__A , __A , shots=1_000 ) return job.result().get_counts(__A ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _lowerCamelCase : str = n - k # Calculate C(n,k) for i in range(__A ): result *= n - i result //= i + 1 return result def A__ ( __A ): '''simple docstring''' return binomial_coefficient(2 * node_count , __A ) // (node_count + 1) def A__ ( __A ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) _lowerCamelCase : Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def A__ ( __A ): '''simple docstring''' return catalan_number(__A ) * factorial(__A ) if __name__ == "__main__": lowerCAmelCase : List[Any] =int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase : Optional[int] =logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) _snake_case = field( default=__lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _snake_case = field( default=__lowerCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) _snake_case = field( default=__lowerCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) _snake_case = field( default=__lowerCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : int = super().to_dict() for k, v in d.items(): if isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : List[Any] = v.to_dict() return d
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
lowerCAmelCase : Dict =[sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase : list[bool | None] =[None] * 10000000 lowerCAmelCase : Tuple =True lowerCAmelCase : List[str] =False def A__ ( __A ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowerCamelCase : Optional[int] = chain(next_number(__A ) ) _lowerCamelCase : int = number_chain while number < 10_000_000: _lowerCamelCase : Dict = number_chain number *= 10 return number_chain def A__ ( __A = 10_000_000 ): '''simple docstring''' for i in range(1 , __A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__A ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
701
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase : int ="platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def A__ ( __A , __A , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , ): '''simple docstring''' if attention_mask is None: _lowerCamelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _lowerCamelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _lowerCamelCase : str = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCamelCase : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCamelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __snake_case : '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict=13 , _UpperCamelCase : int=7 , _UpperCamelCase : str=True , _UpperCamelCase : List[str]=False , _UpperCamelCase : int=99 , _UpperCamelCase : Union[str, Any]=16 , _UpperCamelCase : Any=2 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any=32 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : str=1 , _UpperCamelCase : Any=0 , _UpperCamelCase : int=0.0_2 , ) ->List[str]: """simple docstring""" _lowerCamelCase : int = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : List[Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[Any] = eos_token_id _lowerCamelCase : List[Any] = pad_token_id _lowerCamelCase : List[Any] = bos_token_id _lowerCamelCase : Tuple = initializer_range def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" _lowerCamelCase : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) _lowerCamelCase : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) _lowerCamelCase : List[Any] = shift_tokens_right(_UpperCamelCase , 1 , 2) _lowerCamelCase : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , ) _lowerCamelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Optional[int] = 20 _lowerCamelCase : Tuple = model_class_name(_UpperCamelCase) _lowerCamelCase : Any = model.encode(inputs_dict["""input_ids"""]) _lowerCamelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCamelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") _lowerCamelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCamelCase : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) _lowerCamelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _lowerCamelCase : int = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , ) _lowerCamelCase : Dict = model.decode(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = 20 _lowerCamelCase : Tuple = model_class_name(_UpperCamelCase) _lowerCamelCase : Any = model.encode(inputs_dict["""input_ids"""]) _lowerCamelCase : List[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _lowerCamelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _lowerCamelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowerCamelCase : Dict = model.decode( decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) _lowerCamelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _lowerCamelCase : int = model.decode( decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , ) _lowerCamelCase : Tuple = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase) _lowerCamelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = 99 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : int = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _lowerCamelCase : List[Any] = input_ids.shape[0] _lowerCamelCase : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = self._get_config_and_data() _lowerCamelCase : Any = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase) _lowerCamelCase : List[Any] = lm_model(input_ids=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _lowerCamelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase) _lowerCamelCase : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) _lowerCamelCase : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) _lowerCamelCase : Dict = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase) _lowerCamelCase : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) _lowerCamelCase : int = shift_tokens_right(_UpperCamelCase , 1 , 2) _lowerCamelCase : Tuple = np.equal(_UpperCamelCase , 1).astype(np.floataa).sum() _lowerCamelCase : Dict = np.equal(_UpperCamelCase , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(_UpperCamelCase , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class __snake_case ( __lowerCAmelCase , unittest.TestCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _snake_case = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Any) ->Any: """simple docstring""" _lowerCamelCase : Any = FlaxBlenderbotModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCamelCase : Tuple = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model_class(_UpperCamelCase) @jax.jit def encode_jitted(_UpperCamelCase : str , _UpperCamelCase : Any=None , **_UpperCamelCase : Dict): return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase) with self.subTest("""JIT Enabled"""): _lowerCamelCase : Dict = encode_jitted(**_UpperCamelCase).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _lowerCamelCase : str = encode_jitted(**_UpperCamelCase).to_tuple() self.assertEqual(len(_UpperCamelCase) , len(_UpperCamelCase)) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase): self.assertEqual(jitted_output.shape , output.shape) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCamelCase : Any = model_class(_UpperCamelCase) _lowerCamelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) _lowerCamelCase : Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(_UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any]): return model.decode( decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , ) with self.subTest("""JIT Enabled"""): _lowerCamelCase : Dict = decode_jitted(**_UpperCamelCase).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _lowerCamelCase : Optional[int] = decode_jitted(**_UpperCamelCase).to_tuple() self.assertEqual(len(_UpperCamelCase) , len(_UpperCamelCase)) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCamelCase : Any = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowerCamelCase : Dict = np.ones((1, 1)) * model.config.eos_token_id _lowerCamelCase : int = model(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""") @slow def _SCREAMING_SNAKE_CASE ( self : int) ->str: """simple docstring""" _lowerCamelCase : Any = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} _lowerCamelCase : Dict = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} _lowerCamelCase : Dict = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""") _lowerCamelCase : List[Any] = ["""Sam"""] _lowerCamelCase : Dict = tokenizer(_UpperCamelCase , return_tensors="""jax""") _lowerCamelCase : Optional[int] = model.generate(**_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : Dict = """Sam is a great name. It means \"sun\" in Gaelic.""" _lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase) assert generated_txt[0].strip() == tgt_text
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
def A__ ( __A ): '''simple docstring''' def merge(__A , __A ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__A ) <= 1: return collection _lowerCamelCase : Optional[int] = len(__A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict =input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase : Dict =[int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
703
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A__ ( __A , __A , __A , __A , __A=True , __A="pt" ): '''simple docstring''' _lowerCamelCase : int = {"""add_prefix_space""": True} if isinstance(__A , __A ) and not line.startswith(""" """ ) else {} _lowerCamelCase : List[Any] = padding_side return tokenizer( [line] , max_length=__A , padding="""max_length""" if pad_to_max_length else None , truncation=__A , return_tensors=__A , add_special_tokens=__A , **__A , ) def A__ ( __A , __A , __A=None , ): '''simple docstring''' _lowerCamelCase : List[str] = input_ids.ne(__A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any="train" , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Any="" , ) ->str: """simple docstring""" super().__init__() _lowerCamelCase : str = Path(_UpperCamelCase).joinpath(type_path + """.source""") _lowerCamelCase : Any = Path(_UpperCamelCase).joinpath(type_path + """.target""") _lowerCamelCase : str = self.get_char_lens(self.src_file) _lowerCamelCase : str = max_source_length _lowerCamelCase : Optional[int] = max_target_length assert min(self.src_lens) > 0, F"""found empty line in {self.src_file}""" _lowerCamelCase : str = tokenizer _lowerCamelCase : List[str] = prefix if n_obs is not None: _lowerCamelCase : Tuple = self.src_lens[:n_obs] _lowerCamelCase : Dict = src_lang _lowerCamelCase : str = tgt_lang def __len__( self : List[str]) ->Union[str, Any]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Optional[int] , _UpperCamelCase : str) ->Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : Tuple = index + 1 # linecache starts at 1 _lowerCamelCase : Any = self.prefix + linecache.getline(str(self.src_file) , _UpperCamelCase).rstrip("""\n""") _lowerCamelCase : int = linecache.getline(str(self.tgt_file) , _UpperCamelCase).rstrip("""\n""") assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCamelCase : Any = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer ) _lowerCamelCase : Tuple = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer _lowerCamelCase : Union[str, Any] = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , """right""") _lowerCamelCase : Optional[int] = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , """right""") _lowerCamelCase : Any = source_inputs["""input_ids"""].squeeze() _lowerCamelCase : Tuple = target_inputs["""input_ids"""].squeeze() _lowerCamelCase : Dict = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : int) ->Optional[Any]: """simple docstring""" return [len(_UpperCamelCase) for x in Path(_UpperCamelCase).open().readlines()] def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int) ->Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : Dict = torch.stack([x["""input_ids"""] for x in batch]) _lowerCamelCase : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch]) _lowerCamelCase : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch]) _lowerCamelCase : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer.pad_token_id ) _lowerCamelCase : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer.pad_token_id ) _lowerCamelCase : Optional[Any] = trim_batch(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase) _lowerCamelCase : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowerCAmelCase : Dict = getLogger(__name__) def A__ ( __A ): '''simple docstring''' return list(itertools.chain.from_iterable(__A ) ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : str = get_git_info() save_json(__A , os.path.join(__A , """git_log.json""" ) ) def A__ ( __A , __A , __A=4 , **__A ): '''simple docstring''' with open(__A , """w""" ) as f: json.dump(__A , __A , indent=__A , **__A ) def A__ ( __A ): '''simple docstring''' with open(__A ) as f: return json.load(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Tuple = git.Repo(search_parent_directories=__A ) _lowerCamelCase : Any = { """repo_id""": str(__A ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def A__ ( __A , __A ): '''simple docstring''' return list(map(__A , __A ) ) def A__ ( __A , __A ): '''simple docstring''' with open(__A , """wb""" ) as f: return pickle.dump(__A , __A ) def A__ ( __A ): '''simple docstring''' def remove_articles(__A ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , __A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): _lowerCamelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = normalize_answer(__A ).split() _lowerCamelCase : Optional[int] = normalize_answer(__A ).split() _lowerCamelCase : int = Counter(__A ) & Counter(__A ) _lowerCamelCase : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 _lowerCamelCase : Union[str, Any] = 1.0 * num_same / len(__A ) _lowerCamelCase : Tuple = 1.0 * num_same / len(__A ) _lowerCamelCase : Tuple = (2 * precision * recall) / (precision + recall) return fa def A__ ( __A , __A ): '''simple docstring''' return normalize_answer(__A ) == normalize_answer(__A ) def A__ ( __A , __A ): '''simple docstring''' assert len(__A ) == len(__A ) _lowerCamelCase : Tuple = 0 for hypo, pred in zip(__A , __A ): em += exact_match_score(__A , __A ) if len(__A ) > 0: em /= len(__A ) return {"em": em} def A__ ( __A ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCamelCase : int = """dropout_rate""" for p in extra_params: if getattr(__A , __A , __A ): if not hasattr(__A , __A ) and not hasattr(__A , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__A ) ) delattr(__A , __A ) continue _lowerCamelCase : str = p if hasattr(__A , __A ) else equivalent_param[p] setattr(__A , __A , getattr(__A , __A ) ) delattr(__A , __A ) return hparams, config
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : List[Any] =get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = GPTSwaTokenizer _snake_case = False _snake_case = True _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Dict = GPTSwaTokenizer(_UpperCamelCase , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""") tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : List[str]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] = """This is a test""" _lowerCamelCase : Any = """This is a test""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : List[str] = """<s>""" _lowerCamelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase) , _UpperCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase) , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """j""") self.assertEqual(len(_UpperCamelCase) , 2000) def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2000) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[Any] = GPTSwaTokenizer(_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer.tokenize("""This is a test""") self.assertListEqual(_UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase) , [465, 287, 265, 631, 842]) _lowerCamelCase : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") # fmt: off self.assertListEqual( _UpperCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_tokens_to_ids(_UpperCamelCase) self.assertListEqual( _UpperCamelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) _lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase) # fmt: off self.assertListEqual( _UpperCamelCase , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""]) # fmt: on def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" _lowerCamelCase : List[str] = GPTSwaTokenizer(_UpperCamelCase) _lowerCamelCase : Optional[int] = ["""This is a test""", """I was born in 92000, and this is falsé."""] _lowerCamelCase : Optional[Any] = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_UpperCamelCase , _UpperCamelCase): self.assertListEqual(tokenizer.encode_fast(_UpperCamelCase) , _UpperCamelCase) # Test that decode_fast returns the input text for text, token_ids in zip(_UpperCamelCase , _UpperCamelCase): self.assertEqual(tokenizer.decode_fast(_UpperCamelCase) , _UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : Dict = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off _lowerCamelCase : List[str] = {"""input_ids""": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=_UpperCamelCase , )
705
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int=7 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : Optional[int]=18 , _UpperCamelCase : Any=30 , _UpperCamelCase : Optional[Any]=400 , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=True , _UpperCamelCase : str=[0.5, 0.5, 0.5] , _UpperCamelCase : int=[0.5, 0.5, 0.5] , ) ->Tuple: """simple docstring""" _lowerCamelCase : Any = size if size is not None else {"""height""": 18, """width""": 18} _lowerCamelCase : Dict = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Dict = image_size _lowerCamelCase : List[Any] = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : int = do_resize _lowerCamelCase : Tuple = size _lowerCamelCase : Union[str, Any] = do_normalize _lowerCamelCase : Dict = image_mean _lowerCamelCase : str = image_std def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = DPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: """simple docstring""" _lowerCamelCase : Dict = DPTImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCamelCase , """image_mean""")) self.assertTrue(hasattr(_UpperCamelCase , """image_std""")) self.assertTrue(hasattr(_UpperCamelCase , """do_normalize""")) self.assertTrue(hasattr(_UpperCamelCase , """do_resize""")) self.assertTrue(hasattr(_UpperCamelCase , """size""")) def _SCREAMING_SNAKE_CASE ( self : int) ->Dict: """simple docstring""" _lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18}) _lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCamelCase : Optional[int] = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray) # Test not batched input _lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCamelCase : List[str] = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor) # Test not batched input _lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCamelCase : str = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
706
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
0
from math import factorial def A__ ( __A , __A ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(__A ) // (factorial(__A ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", F"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
707
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import datasets from .evaluate import evaluate lowerCAmelCase : int ="\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCAmelCase : Optional[Any] ="\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCAmelCase : str ="\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string"""), """prediction_text""": datasets.Value("""string""")}, """references""": { """id""": datasets.Value("""string"""), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string"""), """answer_start""": datasets.Value("""int32"""), }), }, }) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _lowerCamelCase : str = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _lowerCamelCase : List[Any] = evaluate(dataset=_UpperCamelCase , predictions=_UpperCamelCase) return score
708
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
0
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCAmelCase : str ="\nimport os\n" lowerCAmelCase : int ="\ndef foo():\n import os\n return False\n" lowerCAmelCase : Optional[int] ="\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" lowerCAmelCase : List[Any] ="\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" lowerCAmelCase : Dict ="\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" lowerCAmelCase : Union[str, Any] ="\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" lowerCAmelCase : Any ="\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" lowerCAmelCase : Tuple ="\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" lowerCAmelCase : Optional[Any] ="\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" lowerCAmelCase : Optional[Any] ="\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" lowerCAmelCase : Optional[Any] =[ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , __A ) def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = os.path.join(__A , """test_file.py""" ) with open(__A , """w""" ) as _tmp_file: _tmp_file.write(__A ) _lowerCamelCase : Optional[int] = get_imports(__A ) assert parsed_imports == ["os"]
709
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = DiTPipeline _snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _snake_case = False def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" torch.manual_seed(0) _lowerCamelCase : Union[str, Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_UpperCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_UpperCamelCase , ) _lowerCamelCase : Dict = AutoencoderKL() _lowerCamelCase : Tuple = DDIMScheduler() _lowerCamelCase : Any = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : Any = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : Any = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Optional[int] = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Optional[int] = """cpu""" _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : List[str] = self.pipeline_class(**_UpperCamelCase) pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowerCamelCase : Dict = self.get_dummy_inputs(_UpperCamelCase) _lowerCamelCase : Any = pipe(**_UpperCamelCase).images _lowerCamelCase : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3)) _lowerCamelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7]) _lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_UpperCamelCase , 1E-3) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_UpperCamelCase , expected_max_diff=1E-3) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @require_torch_gpu @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = torch.manual_seed(0) _lowerCamelCase : Dict = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""") pipe.to("""cuda""") _lowerCamelCase : List[str] = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCamelCase : Any = pipe.get_label_ids(_UpperCamelCase) _lowerCamelCase : List[Any] = pipe(_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=40 , output_type="""np""").images for word, image in zip(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : List[str] = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""") assert np.abs((expected_image - image).max()) < 1E-2 def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""") _lowerCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("""cuda""") _lowerCamelCase : Tuple = ["""vase""", """umbrella"""] _lowerCamelCase : Dict = pipe.get_label_ids(_UpperCamelCase) _lowerCamelCase : List[Any] = torch.manual_seed(0) _lowerCamelCase : List[Any] = pipe(_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=25 , output_type="""np""").images for word, image in zip(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"""/dit/{word}_512.npy""") assert np.abs((expected_image - image).max()) < 1E-1
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A__ ( __A = 8 ): '''simple docstring''' _lowerCamelCase : str = ascii_letters + digits + punctuation return "".join(secrets.choice(__A ) for _ in range(__A ) ) def A__ ( __A , __A ): '''simple docstring''' i -= len(__A ) _lowerCamelCase : Optional[int] = i // 3 _lowerCamelCase : Union[str, Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCamelCase : Optional[Any] = ( chars_incl + random(__A , quotient + remainder ) + random(__A , __A ) + random(__A , __A ) ) _lowerCamelCase : List[Any] = list(__A ) shuffle(__A ) return "".join(__A ) # random is a generalised function for letters, characters and numbers def A__ ( __A , __A ): '''simple docstring''' return "".join(secrets.choice(__A ) for _ in range(__A ) ) def A__ ( __A , __A ): '''simple docstring''' pass # Put your code here... def A__ ( __A , __A ): '''simple docstring''' pass # Put your code here... def A__ ( __A , __A ): '''simple docstring''' pass # Put your code here... def A__ ( __A , __A = 8 ): '''simple docstring''' if len(__A ) < min_length: # Your Password must be at least 8 characters long return False _lowerCamelCase : Dict = any(char in ascii_uppercase for char in password ) _lowerCamelCase : str = any(char in ascii_lowercase for char in password ) _lowerCamelCase : Any = any(char in digits for char in password ) _lowerCamelCase : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = int(input("""Please indicate the max length of your password: """ ).strip() ) _lowerCamelCase : List[Any] = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(__A ) ) print( """Alternative Password generated:""" , alternative_password_generator(__A , __A ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
712
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
from __future__ import annotations def A__ ( __A ): # This function is recursive '''simple docstring''' _lowerCamelCase : Tuple = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _lowerCamelCase : Optional[Any] = array[0] _lowerCamelCase : List[str] = False _lowerCamelCase : Dict = 1 _lowerCamelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _lowerCamelCase : Dict = True _lowerCamelCase : int = [element for element in array[i:] if element >= array[i]] _lowerCamelCase : Tuple = longest_subsequence(__A ) if len(__A ) > len(__A ): _lowerCamelCase : Optional[int] = temp_array else: i += 1 _lowerCamelCase : Optional[Any] = [element for element in array[1:] if element >= pivot] _lowerCamelCase : Tuple = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
from __future__ import annotations def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Dict = sorted(numsa + numsa ) _lowerCamelCase : Optional[int] = divmod(len(__A ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict =[float(x) for x in input("Enter the elements of first array: ").split()] lowerCAmelCase : Any =[float(x) for x in input("Enter the elements of second array: ").split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = 42 class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int) ->List[Any]: """simple docstring""" _lowerCamelCase : list[list[Edge]] = [[] for _ in range(_UpperCamelCase)] _lowerCamelCase : Any = size def __getitem__( self : int , _UpperCamelCase : int) ->Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" return self._size def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""") self._graph[from_vertex].append(Edge(_UpperCamelCase , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int) ->int | None: """simple docstring""" _lowerCamelCase : List[str] = deque([start_vertex]) _lowerCamelCase : list[int | None] = [None] * self.size _lowerCamelCase : List[str] = 0 while queue: _lowerCamelCase : int = queue.popleft() _lowerCamelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowerCamelCase : List[Any] = current_distance + edge.weight _lowerCamelCase : List[str] = distances[edge.destination_vertex] if ( isinstance(_UpperCamelCase , _UpperCamelCase) and new_distance >= dest_vertex_distance ): continue _lowerCamelCase : List[str] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
class __snake_case : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : str = "" , _UpperCamelCase : bool = False) ->None: """simple docstring""" _lowerCamelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _lowerCamelCase : str = is_leaf _lowerCamelCase : str = prefix def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str) ->tuple[str, str, str]: """simple docstring""" _lowerCamelCase : List[Any] = 0 for q, w in zip(self.prefix , _UpperCamelCase): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : list[str]) ->None: """simple docstring""" for word in words: self.insert(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : str) ->None: """simple docstring""" if self.prefix == word: _lowerCamelCase : List[str] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCamelCase : Optional[Any] = RadixNode(prefix=_UpperCamelCase , is_leaf=_UpperCamelCase) else: _lowerCamelCase : Dict = self.nodes[word[0]] _lowerCamelCase : Any = incoming_node.match( _UpperCamelCase) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCamelCase) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCamelCase : Optional[Any] = remaining_prefix _lowerCamelCase : str = self.nodes[matching_string[0]] _lowerCamelCase : List[str] = RadixNode(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = aux_node if remaining_word == "": _lowerCamelCase : Union[str, Any] = True else: self.nodes[matching_string[0]].insert(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str) ->bool: """simple docstring""" _lowerCamelCase : Tuple = self.nodes.get(word[0] , _UpperCamelCase) if not incoming_node: return False else: _lowerCamelCase : int = incoming_node.match( _UpperCamelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str) ->bool: """simple docstring""" _lowerCamelCase : List[str] = self.nodes.get(word[0] , _UpperCamelCase) if not incoming_node: return False else: _lowerCamelCase : Any = incoming_node.match( _UpperCamelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCamelCase) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: _lowerCamelCase : List[str] = list(self.nodes.values())[0] _lowerCamelCase : Any = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCamelCase : List[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: _lowerCamelCase : Dict = False # If there is 1 edge, we merge it with its child else: _lowerCamelCase : Dict = list(incoming_node.nodes.values())[0] _lowerCamelCase : str = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCamelCase : Any = merging_node.nodes return True def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int = 0) ->None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""") for value in self.nodes.values(): value.print_tree(height + 1) def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = """banana bananas bandana band apple all beast""".split() _lowerCamelCase : int = RadixNode() root.insert_many(__A ) assert all(root.find(__A ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def A__ ( ): '''simple docstring''' assert test_trie() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = RadixNode() _lowerCamelCase : Dict = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__A ) print("""Words:""" , __A ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
def A__ ( __A , __A ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def A__ ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] =16 lowerCAmelCase : Dict =32 def A__ ( __A , __A = 16 ): '''simple docstring''' _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCamelCase : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Tuple = datasets.map( __A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : Optional[Any] = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : int = 8 else: _lowerCamelCase : Optional[int] = None return tokenizer.pad( __A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , ) # Instantiate dataloaders. _lowerCamelCase : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) _lowerCamelCase : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : List[Any] =mocked_dataloaders # noqa: F811 def A__ ( __A , __A ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __A ) == "1": _lowerCamelCase : Any = 2 # New Code # _lowerCamelCase : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCamelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__A ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : List[str] = config["""lr"""] _lowerCamelCase : Tuple = int(config["""num_epochs"""] ) _lowerCamelCase : Tuple = int(config["""seed"""] ) _lowerCamelCase : Union[str, Any] = int(config["""batch_size"""] ) _lowerCamelCase : List[str] = evaluate.load("""glue""" , """mrpc""" ) set_seed(__A ) _lowerCamelCase : str = get_dataloaders(__A , __A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : str = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : List[str] = AdamW(params=model.parameters() , lr=__A ) # Instantiate scheduler _lowerCamelCase : Any = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase : str = accelerator.prepare( __A , __A , __A , __A , __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__A ): _lowerCamelCase : Dict = model(**__A ) _lowerCamelCase : str = output.loss accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__A ) _lowerCamelCase : Optional[int] = outputs.logits.argmax(dim=-1 ) _lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__A , references=__A , ) _lowerCamelCase : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__A , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _lowerCamelCase : Any = parser.parse_args() _lowerCamelCase : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__A , __A ) if __name__ == "__main__": main()
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: _lowerCamelCase : Optional[int] = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__A ) else: _lowerCamelCase : Optional[Any] = sylvester(number - 1 ) _lowerCamelCase : Tuple = num - 1 _lowerCamelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowerCAmelCase : str ={ "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'tapas' def __init__( self : Optional[Any] , _UpperCamelCase : Dict=3_0522 , _UpperCamelCase : int=768 , _UpperCamelCase : int=12 , _UpperCamelCase : List[Any]=12 , _UpperCamelCase : List[Any]=3072 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=1024 , _UpperCamelCase : str=[3, 256, 256, 2, 256, 256, 10] , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=1E-1_2 , _UpperCamelCase : Dict=0 , _UpperCamelCase : int=10.0 , _UpperCamelCase : Dict=0 , _UpperCamelCase : List[Any]=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : str=1.0 , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[Any]=1.0 , _UpperCamelCase : Any=1.0 , _UpperCamelCase : Tuple=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Any="ratio" , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : Dict=64 , _UpperCamelCase : int=32 , _UpperCamelCase : List[Any]=False , _UpperCamelCase : List[str]=True , _UpperCamelCase : int=False , _UpperCamelCase : Dict=False , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=False , _UpperCamelCase : str=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : int , ) ->Optional[Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : Optional[Any] = type_vocab_sizes _lowerCamelCase : int = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps # Fine-tuning task hyperparameters _lowerCamelCase : List[Any] = positive_label_weight _lowerCamelCase : int = num_aggregation_labels _lowerCamelCase : Any = aggregation_loss_weight _lowerCamelCase : str = use_answer_as_supervision _lowerCamelCase : int = answer_loss_importance _lowerCamelCase : List[Any] = use_normalized_answer_loss _lowerCamelCase : int = huber_loss_delta _lowerCamelCase : Dict = temperature _lowerCamelCase : List[str] = aggregation_temperature _lowerCamelCase : Tuple = use_gumbel_for_cells _lowerCamelCase : Optional[int] = use_gumbel_for_aggregation _lowerCamelCase : Optional[int] = average_approximation_function _lowerCamelCase : Optional[Any] = cell_selection_preference _lowerCamelCase : Optional[Any] = answer_loss_cutoff _lowerCamelCase : List[str] = max_num_rows _lowerCamelCase : Optional[int] = max_num_columns _lowerCamelCase : List[Any] = average_logits_per_cell _lowerCamelCase : Dict = select_one_column _lowerCamelCase : Optional[int] = allow_empty_column_selection _lowerCamelCase : List[Any] = init_cell_selection_weights_to_zero _lowerCamelCase : List[Any] = reset_position_index_per_cell _lowerCamelCase : Tuple = disable_per_token_loss # Aggregation hyperparameters _lowerCamelCase : Optional[int] = aggregation_labels _lowerCamelCase : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCamelCase): _lowerCamelCase : int = {int(_UpperCamelCase): v for k, v in aggregation_labels.items()}
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" _lowerCamelCase : List[Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_UpperCamelCase , """tf_padding""")) self.parent.assertTrue(hasattr(_UpperCamelCase , """depth_multiplier""")) class __snake_case : '''simple docstring''' def __init__( self : int , _UpperCamelCase : str , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : int=32 , _UpperCamelCase : Any=0.2_5 , _UpperCamelCase : str=8 , _UpperCamelCase : int=True , _UpperCamelCase : List[Any]=1024 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : Tuple="relu6" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[int]=0.0_2 , _UpperCamelCase : str=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : List[str]=10 , _UpperCamelCase : Optional[int]=None , ) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : str = num_channels _lowerCamelCase : Tuple = image_size _lowerCamelCase : Union[str, Any] = depth_multiplier _lowerCamelCase : Tuple = min_depth _lowerCamelCase : List[str] = tf_padding _lowerCamelCase : Optional[int] = int(last_hidden_size * depth_multiplier) _lowerCamelCase : Optional[int] = output_stride _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Optional[int] = classifier_dropout_prob _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Dict = is_training _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = scope def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = MobileNetVaModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : List[str] = model(_UpperCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = self.num_labels _lowerCamelCase : int = MobileNetVaForImageClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model(_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _snake_case = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" _lowerCamelCase : Dict = MobileNetVaModelTester(self) _lowerCamelCase : List[Any] = MobileNetVaConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""") def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""") def _SCREAMING_SNAKE_CASE ( self : str) ->Dict: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(_UpperCamelCase) _lowerCamelCase : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" def check_hidden_states_output(_UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]): _lowerCamelCase : Optional[int] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : Dict = outputs.hidden_states _lowerCamelCase : Any = 26 self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase) _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : int = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = MobileNetVaModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""") if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""").to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**_UpperCamelCase) # verify the logits _lowerCamelCase : Optional[Any] = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape , _UpperCamelCase) _lowerCamelCase : List[str] = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5]).to(_UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4))
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase : List[Any] =logging.get_logger(__name__) lowerCAmelCase : Dict[Optional[str], Type[Formatter]] ={} lowerCAmelCase : Dict[Optional[str], str] ={} lowerCAmelCase : Dict[Optional[str], Exception] ={} def A__ ( __A , __A , __A = None , ): '''simple docstring''' _lowerCamelCase : List[str] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) _lowerCamelCase : Any = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) _lowerCamelCase : Union[str, Any] = format_type def A__ ( __A , __A , __A = None ): '''simple docstring''' _lowerCamelCase : int = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowerCamelCase : Optional[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: lowerCAmelCase : Any =ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: lowerCAmelCase : Dict =ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: lowerCAmelCase : Union[str, Any] =ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def A__ ( __A ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A__ ( __A , **__A ): '''simple docstring''' _lowerCamelCase : Any = get_format_type_from_alias(__A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
class __snake_case : '''simple docstring''' def __init__( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = {} def _SCREAMING_SNAKE_CASE ( self : str) ->None: """simple docstring""" print(self.vertex) for i in self.vertex: print(_UpperCamelCase , """ -> """ , """ -> """.join([str(_UpperCamelCase) for j in self.vertex[i]])) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int , _UpperCamelCase : int) ->None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCamelCase) else: # else make a new vertex _lowerCamelCase : Tuple = [to_vertex] def _SCREAMING_SNAKE_CASE ( self : str) ->None: """simple docstring""" _lowerCamelCase : List[str] = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : list) ->None: """simple docstring""" _lowerCamelCase : str = True print(_UpperCamelCase , end=""" """) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCamelCase , _UpperCamelCase) if __name__ == "__main__": lowerCAmelCase : Any =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
701
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase : str ={ "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =[ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = word.split() def justify(__A , __A , __A ) -> str: _lowerCamelCase : List[str] = max_width - width _lowerCamelCase : Any = len(__A ) if len(__A ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowerCamelCase : Optional[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowerCamelCase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowerCamelCase : Union[str, Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__A ): num_spaces_between_words_list[i] += 1 _lowerCamelCase : Any = [] for i in range(__A ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__A ) _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : list[str] = [] _lowerCamelCase : Any = 0 for word in words: if width + len(__A ) + len(__A ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__A ) width += len(__A ) else: # justify the line and add it to result answer.append(justify(__A , __A , __A ) ) # reset new line and new width _lowerCamelCase : List[str] = [word], len(__A ) _lowerCamelCase : List[Any] = max_width - width - len(__A ) answer.append(""" """.join(__A ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
703
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def A__ ( __A , __A , __A = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(__A ), magnitude * sin(__A )] return [magnitude * cos(radians(__A ) ), magnitude * sin(radians(__A ) )] def A__ ( __A , __A , __A = 10**-1 ): '''simple docstring''' _lowerCamelCase : NDArray[floataa] = cross(__A , __A ) _lowerCamelCase : float = sum(__A ) return abs(__A ) < eps if __name__ == "__main__": # Test to check if it works lowerCAmelCase : List[str] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCAmelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCAmelCase : Any = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCAmelCase : int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCAmelCase : List[str] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCAmelCase : Any = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['onnx'] def __init__( self : Optional[Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->int: """simple docstring""" requires_backends(self , ["""onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Optional[int]) ->int: """simple docstring""" requires_backends(cls , ["""onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , *_UpperCamelCase : List[str] , **_UpperCamelCase : List[Any]) ->List[str]: """simple docstring""" requires_backends(cls , ["""onnx"""])
705
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCAmelCase : List[str] =[ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : bool , _UpperCamelCase : str = None , _UpperCamelCase : list = None) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : str = os.path.abspath(os.path.join("""examples""" , """by_feature""")) _lowerCamelCase : Any = os.path.abspath("""examples""") for item in os.listdir(_UpperCamelCase): if item not in EXCLUDE_EXAMPLES: _lowerCamelCase : int = os.path.join(_UpperCamelCase , _UpperCamelCase) if os.path.isfile(_UpperCamelCase) and ".py" in item_path: with self.subTest( tested_script=_UpperCamelCase , feature_script=_UpperCamelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): _lowerCamelCase : Dict = compare_against_test( os.path.join(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = """\n""".join(_UpperCamelCase) if special_strings is not None: for string in special_strings: _lowerCamelCase : Union[str, Any] = diff.replace(_UpperCamelCase , """""") self.assertEqual(_UpperCamelCase , """""") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , _UpperCamelCase) self.one_complete_example("""complete_nlp_example.py""" , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""")) _lowerCamelCase : Dict = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.one_complete_example("""complete_cv_example.py""" , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any) ->List[Any]: """simple docstring""" super().setUpClass() _lowerCamelCase : str = tempfile.mkdtemp() _lowerCamelCase : Optional[Any] = os.path.join(cls._tmpdir , """default_config.yml""") write_basic_config(save_location=cls.configPath) _lowerCamelCase : List[str] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict) ->Optional[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : int = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0"""))) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : List[str] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() _lowerCamelCase : Any = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2"""))) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')} """.split() _lowerCamelCase : Any = run_command(self._launch_args + testargs , return_stdout=_UpperCamelCase) self.assertNotIn("""epoch 0:""" , _UpperCamelCase) self.assertIn("""epoch 1:""" , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: """simple docstring""" _lowerCamelCase : Any = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')} """.split() _lowerCamelCase : Dict = run_command(self._launch_args + testargs , return_stdout=_UpperCamelCase) if torch.cuda.is_available(): _lowerCamelCase : List[str] = torch.cuda.device_count() else: _lowerCamelCase : Dict = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _UpperCamelCase) self.assertIn("""epoch 1:""" , _UpperCamelCase) else: self.assertIn("""epoch 0:""" , _UpperCamelCase) self.assertIn("""epoch 1:""" , _UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Any = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""}): _lowerCamelCase : Any = run_command(self._launch_args + testargs , return_stdout=_UpperCamelCase) _lowerCamelCase : List[Any] = re.findall("""({.+})""" , _UpperCamelCase) _lowerCamelCase : List[Any] = [r for r in results if """accuracy""" in r][-1] _lowerCamelCase : Optional[Any] = ast.literal_eval(_UpperCamelCase) self.assertGreaterEqual(results["""accuracy"""] , 0.7_5) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""}) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: _lowerCamelCase : int = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , """tracking"""))) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs)
706
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : int=2 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : Union[str, Any]=16 , _UpperCamelCase : List[str]=[32, 64, 128] , _UpperCamelCase : Any=[1, 2, 1] , _UpperCamelCase : Tuple=[2, 2, 4] , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=2.0 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : int=True , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : List[Any]=1E-5 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=None , _UpperCamelCase : str=True , _UpperCamelCase : Dict=10 , _UpperCamelCase : Dict=8 , _UpperCamelCase : Any=["stage1", "stage2"] , _UpperCamelCase : Dict=[1, 2] , ) ->str: """simple docstring""" _lowerCamelCase : List[Any] = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[Any] = patch_size _lowerCamelCase : int = num_channels _lowerCamelCase : Any = embed_dim _lowerCamelCase : Union[str, Any] = hidden_sizes _lowerCamelCase : str = depths _lowerCamelCase : List[Any] = num_heads _lowerCamelCase : Union[str, Any] = window_size _lowerCamelCase : Optional[Any] = mlp_ratio _lowerCamelCase : List[str] = qkv_bias _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = drop_path_rate _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : str = use_absolute_embeddings _lowerCamelCase : List[str] = patch_norm _lowerCamelCase : Dict = layer_norm_eps _lowerCamelCase : int = initializer_range _lowerCamelCase : str = is_training _lowerCamelCase : Optional[int] = scope _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = type_sequence_label_size _lowerCamelCase : Any = encoder_stride _lowerCamelCase : List[Any] = out_features _lowerCamelCase : str = out_indices def _SCREAMING_SNAKE_CASE ( self : str) ->str: """simple docstring""" _lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : int) ->Dict: """simple docstring""" _lowerCamelCase : List[Any] = FocalNetModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[Any] = model(_UpperCamelCase) _lowerCamelCase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _lowerCamelCase : int = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]) ->str: """simple docstring""" _lowerCamelCase : Dict = FocalNetBackbone(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Any = model(_UpperCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None _lowerCamelCase : List[Any] = None _lowerCamelCase : int = FocalNetBackbone(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]) ->str: """simple docstring""" _lowerCamelCase : Dict = FocalNetForMaskedImageModeling(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = FocalNetForMaskedImageModeling(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCamelCase : List[Any] = model(_UpperCamelCase) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict) ->Dict: """simple docstring""" _lowerCamelCase : str = self.type_sequence_label_size _lowerCamelCase : Optional[int] = FocalNetForImageClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Any = model(_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCamelCase : List[str] = 1 _lowerCamelCase : int = FocalNetForImageClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCamelCase : List[Any] = model(_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase : Optional[Any] = config_and_inputs _lowerCamelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _snake_case = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : int = FocalNetModelTester(self) _lowerCamelCase : str = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" return def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase) @unittest.skip(reason="""FocalNet does not use inputs_embeds""") def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""") def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Tuple = model_class(_UpperCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _lowerCamelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[str] = model_class(_UpperCamelCase) _lowerCamelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int) ->str: """simple docstring""" _lowerCamelCase : Dict = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : Union[str, Any] = outputs.hidden_states _lowerCamelCase : Optional[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths) + 1) self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase) # FocalNet has a different seq_length _lowerCamelCase : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _lowerCamelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase) _lowerCamelCase : Any = reshaped_hidden_states[0].shape _lowerCamelCase : Dict = ( reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : List[str] = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Tuple = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : int = 3 _lowerCamelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCamelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _lowerCamelCase : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCamelCase : Dict = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Dict = True self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width)) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = FocalNetModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[str] = _config_zero_init(_UpperCamelCase) for model_class in self.all_model_classes: _lowerCamelCase : Any = model_class(config=_UpperCamelCase) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : Dict = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""").to(_UpperCamelCase) _lowerCamelCase : Dict = self.default_image_processor _lowerCamelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") _lowerCamelCase : List[str] = image_processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**_UpperCamelCase) # verify the logits _lowerCamelCase : List[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1]).to(_UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281) @require_torch class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = (FocalNetBackbone,) if is_torch_available() else () _snake_case = FocalNetConfig _snake_case = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = FocalNetModelTester(self)
707
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] if isinstance(__A , __A ): for v in tree.values(): shapes.extend(_fetch_dims(__A ) ) elif isinstance(__A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__A ) ) elif isinstance(__A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : str = [] for d in reversed(__A ): idx.append(flat_idx % d ) _lowerCamelCase : List[str] = flat_idx // d return tuple(reversed(__A ) ) @torch.jit.ignore def A__ ( __A , __A , __A , __A = None , __A = None , ): '''simple docstring''' # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__A ) -> None: _lowerCamelCase : Optional[int] = True for i in range(len(__A ) ): _lowerCamelCase : int = -1 * (i + 1) l[reversed_idx] &= tally _lowerCamelCase : str = l[reversed_idx] if start_edges is None: _lowerCamelCase : Optional[int] = [s == 0 for s in start] reduce_edge_list(__A ) if end_edges is None: _lowerCamelCase : List[str] = [e == (d - 1) for e, d in zip(__A , __A )] reduce_edge_list(__A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__A ) == 0: return [()] elif len(__A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowerCamelCase : List[Tuple[slice, ...]] = [] _lowerCamelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__A , __A ): if s == e: path_list.append(slice(__A , s + 1 ) ) else: break _lowerCamelCase : Tuple[slice, ...] = tuple(__A ) _lowerCamelCase : Tuple = len(__A ) # start == end, and we're done if divergence_idx == len(__A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCamelCase : List[Any] = start[divergence_idx] return tuple( path + (slice(__A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCamelCase : List[str] = end[divergence_idx] return tuple( path + (slice(__A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowerCamelCase : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def A__ ( __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : List[str] = t.shape[:no_batch_dims] _lowerCamelCase : str = list(_flat_idx_to_idx(__A , __A ) ) # _get_minimal_slice_set is inclusive _lowerCamelCase : List[str] = list(_flat_idx_to_idx(flat_end - 1 , __A ) ) # Get an ordered list of slices to perform _lowerCamelCase : int = _get_minimal_slice_set( __A , __A , __A , ) _lowerCamelCase : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def A__ ( __A , __A , __A , __A , __A = False , __A = None , __A = False , ): '''simple docstring''' if not (len(__A ) > 0): raise ValueError("""Must provide at least one input""" ) _lowerCamelCase : Dict = [shape[:no_batch_dims] for shape in _fetch_dims(__A )] _lowerCamelCase : Union[str, Any] = tuple([max(__A ) for s in zip(*__A )] ) def _prep_inputs(__A ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowerCamelCase : Tuple = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowerCamelCase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowerCamelCase : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowerCamelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , __A ) _lowerCamelCase : str = None if _out is not None: _lowerCamelCase : int = tensor_tree_map(lambda __A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowerCamelCase : List[str] = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowerCamelCase : Union[str, Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__A ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowerCamelCase : Any = 0 _lowerCamelCase : List[Any] = prepped_outputs for _ in range(__A ): # Chunk the input if not low_mem: _lowerCamelCase : Dict = _select_chunk else: _lowerCamelCase : Optional[int] = partial( _chunk_slice , flat_start=__A , flat_end=min(__A , i + chunk_size ) , no_batch_dims=len(__A ) , ) _lowerCamelCase : Dict[str, Any] = tensor_tree_map(__A , __A ) # Run the layer on the chunk _lowerCamelCase : Dict = layer(**__A ) # Allocate space for the output if out is None: _lowerCamelCase : Dict = tensor_tree_map(lambda __A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __A ) # Put the chunk in its pre-allocated space if isinstance(__A , __A ): def assign(__A , __A ) -> None: for k, v in da.items(): if isinstance(__A , __A ): assign(__A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowerCamelCase : List[str] = da[k] assign(__A , __A ) elif isinstance(__A , __A ): for xa, xa in zip(__A , __A ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowerCamelCase : Optional[int] = xa elif isinstance(__A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowerCamelCase : Tuple = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size _lowerCamelCase : Optional[int] = tensor_tree_map(lambda __A : t.view(orig_batch_dims + t.shape[1:] ) , __A ) return out class __snake_case : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int = 512 , ) ->int: """simple docstring""" _lowerCamelCase : List[str] = max_chunk_size _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[tuple] = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Callable , _UpperCamelCase : tuple , _UpperCamelCase : int) ->int: """simple docstring""" logging.info("""Tuning chunk size...""") if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowerCamelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] _lowerCamelCase : Dict = [c for c in candidates if c > min_chunk_size] _lowerCamelCase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCamelCase : int) -> bool: try: with torch.no_grad(): fn(*_UpperCamelCase , chunk_size=_UpperCamelCase) return True except RuntimeError: return False _lowerCamelCase : int = 0 _lowerCamelCase : Union[str, Any] = len(_UpperCamelCase) - 1 while i > min_viable_chunk_size_index: _lowerCamelCase : Optional[int] = test_chunk_size(candidates[i]) if not viable: _lowerCamelCase : str = (min_viable_chunk_size_index + i) // 2 else: _lowerCamelCase : Optional[int] = i _lowerCamelCase : List[Any] = (i + len(_UpperCamelCase) - 1) // 2 return candidates[min_viable_chunk_size_index] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Iterable , _UpperCamelCase : Iterable) ->bool: """simple docstring""" _lowerCamelCase : Dict = True for aa, aa in zip(_UpperCamelCase , _UpperCamelCase): assert type(_UpperCamelCase) == type(_UpperCamelCase) if isinstance(_UpperCamelCase , (list, tuple)): consistent &= self._compare_arg_caches(_UpperCamelCase , _UpperCamelCase) elif isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Dict = [v for _, v in sorted(aa.items() , key=lambda _UpperCamelCase: x[0])] _lowerCamelCase : Any = [v for _, v in sorted(aa.items() , key=lambda _UpperCamelCase: x[0])] consistent &= self._compare_arg_caches(_UpperCamelCase , _UpperCamelCase) else: consistent &= aa == aa return consistent def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Callable , _UpperCamelCase : tuple , _UpperCamelCase : int , ) ->int: """simple docstring""" _lowerCamelCase : List[str] = True _lowerCamelCase : tuple = tree_map(lambda _UpperCamelCase: a.shape if isinstance(_UpperCamelCase , torch.Tensor) else a , _UpperCamelCase , _UpperCamelCase) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , _UpperCamelCase) else: # Otherwise, we can reuse the precomputed value _lowerCamelCase : List[str] = False if not consistent: _lowerCamelCase : Optional[Any] = self._determine_favorable_chunk_size( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) _lowerCamelCase : str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
708
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
0
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
709
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : str=13 , _UpperCamelCase : Any=7 , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Any=False , _UpperCamelCase : Dict=True , _UpperCamelCase : List[str]=99 , _UpperCamelCase : str=32 , _UpperCamelCase : Optional[Any]=5 , _UpperCamelCase : str=4 , _UpperCamelCase : Optional[Any]=64 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : str=512 , _UpperCamelCase : Tuple=16 , _UpperCamelCase : Any=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Any=2 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : int=2 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : str=4 , _UpperCamelCase : List[str]=1 , ) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Union[str, Any] = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : List[str] = num_choices _lowerCamelCase : Optional[Any] = scope _lowerCamelCase : int = q_groups _lowerCamelCase : Union[str, Any] = k_groups _lowerCamelCase : List[str] = v_groups _lowerCamelCase : Union[str, Any] = post_attention_groups _lowerCamelCase : List[Any] = intermediate_groups _lowerCamelCase : int = output_groups def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None _lowerCamelCase : Dict = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = SqueezeBertModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Dict = model(_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : List[str] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = SqueezeBertForQuestionAnswering(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : Optional[int] = SqueezeBertForSequenceClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : int = self.num_labels _lowerCamelCase : str = SqueezeBertForTokenClassification(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : str = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.num_choices _lowerCamelCase : Tuple = SqueezeBertForMultipleChoice(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() (_lowerCamelCase) : List[str] = config_and_inputs _lowerCamelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = True _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" _lowerCamelCase : List[str] = SqueezeBertModelTester(self) _lowerCamelCase : List[str] = ConfigTester(self , config_class=_UpperCamelCase , dim=37) def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = SqueezeBertModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : int = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""") _lowerCamelCase : Any = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]]) _lowerCamelCase : int = model(_UpperCamelCase)[0] _lowerCamelCase : List[str] = torch.Size((1, 3)) self.assertEqual(output.shape , _UpperCamelCase) _lowerCamelCase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-4))
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[Any] = prime_factors(__A ) if is_square_free(__A ): return -1 if len(__A ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
711
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
0
from __future__ import annotations import math def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__A ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) return min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = [90, 23, 6, 33, 21, 65, 123, 34_423] _lowerCamelCase : List[Any] = math.log(len(__A ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __A , __A , __A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
712
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCAmelCase : Dict =None lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase : Optional[int] ={ "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } lowerCAmelCase : List[str] ={ "google/rembert": 256, } lowerCAmelCase : Dict ="▁" class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RemBertTokenizer def __init__( self : List[str] , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : str=None , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="[CLS]" , _UpperCamelCase : Optional[int]="[SEP]" , _UpperCamelCase : List[str]="<unk>" , _UpperCamelCase : Optional[int]="[SEP]" , _UpperCamelCase : List[Any]="<pad>" , _UpperCamelCase : str="[CLS]" , _UpperCamelCase : Dict="[MASK]" , **_UpperCamelCase : int , ) ->int: """simple docstring""" _lowerCamelCase : Optional[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , remove_space=_UpperCamelCase , keep_accents=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : Tuple = do_lower_case _lowerCamelCase : Tuple = remove_space _lowerCamelCase : Union[str, Any] = keep_accents _lowerCamelCase : Union[str, Any] = vocab_file _lowerCamelCase : Tuple = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False) ->List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase)) + [1] + ([0] * len(_UpperCamelCase)) + [1] return [1] + ([0] * len(_UpperCamelCase)) + [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : List[str] = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCamelCase): copyfile(self.vocab_file , _UpperCamelCase) return (out_vocab_file,)
713
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
714
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
0
def A__ ( __A , __A ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowerCamelCase : str = str(bin(__A ) )[2:] # remove the leading "0b" _lowerCamelCase : Dict = str(bin(__A ) )[2:] # remove the leading "0b" _lowerCamelCase : Optional[Any] = max(len(__A ) , len(__A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__A ) , b_binary.zfill(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
0
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : int ={ "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } lowerCAmelCase : str =KEYMAP["up"] lowerCAmelCase : str =KEYMAP["left"] if sys.platform == "win32": lowerCAmelCase : str =[] lowerCAmelCase : Tuple ={ B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : str =ord(str(i)) def A__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt _lowerCamelCase : Union[str, Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__A ) == 0: # Read the keystroke _lowerCamelCase : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowerCamelCase : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowerCamelCase : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__A ) if ord(__A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowerCamelCase : Any = chr(KEYMAP["""esc"""] ) except KeyError: _lowerCamelCase : List[Any] = cha[1] else: _lowerCamelCase : List[Any] = ch.decode(__A ) else: _lowerCamelCase : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowerCamelCase : List[str] = sys.stdin.fileno() _lowerCamelCase : Union[str, Any] = termios.tcgetattr(__A ) try: tty.setraw(__A ) _lowerCamelCase : str = sys.stdin.read(1 ) finally: termios.tcsetattr(__A , termios.TCSADRAIN , __A ) return ch def A__ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = get_raw_chars() if ord(__A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__A ) == KEYMAP["esc"]: _lowerCamelCase : int = get_raw_chars() if ord(__A ) == KEYMAP["mod_int"]: _lowerCamelCase : Optional[Any] = get_raw_chars() if ord(__A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
716
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'LayoutLMv3ImageProcessor' _snake_case = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Dict , _UpperCamelCase : Tuple=None , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCamelCase , ) _lowerCamelCase : List[Any] = kwargs.pop("""feature_extractor""") _lowerCamelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(_UpperCamelCase , _UpperCamelCase) def __call__( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCamelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCamelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Union[bool, str, TruncationStrategy] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Union[str, Any] , ) ->BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""") # first, apply the image processor _lowerCamelCase : str = self.image_processor(images=_UpperCamelCase , return_tensors=_UpperCamelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowerCamelCase : Union[str, Any] = features["""words"""] _lowerCamelCase : Optional[Any] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel values _lowerCamelCase : List[Any] = features.pop("""pixel_values""") if return_overflowing_tokens is True: _lowerCamelCase : List[str] = self.get_overflowing_images(_UpperCamelCase , encoded_inputs["""overflow_to_sample_mapping"""]) _lowerCamelCase : int = images return encoded_inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_UpperCamelCase) != len(_UpperCamelCase): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F""" {len(_UpperCamelCase)} and {len(_UpperCamelCase)}""") return images_with_overflow def _SCREAMING_SNAKE_CASE ( self : List[str] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[Any]) ->str: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *_UpperCamelCase : int , **_UpperCamelCase : Any) ->int: """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase) @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCamelCase , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCamelCase , ) return self.image_processor
717
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase : Optional[int] =logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase : Dict ="cuda" if torch.cuda.is_available() else "cpu" def A__ ( __A , __A=100 , __A=" " ): '''simple docstring''' _lowerCamelCase : Any = text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else """""" ) texts.append(__A ) return {"title": titles, "text": texts} def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Any = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__A , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] _lowerCamelCase : Optional[Any] = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def A__ ( __A , __A , __A , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _lowerCamelCase : str = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _lowerCamelCase : Dict = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings _lowerCamelCase : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) _lowerCamelCase : List[str] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _lowerCamelCase : List[str] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space _lowerCamelCase : Dict = dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset _lowerCamelCase : Optional[int] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _lowerCamelCase : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__A ) # And save the index _lowerCamelCase : Dict = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __snake_case : '''simple docstring''' _snake_case = field( default=str(Path(__lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) _snake_case = field( default=__lowerCAmelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) _snake_case = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) _snake_case = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) _snake_case = field( default=str(Path(__lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field( default=__lowerCAmelCase , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) _snake_case = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) _snake_case = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase : List[Any] =HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase : Dict =parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[str] =rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
718
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
0
from collections.abc import Callable import numpy as np def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCamelCase : int = np.zeros((n + 1,) ) _lowerCamelCase : Dict = ya _lowerCamelCase : Tuple = xa for k in range(__A ): _lowerCamelCase : int = y[k] + step_size * ode_func(__A , y[k] ) _lowerCamelCase : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(__A , y[k] ) + ode_func(x + step_size , __A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
719
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]=13 , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : str=4 , _UpperCamelCase : Optional[int]=[10, 20, 30, 40] , _UpperCamelCase : int=[2, 2, 3, 2] , _UpperCamelCase : List[str]=True , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : int=10 , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , _UpperCamelCase : str=[2, 3, 4] , _UpperCamelCase : Optional[Any]=None , ) ->Dict: """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : List[Any] = batch_size _lowerCamelCase : str = image_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Optional[Any] = num_stages _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Optional[Any] = depths _lowerCamelCase : Tuple = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : str = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Dict = num_labels _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = out_features _lowerCamelCase : Any = out_indices _lowerCamelCase : Dict = scope def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : Dict = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : int) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = ConvNextVaModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : List[str] = model(_UpperCamelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[int]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = ConvNextVaForImageClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Dict = model(_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : str) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = ConvNextVaBackbone(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Union[str, Any] = model(_UpperCamelCase) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _lowerCamelCase : Optional[Any] = None _lowerCamelCase : List[str] = ConvNextVaBackbone(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[Any] = model(_UpperCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCamelCase : Optional[Any] = config_and_inputs _lowerCamelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase : Tuple = config_and_inputs _lowerCamelCase : Optional[int] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _snake_case = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : str = ConvNextVaModelTester(self) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""") def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""") def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""") def _SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCamelCase : int = True if model_class.__name__ in [ *get_values(_UpperCamelCase), *get_values(_UpperCamelCase), ]: continue _lowerCamelCase : Dict = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.train() _lowerCamelCase : int = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase) _lowerCamelCase : List[str] = model(**_UpperCamelCase).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : int = True if ( model_class.__name__ in [*get_values(_UpperCamelCase), *get_values(_UpperCamelCase)] or not model_class.supports_gradient_checkpointing ): continue _lowerCamelCase : List[Any] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.gradient_checkpointing_enable() model.train() _lowerCamelCase : str = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase) _lowerCamelCase : Optional[Any] = model(**_UpperCamelCase).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(_UpperCamelCase) _lowerCamelCase : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: """simple docstring""" def check_hidden_states_output(_UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict): _lowerCamelCase : Optional[Any] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase) , expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[int] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = ConvNextVaModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""").to(_UpperCamelCase) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Optional[int] = preprocessor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**_UpperCamelCase) # verify the logits _lowerCamelCase : str = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _UpperCamelCase) _lowerCamelCase : str = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6]).to(_UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4))
720
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = [] for rt in rc.restypes: _lowerCamelCase : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCamelCase : List[Any] = {name: i for i, name in enumerate(__A )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCamelCase : List[str] = torch.tensor( __A , dtype=torch.intaa , device=protein["""aatype"""].device , ) _lowerCamelCase : Optional[int] = torch.tensor( __A , dtype=torch.intaa , device=protein["""aatype"""].device , ) _lowerCamelCase : Optional[int] = torch.tensor( __A , dtype=torch.floataa , device=protein["""aatype"""].device , ) _lowerCamelCase : Union[str, Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCamelCase : Tuple = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : List[Any] = restype_atomaa_mask[protein_aatype] _lowerCamelCase : Optional[Any] = residx_atomaa_mask _lowerCamelCase : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCamelCase : Dict = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : Any = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCamelCase : List[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCamelCase : Optional[Any] = rc.restype_atoa[restype_letter] _lowerCamelCase : int = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCamelCase : Tuple = rc.atom_order[atom_name] _lowerCamelCase : Any = 1 _lowerCamelCase : str = restype_atomaa_mask[protein_aatype] _lowerCamelCase : List[str] = residx_atomaa_mask return protein def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = tree_map(lambda __A : torch.tensor(__A , device=batch["""aatype"""].device ) , __A , np.ndarray ) _lowerCamelCase : Optional[Any] = tensor_tree_map(lambda __A : np.array(__A ) , make_atomaa_masks(__A ) ) return out
721
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A__ ( __A , __A=7 ): '''simple docstring''' _lowerCamelCase : List[Any] = None if token is not None: _lowerCamelCase : Tuple = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) _lowerCamelCase : int = """636036""" _lowerCamelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" _lowerCamelCase : List[Any] = requests.get(__A , headers=__A ).json() return result["workflow_runs"] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_daily_ci_runs(__A ) _lowerCamelCase : Optional[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _lowerCamelCase : str = workflow_run["""id"""] break return workflow_run_id def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : str = get_last_daily_ci_runs(__A ) if workflow_run_id is not None: _lowerCamelCase : Tuple = get_artifacts_links(worflow_run_id=__A , token=__A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _lowerCamelCase : Optional[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=__A , artifact_url=__A , output_dir=__A , token=__A ) def A__ ( __A , __A , __A ): '''simple docstring''' get_last_daily_ci_artifacts(__A , __A , __A ) _lowerCamelCase : List[str] = {} for artifact_name in artifact_names: _lowerCamelCase : str = os.path.join(__A , F"""{artifact_name}.zip""" ) if os.path.isfile(__A ): _lowerCamelCase : Tuple = {} with zipfile.ZipFile(__A ) as z: for filename in z.namelist(): if not os.path.isdir(__A ): # read the file with z.open(__A ) as f: _lowerCamelCase : Any = f.read().decode("""UTF-8""" ) return results
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case : Tuple = ['image_processor', 'tokenizer'] _snake_case : Union[str, Any] = 'BlipImageProcessor' _snake_case : Optional[Any] = 'AutoTokenizer' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple) ->str: """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase) # add QFormer tokenizer _lowerCamelCase : Dict = qformer_tokenizer def __call__( self : Union[str, Any] , _UpperCamelCase : ImageInput = None , _UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Union[bool, str, TruncationStrategy] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Dict , ) ->BatchFeature: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify at least images or text.""") _lowerCamelCase : Tuple = BatchFeature() if text is not None: _lowerCamelCase : Union[str, Any] = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) encoding.update(_UpperCamelCase) _lowerCamelCase : List[str] = self.qformer_tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : str = qformer_text_encoding.pop("""input_ids""") _lowerCamelCase : Any = qformer_text_encoding.pop("""attention_mask""") if images is not None: _lowerCamelCase : str = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase) encoding.update(_UpperCamelCase) return encoding def _SCREAMING_SNAKE_CASE ( self : int , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Optional[Any]) ->List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple , *_UpperCamelCase : List[str] , **_UpperCamelCase : Any) ->List[Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = self.tokenizer.model_input_names _lowerCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , **_UpperCamelCase : Union[str, Any]) ->str: """simple docstring""" if os.path.isfile(_UpperCamelCase): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase) _lowerCamelCase : str = os.path.join(_UpperCamelCase , """qformer_tokenizer""") self.qformer_tokenizer.save_pretrained(_UpperCamelCase) return super().save_pretrained(_UpperCamelCase , **_UpperCamelCase) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , _UpperCamelCase : str , **_UpperCamelCase : int) ->List[str]: """simple docstring""" _lowerCamelCase : Dict = AutoTokenizer.from_pretrained(_UpperCamelCase , subfolder="""qformer_tokenizer""") _lowerCamelCase : str = cls._get_arguments_from_pretrained(_UpperCamelCase , **_UpperCamelCase) args.append(_UpperCamelCase) return cls(*_UpperCamelCase)
701
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
0
'''simple docstring''' from __future__ import annotations def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = len(__A ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _lowerCamelCase : str = i + 1 else: _lowerCamelCase : str = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
702
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCAmelCase : Optional[int] =TypeVar("T") class __snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : list[T] , _UpperCamelCase : Callable[[T, T], T]) ->None: """simple docstring""" _lowerCamelCase : Any | T = None _lowerCamelCase : int = len(_UpperCamelCase) _lowerCamelCase : list[T] = [any_type for _ in range(self.N)] + arr _lowerCamelCase : List[Any] = fnc self.build() def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->None: """simple docstring""" for p in range(self.N - 1 , 0 , -1): _lowerCamelCase : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : T) ->None: """simple docstring""" p += self.N _lowerCamelCase : List[Any] = v while p > 1: _lowerCamelCase : Union[str, Any] = p // 2 _lowerCamelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int) ->T | None: # noqa: E741 """simple docstring""" _lowerCamelCase : List[str] = l + self.N, r + self.N _lowerCamelCase : T | None = None while l <= r: if l % 2 == 1: _lowerCamelCase : int = self.st[l] if res is None else self.fn(_UpperCamelCase , self.st[l]) if r % 2 == 0: _lowerCamelCase : List[Any] = self.st[r] if res is None else self.fn(_UpperCamelCase , self.st[r]) _lowerCamelCase : Tuple = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCAmelCase : Optional[int] =[1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowerCAmelCase : str ={ 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowerCAmelCase : Union[str, Any] =SegmentTree(test_array, min) lowerCAmelCase : Any =SegmentTree(test_array, max) lowerCAmelCase : Any =SegmentTree(test_array, lambda a, b: a + b) def A__ ( ): '''simple docstring''' for i in range(len(__A ) ): for j in range(__A , len(__A ) ): _lowerCamelCase : Optional[int] = reduce(__A , test_array[i : j + 1] ) _lowerCamelCase : Union[str, Any] = reduce(__A , test_array[i : j + 1] ) _lowerCamelCase : Union[str, Any] = reduce(lambda __A , __A : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__A , __A ) assert max_range == max_segment_tree.query(__A , __A ) assert sum_range == sum_segment_tree.query(__A , __A ) test_all_segments() for index, value in test_updates.items(): lowerCAmelCase : Union[str, Any] =value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
703
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Optional[int] = tempfile.mkdtemp() # fmt: off _lowerCamelCase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowerCamelCase : List[Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowerCamelCase : Optional[Any] = {"""unk_token""": """<unk>"""} _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(_UpperCamelCase)) _lowerCamelCase : List[str] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : int) ->Dict: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **_UpperCamelCase : List[str]) ->List[Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] _lowerCamelCase : List[Any] = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer() _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : str = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor_slow.save_pretrained(self.tmpdirname) _lowerCamelCase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) _lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor_fast.save_pretrained(self.tmpdirname) _lowerCamelCase : str = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , _UpperCamelCase) self.assertIsInstance(processor_fast.tokenizer , _UpperCamelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , _UpperCamelCase) self.assertIsInstance(processor_fast.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Tuple = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : Any = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Tuple = """lower newer""" _lowerCamelCase : Optional[int] = processor(text=_UpperCamelCase) _lowerCamelCase : int = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = """lower newer""" _lowerCamelCase : Optional[int] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[str] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.batch_decode(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """lower newer""" _lowerCamelCase : Any = self.prepare_image_inputs() _lowerCamelCase : List[str] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
704
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
0