code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import math def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(__A ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) return min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = [90, 23, 6, 33, 21, 65, 123, 34_423] _lowerCamelCase : List[Any] = math.log(len(__A ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , __A , __A , __A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCAmelCase : List[str] =[ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : bool , _UpperCamelCase : str = None , _UpperCamelCase : list = None) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : str = os.path.abspath(os.path.join("""examples""" , """by_feature""")) _lowerCamelCase : Any = os.path.abspath("""examples""") for item in os.listdir(_UpperCamelCase): if item not in EXCLUDE_EXAMPLES: _lowerCamelCase : int = os.path.join(_UpperCamelCase , _UpperCamelCase) if os.path.isfile(_UpperCamelCase) and ".py" in item_path: with self.subTest( tested_script=_UpperCamelCase , feature_script=_UpperCamelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): _lowerCamelCase : Dict = compare_against_test( os.path.join(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = """\n""".join(_UpperCamelCase) if special_strings is not None: for string in special_strings: _lowerCamelCase : Union[str, Any] = diff.replace(_UpperCamelCase , """""") self.assertEqual(_UpperCamelCase , """""") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , _UpperCamelCase) self.one_complete_example("""complete_nlp_example.py""" , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""")) _lowerCamelCase : Dict = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.one_complete_example("""complete_cv_example.py""" , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = False @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any) ->List[Any]: """simple docstring""" super().setUpClass() _lowerCamelCase : str = tempfile.mkdtemp() _lowerCamelCase : Optional[Any] = os.path.join(cls._tmpdir , """default_config.yml""") write_basic_config(save_location=cls.configPath) _lowerCamelCase : List[str] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict) ->Optional[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : int = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0"""))) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : List[str] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() _lowerCamelCase : Any = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2"""))) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')} """.split() _lowerCamelCase : Any = run_command(self._launch_args + testargs , return_stdout=_UpperCamelCase) self.assertNotIn("""epoch 0:""" , _UpperCamelCase) self.assertIn("""epoch 1:""" , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: """simple docstring""" _lowerCamelCase : Any = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')} """.split() _lowerCamelCase : Dict = run_command(self._launch_args + testargs , return_stdout=_UpperCamelCase) if torch.cuda.is_available(): _lowerCamelCase : List[str] = torch.cuda.device_count() else: _lowerCamelCase : Dict = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _UpperCamelCase) self.assertIn("""epoch 1:""" , _UpperCamelCase) else: self.assertIn("""epoch 0:""" , _UpperCamelCase) self.assertIn("""epoch 1:""" , _UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Any = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""}): _lowerCamelCase : Any = run_command(self._launch_args + testargs , return_stdout=_UpperCamelCase) _lowerCamelCase : List[Any] = re.findall("""({.+})""" , _UpperCamelCase) _lowerCamelCase : List[Any] = [r for r in results if """accuracy""" in r][-1] _lowerCamelCase : Optional[Any] = ast.literal_eval(_UpperCamelCase) self.assertGreaterEqual(results["""accuracy"""] , 0.7_5) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""}) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: _lowerCamelCase : int = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , """tracking"""))) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs)
15
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'data2vec-audio' def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : Optional[Any]=768 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Optional[int]=12 , _UpperCamelCase : List[Any]=3072 , _UpperCamelCase : Union[str, Any]="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : int=1E-5 , _UpperCamelCase : str="gelu" , _UpperCamelCase : List[str]=(512, 512, 512, 512, 512, 512, 512) , _UpperCamelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _UpperCamelCase : Dict=(10, 3, 3, 3, 3, 2, 2) , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : List[str]=19 , _UpperCamelCase : List[Any]=5 , _UpperCamelCase : str=0.0_5 , _UpperCamelCase : Union[str, Any]=10 , _UpperCamelCase : Dict=2 , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : str=10 , _UpperCamelCase : Any=0 , _UpperCamelCase : Any="sum" , _UpperCamelCase : str=False , _UpperCamelCase : List[Any]=False , _UpperCamelCase : List[Any]=256 , _UpperCamelCase : List[str]=(512, 512, 512, 512, 1500) , _UpperCamelCase : Optional[Any]=(5, 3, 3, 1, 1) , _UpperCamelCase : Optional[int]=(1, 2, 3, 1, 1) , _UpperCamelCase : List[str]=512 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : int=1 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : str=False , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : str=None , **_UpperCamelCase : List[Any] , ) ->str: """simple docstring""" super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : List[str] = feat_extract_activation _lowerCamelCase : Union[str, Any] = list(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = list(_UpperCamelCase) _lowerCamelCase : Dict = list(_UpperCamelCase) _lowerCamelCase : int = conv_bias _lowerCamelCase : Union[str, Any] = num_conv_pos_embeddings _lowerCamelCase : List[str] = num_conv_pos_embedding_groups _lowerCamelCase : int = conv_pos_kernel_size _lowerCamelCase : Dict = len(self.conv_dim) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Any = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Optional[int] = hidden_dropout _lowerCamelCase : List[str] = attention_dropout _lowerCamelCase : Dict = activation_dropout _lowerCamelCase : Tuple = feat_proj_dropout _lowerCamelCase : Optional[Any] = final_dropout _lowerCamelCase : str = layerdrop _lowerCamelCase : Tuple = layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : Any = mask_time_length _lowerCamelCase : str = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : str = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : Union[str, Any] = ctc_zero_infinity # adapter _lowerCamelCase : List[str] = add_adapter _lowerCamelCase : Dict = adapter_kernel_size _lowerCamelCase : str = adapter_stride _lowerCamelCase : Union[str, Any] = num_adapter_layers _lowerCamelCase : Optional[int] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : List[str] = list(_UpperCamelCase) _lowerCamelCase : List[Any] = list(_UpperCamelCase) _lowerCamelCase : Optional[int] = list(_UpperCamelCase) _lowerCamelCase : Optional[Any] = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" return math.prod(self.conv_stride)
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
1
from math import ceil def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : List[Any] = list(range(0 , __A ) ) _lowerCamelCase : List[str] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _lowerCamelCase : Any = [] for i in device_map_blocks: if device_map_blocks.count(__A ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__A ) # Missing blocks _lowerCamelCase : Any = [i for i in blocks if i not in device_map_blocks] _lowerCamelCase : str = [i for i in device_map_blocks if i not in blocks] if len(__A ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(__A ) ) if len(__A ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(__A ) ) if len(__A ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(__A ) ) def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = list(range(__A ) ) _lowerCamelCase : Optional[int] = int(ceil(n_layers / len(__A ) ) ) _lowerCamelCase : Optional[int] = [layers[i : i + n_blocks] for i in range(0 , __A , __A )] return dict(zip(__A , __A ) )
15
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
1
lowerCAmelCase : Optional[Any] ="\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase : Union[str, Any] =[{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase : Optional[Any] ={ "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : int =logging.get_logger(__name__) def A__ ( __A ): '''simple docstring''' # initialize config if "resnet-50" in model_name: _lowerCamelCase : List[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _lowerCamelCase : str = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _lowerCamelCase : Optional[Any] = DetrConfig(use_timm_backbone=__A , backbone_config=__A ) # set label attributes _lowerCamelCase : Dict = """panoptic""" in model_name if is_panoptic: _lowerCamelCase : Any = 250 else: _lowerCamelCase : List[str] = 91 _lowerCamelCase : Optional[int] = """huggingface/label-files""" _lowerCamelCase : int = """coco-detection-id2label.json""" _lowerCamelCase : int = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) _lowerCamelCase : Any = {int(__A ): v for k, v in idalabel.items()} _lowerCamelCase : str = idalabel _lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def A__ ( __A ): '''simple docstring''' # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : List[str] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[int] = state_dict.pop(__A ) _lowerCamelCase : Dict = val def A__ ( __A , __A=False ): '''simple docstring''' _lowerCamelCase : Tuple = """""" if is_panoptic: _lowerCamelCase : Tuple = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase : List[str] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCamelCase : Union[str, Any] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[:256, :] _lowerCamelCase : int = in_proj_bias[:256] _lowerCamelCase : Optional[Any] = in_proj_weight[256:512, :] _lowerCamelCase : Tuple = in_proj_bias[256:512] _lowerCamelCase : List[Any] = in_proj_weight[-256:, :] _lowerCamelCase : Dict = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCamelCase : Tuple = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _lowerCamelCase : Tuple = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[:256, :] _lowerCamelCase : List[str] = in_proj_bias[:256] _lowerCamelCase : Dict = in_proj_weight[256:512, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[256:512] _lowerCamelCase : Optional[Any] = in_proj_weight[-256:, :] _lowerCamelCase : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _lowerCamelCase : Union[str, Any] = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _lowerCamelCase : Any = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCamelCase : int = in_proj_weight_cross_attn[:256, :] _lowerCamelCase : Any = in_proj_bias_cross_attn[:256] _lowerCamelCase : List[str] = in_proj_weight_cross_attn[256:512, :] _lowerCamelCase : Any = in_proj_bias_cross_attn[256:512] _lowerCamelCase : Any = in_proj_weight_cross_attn[-256:, :] _lowerCamelCase : Optional[int] = in_proj_bias_cross_attn[-256:] def A__ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCamelCase : str = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A__ ( __A , __A=None , __A=False ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[str] = get_detr_config(__A ) # load original model from torch hub _lowerCamelCase : Any = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F"""Converting model {model_name}...""" ) _lowerCamelCase : Optional[int] = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=__A ).eval() _lowerCamelCase : Optional[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(__A ): if is_panoptic: _lowerCamelCase : Optional[int] = """detr.""" + src rename_key(__A , __A , __A ) # query, key and value matrices need special treatment read_in_q_k_v(__A , is_panoptic=__A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase : str = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _lowerCamelCase : Tuple = state_dict.pop(__A ) _lowerCamelCase : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _lowerCamelCase : int = state_dict.pop(__A ) _lowerCamelCase : Union[str, Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _lowerCamelCase : List[str] = state_dict.pop(__A ) _lowerCamelCase : Optional[Any] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _lowerCamelCase : Any = state_dict.pop(__A ) _lowerCamelCase : Any = val # finally, create HuggingFace model and load state dict _lowerCamelCase : List[str] = DetrForSegmentation(__A ) if is_panoptic else DetrForObjectDetection(__A ) model.load_state_dict(__A ) model.eval() # verify our conversion on an image _lowerCamelCase : List[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _lowerCamelCase : List[Any] = DetrImageProcessor(format=__A ) _lowerCamelCase : Optional[int] = processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCamelCase : Optional[int] = encoding["""pixel_values"""] _lowerCamelCase : List[Any] = detr(__A ) _lowerCamelCase : Tuple = model(__A ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") lowerCAmelCase : int =parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : int ={ "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'roc_bert' def __init__( self : Optional[int] , _UpperCamelCase : Union[str, Any]=3_0522 , _UpperCamelCase : int=768 , _UpperCamelCase : Any=12 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Tuple=3072 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Any=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : List[Any]=512 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[Any]=1E-1_2 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : int="absolute" , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Tuple=768 , _UpperCamelCase : int=910 , _UpperCamelCase : Optional[Any]=512 , _UpperCamelCase : List[str]=2_4858 , _UpperCamelCase : Tuple=True , **_UpperCamelCase : Optional[Any] , ) ->List[str]: """simple docstring""" _lowerCamelCase : int = vocab_size _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : List[str] = use_cache _lowerCamelCase : List[Any] = enable_pronunciation _lowerCamelCase : List[str] = enable_shape _lowerCamelCase : Dict = pronunciation_embed_dim _lowerCamelCase : Optional[Any] = pronunciation_vocab_size _lowerCamelCase : str = shape_embed_dim _lowerCamelCase : List[Any] = shape_vocab_size _lowerCamelCase : int = concat_input _lowerCamelCase : Optional[int] = position_embedding_type _lowerCamelCase : Tuple = classifier_dropout super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase)
15
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A__ ( __A , __A , __A , __A , __A=True , __A="pt" ): '''simple docstring''' _lowerCamelCase : int = {"""add_prefix_space""": True} if isinstance(__A , __A ) and not line.startswith(""" """ ) else {} _lowerCamelCase : List[Any] = padding_side return tokenizer( [line] , max_length=__A , padding="""max_length""" if pad_to_max_length else None , truncation=__A , return_tensors=__A , add_special_tokens=__A , **__A , ) def A__ ( __A , __A , __A=None , ): '''simple docstring''' _lowerCamelCase : List[str] = input_ids.ne(__A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any="train" , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Any="" , ) ->str: """simple docstring""" super().__init__() _lowerCamelCase : str = Path(_UpperCamelCase).joinpath(type_path + """.source""") _lowerCamelCase : Any = Path(_UpperCamelCase).joinpath(type_path + """.target""") _lowerCamelCase : str = self.get_char_lens(self.src_file) _lowerCamelCase : str = max_source_length _lowerCamelCase : Optional[int] = max_target_length assert min(self.src_lens) > 0, F"""found empty line in {self.src_file}""" _lowerCamelCase : str = tokenizer _lowerCamelCase : List[str] = prefix if n_obs is not None: _lowerCamelCase : Tuple = self.src_lens[:n_obs] _lowerCamelCase : Dict = src_lang _lowerCamelCase : str = tgt_lang def __len__( self : List[str]) ->Union[str, Any]: """simple docstring""" return len(self.src_lens) def __getitem__( self : Optional[int] , _UpperCamelCase : str) ->Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : Tuple = index + 1 # linecache starts at 1 _lowerCamelCase : Any = self.prefix + linecache.getline(str(self.src_file) , _UpperCamelCase).rstrip("""\n""") _lowerCamelCase : int = linecache.getline(str(self.tgt_file) , _UpperCamelCase).rstrip("""\n""") assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _UpperCamelCase): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCamelCase : Any = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer ) _lowerCamelCase : Tuple = self.tokenizer.generator if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer _lowerCamelCase : Union[str, Any] = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_source_length , """right""") _lowerCamelCase : Optional[int] = encode_line(_UpperCamelCase , _UpperCamelCase , self.max_target_length , """right""") _lowerCamelCase : Any = source_inputs["""input_ids"""].squeeze() _lowerCamelCase : Tuple = target_inputs["""input_ids"""].squeeze() _lowerCamelCase : Dict = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : int) ->Optional[Any]: """simple docstring""" return [len(_UpperCamelCase) for x in Path(_UpperCamelCase).open().readlines()] def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int) ->Dict[str, torch.Tensor]: """simple docstring""" _lowerCamelCase : Dict = torch.stack([x["""input_ids"""] for x in batch]) _lowerCamelCase : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch]) _lowerCamelCase : Union[str, Any] = torch.stack([x["""decoder_input_ids"""] for x in batch]) _lowerCamelCase : Tuple = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer.pad_token_id ) _lowerCamelCase : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _UpperCamelCase) else self.tokenizer.pad_token_id ) _lowerCamelCase : Optional[Any] = trim_batch(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase , _lowerCamelCase : List[Any] = trim_batch(_UpperCamelCase , _UpperCamelCase , attention_mask=_UpperCamelCase) _lowerCamelCase : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowerCAmelCase : Dict =getLogger(__name__) def A__ ( __A ): '''simple docstring''' return list(itertools.chain.from_iterable(__A ) ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : str = get_git_info() save_json(__A , os.path.join(__A , """git_log.json""" ) ) def A__ ( __A , __A , __A=4 , **__A ): '''simple docstring''' with open(__A , """w""" ) as f: json.dump(__A , __A , indent=__A , **__A ) def A__ ( __A ): '''simple docstring''' with open(__A ) as f: return json.load(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : Tuple = git.Repo(search_parent_directories=__A ) _lowerCamelCase : Any = { """repo_id""": str(__A ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def A__ ( __A , __A ): '''simple docstring''' return list(map(__A , __A ) ) def A__ ( __A , __A ): '''simple docstring''' with open(__A , """wb""" ) as f: return pickle.dump(__A , __A ) def A__ ( __A ): '''simple docstring''' def remove_articles(__A ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , __A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): _lowerCamelCase : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = normalize_answer(__A ).split() _lowerCamelCase : Optional[int] = normalize_answer(__A ).split() _lowerCamelCase : int = Counter(__A ) & Counter(__A ) _lowerCamelCase : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 _lowerCamelCase : Union[str, Any] = 1.0 * num_same / len(__A ) _lowerCamelCase : Tuple = 1.0 * num_same / len(__A ) _lowerCamelCase : Tuple = (2 * precision * recall) / (precision + recall) return fa def A__ ( __A , __A ): '''simple docstring''' return normalize_answer(__A ) == normalize_answer(__A ) def A__ ( __A , __A ): '''simple docstring''' assert len(__A ) == len(__A ) _lowerCamelCase : Tuple = 0 for hypo, pred in zip(__A , __A ): em += exact_match_score(__A , __A ) if len(__A ) > 0: em /= len(__A ) return {"em": em} def A__ ( __A ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCamelCase : int = """dropout_rate""" for p in extra_params: if getattr(__A , __A , __A ): if not hasattr(__A , __A ) and not hasattr(__A , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__A ) ) delattr(__A , __A ) continue _lowerCamelCase : str = p if hasattr(__A , __A ) else equivalent_param[p] setattr(__A , __A , getattr(__A , __A ) ) delattr(__A , __A ) return hparams, config
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
15
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Any =get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = XLMRobertaTokenizer _snake_case = XLMRobertaTokenizerFast _snake_case = True _snake_case = True def _SCREAMING_SNAKE_CASE ( self : int) ->str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Union[str, Any] = XLMRobertaTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = """<pad>""" _lowerCamelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase) , _UpperCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase) , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(_UpperCamelCase) , 1002) def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase) _lowerCamelCase : Any = tokenizer.tokenize("""This is a test""") self.assertListEqual(_UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCamelCase) self.assertListEqual( _UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(_UpperCamelCase) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : str = tempfile.mkdtemp() _lowerCamelCase : Optional[int] = tokenizer_r.save_pretrained(_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(_UpperCamelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) _lowerCamelCase : Optional[int] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f) self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase) # Checks everything loads correctly in the same way _lowerCamelCase : str = tokenizer_r.from_pretrained(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(_UpperCamelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCamelCase) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCamelCase : Dict = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(_UpperCamelCase) # Checks it save with the same files self.assertSequenceEqual(_UpperCamelCase , _UpperCamelCase) # Checks everything loads correctly in the same way _lowerCamelCase : Optional[int] = tokenizer_r.from_pretrained(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer_p.from_pretrained(_UpperCamelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase)) shutil.rmtree(_UpperCamelCase) # Save tokenizer rust, legacy_format=False _lowerCamelCase : Dict = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(_UpperCamelCase , legacy_format=_UpperCamelCase) _lowerCamelCase : Any = tokenizer_p.save_pretrained(_UpperCamelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way _lowerCamelCase : List[str] = tokenizer_r.from_pretrained(_UpperCamelCase) _lowerCamelCase : Dict = tokenizer_p.from_pretrained(_UpperCamelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase , _UpperCamelCase)) shutil.rmtree(_UpperCamelCase) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""") def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_UpperCamelCase , f.name) _lowerCamelCase : Tuple = XLMRobertaTokenizer(f.name , keep_accents=_UpperCamelCase) _lowerCamelCase : List[Any] = pickle.dumps(_UpperCamelCase) pickle.loads(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : int = self.get_rust_tokenizer() _lowerCamelCase : List[Any] = """I was born in 92000, and this is falsé.""" _lowerCamelCase : List[Any] = tokenizer.tokenize(_UpperCamelCase) _lowerCamelCase : Tuple = rust_tokenizer.tokenize(_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) _lowerCamelCase : List[Any] = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = self.get_rust_tokenizer() _lowerCamelCase : Any = tokenizer.encode(_UpperCamelCase) _lowerCamelCase : Any = rust_tokenizer.encode(_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[int] = """Hello World!""" _lowerCamelCase : Tuple = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase)) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" _lowerCamelCase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCamelCase : Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
15
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCAmelCase : Dict =None lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase : Optional[int] ={ "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } lowerCAmelCase : List[str] ={ "google/rembert": 256, } lowerCAmelCase : Dict ="▁" class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = RemBertTokenizer def __init__( self : List[str] , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : str=None , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="[CLS]" , _UpperCamelCase : Optional[int]="[SEP]" , _UpperCamelCase : List[str]="<unk>" , _UpperCamelCase : Optional[int]="[SEP]" , _UpperCamelCase : List[Any]="<pad>" , _UpperCamelCase : str="[CLS]" , _UpperCamelCase : Dict="[MASK]" , **_UpperCamelCase : int , ) ->int: """simple docstring""" _lowerCamelCase : Optional[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , remove_space=_UpperCamelCase , keep_accents=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : Tuple = do_lower_case _lowerCamelCase : Tuple = remove_space _lowerCamelCase : Union[str, Any] = keep_accents _lowerCamelCase : Union[str, Any] = vocab_file _lowerCamelCase : Tuple = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Optional[int] = [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False) ->List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase)) + [1] + ([0] * len(_UpperCamelCase)) + [1] return [1] + ([0] * len(_UpperCamelCase)) + [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : List[str] = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCamelCase): copyfile(self.vocab_file , _UpperCamelCase) return (out_vocab_file,)
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class __snake_case : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : int=64 , _UpperCamelCase : Any=None) ->str: """simple docstring""" _lowerCamelCase : List[Any] = np.random.default_rng(_UpperCamelCase) _lowerCamelCase : Dict = length _lowerCamelCase : Union[str, Any] = rng.normal(size=(length,)).astype(np.floataa) _lowerCamelCase : Tuple = a * self.x + b + rng.normal(scale=0.1 , size=(length,)).astype(np.floataa) def __len__( self : Dict) ->Any: """simple docstring""" return self.length def __getitem__( self : List[Any] , _UpperCamelCase : str) ->Optional[int]: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class __snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : Tuple=0 , _UpperCamelCase : str=0 , _UpperCamelCase : Optional[Any]=False) ->Dict: """simple docstring""" super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor([2, 3]).float()) _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor([2, 3]).float()) _lowerCamelCase : List[Any] = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]=None) ->Optional[int]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""") _lowerCamelCase : Union[str, Any] = False return x * self.a[0] + self.b[0] class __snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : Any=0 , _UpperCamelCase : Optional[Any]=False) ->Optional[int]: """simple docstring""" super().__init__() _lowerCamelCase : Optional[Any] = torch.nn.Parameter(torch.tensor(_UpperCamelCase).float()) _lowerCamelCase : int = torch.nn.Parameter(torch.tensor(_UpperCamelCase).float()) _lowerCamelCase : List[Any] = True def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : int=None) ->List[str]: """simple docstring""" if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""") _lowerCamelCase : str = False return x * self.a + self.b def A__ ( __A , __A = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCamelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} _lowerCamelCase : int = load_dataset("""csv""" , data_files=__A ) _lowerCamelCase : int = datasets["""train"""].unique("""label""" ) _lowerCamelCase : int = {v: i for i, v in enumerate(__A )} def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : List[str] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A , padding="""max_length""" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( __A , batched=__A , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__A , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__A , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=2 ) _lowerCamelCase : Optional[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=1 ) return train_dataloader, eval_dataloader
15
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
1
import math import random def A__ ( __A , __A = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase : Optional[int] =0.02 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[int] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__A ): # Forward propagation _lowerCamelCase : Dict = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _lowerCamelCase : Optional[int] = (expected / 100) - layer_a # Error delta _lowerCamelCase : List[Any] = layer_1_error * sigmoid_function(__A , __A ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Optional[int] =int(input("Expected value: ")) lowerCAmelCase : Any =int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
15
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
1
def A__ ( __A , __A , __A , __A ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowerCamelCase : List[str] = mf_knapsack(i - 1 , __A , __A , __A ) else: _lowerCamelCase : Any = max( mf_knapsack(i - 1 , __A , __A , __A ) , mf_knapsack(i - 1 , __A , __A , j - wt[i - 1] ) + val[i - 1] , ) _lowerCamelCase : Tuple = val return f[i][j] def A__ ( __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: _lowerCamelCase : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: _lowerCamelCase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def A__ ( __A , __A , __A ): '''simple docstring''' if not (isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) _lowerCamelCase : List[str] = len(__A ) if num_items != len(__A ): _lowerCamelCase : Union[str, Any] = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(__A )} values""" ) raise ValueError(__A ) for i in range(__A ): if not isinstance(wt[i] , __A ): _lowerCamelCase : Tuple = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(__A ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = knapsack(__A , __A , __A , __A ) _lowerCamelCase : set = set() _construct_solution(__A , __A , __A , __A , __A ) return optimal_val, example_optional_set def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__A , __A , i - 1 , __A , __A ) else: optimal_set.add(__A ) _construct_solution(__A , __A , i - 1 , j - wt[i - 1] , __A ) if __name__ == "__main__": lowerCAmelCase : Any =[3, 2, 4, 4] lowerCAmelCase : str =[4, 3, 2, 3] lowerCAmelCase : Dict =4 lowerCAmelCase : str =6 lowerCAmelCase : List[str] =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase , lowerCAmelCase : Union[str, Any] =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase , lowerCAmelCase : Optional[Any] =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
15
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={ "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] =[ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
15
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
1
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
1
from __future__ import annotations def A__ ( __A ): # This function is recursive '''simple docstring''' _lowerCamelCase : Tuple = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _lowerCamelCase : Optional[Any] = array[0] _lowerCamelCase : List[str] = False _lowerCamelCase : Dict = 1 _lowerCamelCase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _lowerCamelCase : Dict = True _lowerCamelCase : int = [element for element in array[i:] if element >= array[i]] _lowerCamelCase : Tuple = longest_subsequence(__A ) if len(__A ) > len(__A ): _lowerCamelCase : Optional[int] = temp_array else: i += 1 _lowerCamelCase : Optional[Any] = [element for element in array[1:] if element >= pivot] _lowerCamelCase : Tuple = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Any=13 , _UpperCamelCase : Union[str, Any]=[30, 30] , _UpperCamelCase : str=2 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : int=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Union[str, Any]=32 , _UpperCamelCase : str=5 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Optional[int]=37 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : List[Any]=0.0_2 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[Any]=8 , _UpperCamelCase : List[str]=10 , ) ->str: """simple docstring""" _lowerCamelCase : Any = parent _lowerCamelCase : int = batch_size _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : List[Any] = use_labels _lowerCamelCase : str = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : int = type_sequence_label_size _lowerCamelCase : str = initializer_range _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : Optional[int] = scope _lowerCamelCase : Dict = n_targets _lowerCamelCase : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _lowerCamelCase : Optional[int] = (image_size[1] // patch_size) * (image_size[0] // patch_size) _lowerCamelCase : List[str] = num_patches + 1 + self.num_detection_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" _lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) _lowerCamelCase : List[Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _lowerCamelCase : Union[str, Any] = [] for i in range(self.batch_size): _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Dict = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCamelCase) _lowerCamelCase : Any = torch.rand(self.n_targets , 4 , device=_UpperCamelCase) labels.append(_UpperCamelCase) _lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = YolosModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = YolosForObjectDetection(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Dict = model(pixel_values=_UpperCamelCase) _lowerCamelCase : Tuple = model(_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) _lowerCamelCase : Dict = model(pixel_values=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = config_and_inputs _lowerCamelCase : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _snake_case = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict=False) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _lowerCamelCase : Dict = [] for i in range(self.model_tester.batch_size): _lowerCamelCase : Dict = {} _lowerCamelCase : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCamelCase , dtype=torch.long) _lowerCamelCase : Any = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCamelCase , dtype=torch.float) labels.append(_UpperCamelCase) _lowerCamelCase : Any = labels return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int) ->Dict: """simple docstring""" _lowerCamelCase : int = YolosModelTester(self) _lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(_UpperCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _lowerCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(_UpperCamelCase) _lowerCamelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Any = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : List[str] = True # in YOLOS, the seq_len is different _lowerCamelCase : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _lowerCamelCase : int = True _lowerCamelCase : List[str] = False _lowerCamelCase : int = True _lowerCamelCase : Union[str, Any] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : Tuple = outputs.attentions self.assertEqual(len(_UpperCamelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCamelCase : str = True _lowerCamelCase : int = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCamelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowerCamelCase : Dict = len(_UpperCamelCase) # Check attention is always last and order is fine _lowerCamelCase : str = True _lowerCamelCase : Dict = True _lowerCamelCase : Tuple = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : List[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : int = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCamelCase)) _lowerCamelCase : str = outputs.attentions self.assertEqual(len(_UpperCamelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" def check_hidden_states_output(_UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : int): _lowerCamelCase : List[str] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : int = outputs.hidden_states _lowerCamelCase : Optional[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase) # YOLOS has a different seq_length _lowerCamelCase : Any = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Any = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : List[Any] = YolosModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def A__ ( ): '''simple docstring''' _lowerCamelCase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : Union[str, Any] = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""").to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : List[Any] = image_processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase) # forward pass with torch.no_grad(): _lowerCamelCase : str = model(inputs.pixel_values) # verify outputs _lowerCamelCase : str = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCamelCase) _lowerCamelCase : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_UpperCamelCase , ) _lowerCamelCase : List[Any] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCamelCase , atol=1E-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCamelCase , atol=1E-4)) # verify postprocessing _lowerCamelCase : List[str] = image_processor.post_process_object_detection( _UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] _lowerCamelCase : List[str] = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1]).to(_UpperCamelCase) _lowerCamelCase : str = [75, 75, 17, 63, 17] _lowerCamelCase : Union[str, Any] = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5]).to(_UpperCamelCase) self.assertEqual(len(results["""scores"""]) , 5) self.assertTrue(torch.allclose(results["""scores"""] , _UpperCamelCase , atol=1E-4)) self.assertSequenceEqual(results["""labels"""].tolist() , _UpperCamelCase) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , _UpperCamelCase))
15
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase : List[str] =["text", "image", "audio"] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(__A , __A ): inputs.append(create_inputs(__A ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[str] = [] for output in outputs: if isinstance(__A , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(__A , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(__A , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class __snake_case : '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""")) self.assertTrue(hasattr(self.tool , """outputs""")) _lowerCamelCase : Dict = self.tool.inputs for _input in inputs: if isinstance(_input , _UpperCamelCase): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) _lowerCamelCase : Union[str, Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def _SCREAMING_SNAKE_CASE ( self : str) ->Dict: """simple docstring""" _lowerCamelCase : Tuple = create_inputs(self.tool.inputs) _lowerCamelCase : Optional[int] = self.tool(*_UpperCamelCase) # There is a single output if len(self.tool.outputs) == 1: _lowerCamelCase : Optional[Any] = [outputs] self.assertListEqual(output_types(_UpperCamelCase) , self.tool.outputs) def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , """description""")) self.assertTrue(hasattr(self.tool , """default_checkpoint""")) self.assertTrue(self.tool.description.startswith("""This is a tool that""")) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" _lowerCamelCase : str = create_inputs(self.tool.inputs) _lowerCamelCase : Union[str, Any] = self.tool(*_UpperCamelCase) if not isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Union[str, Any] = [outputs] self.assertEqual(len(_UpperCamelCase) , len(self.tool.outputs)) for output, output_type in zip(_UpperCamelCase , self.tool.outputs): _lowerCamelCase : str = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_UpperCamelCase , _UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : int = create_inputs(self.tool.inputs) _lowerCamelCase : str = [] for _input, input_type in zip(_UpperCamelCase , self.tool.inputs): if isinstance(_UpperCamelCase , _UpperCamelCase): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error _lowerCamelCase : Tuple = self.tool(*_UpperCamelCase) if not isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : int = [outputs] self.assertEqual(len(_UpperCamelCase) , len(self.tool.outputs))
15
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import doctest from collections import deque import numpy as np class __snake_case : '''simple docstring''' def __init__( self : Any) ->None: """simple docstring""" _lowerCamelCase : int = [2, 1, 2, -1] _lowerCamelCase : Union[str, Any] = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : int) ->list[float]: """simple docstring""" _lowerCamelCase : Tuple = len(self.first_signal) _lowerCamelCase : Tuple = len(self.second_signal) _lowerCamelCase : Dict = max(_UpperCamelCase , _UpperCamelCase) # create a zero matrix of max_length x max_length _lowerCamelCase : Tuple = [[0] * max_length for i in range(_UpperCamelCase)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCamelCase): _lowerCamelCase : Tuple = deque(self.second_signal) rotated_signal.rotate(_UpperCamelCase) for j, item in enumerate(_UpperCamelCase): matrix[i][j] += item # multiply the matrix with the first signal _lowerCamelCase : Dict = np.matmul(np.transpose(_UpperCamelCase) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(_UpperCamelCase , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
15
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
1
from scipy.stats import spearmanr import datasets lowerCAmelCase : Dict ="\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" lowerCAmelCase : Optional[Any] ="\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" lowerCAmelCase : List[str] =r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float"""), """references""": datasets.Value("""float"""), }) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=False) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = spearmanr(_UpperCamelCase , _UpperCamelCase) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
15
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
1
import argparse import struct import unittest class __snake_case : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : bytes) ->None: """simple docstring""" _lowerCamelCase : str = data # Initialize hash values _lowerCamelCase : Any = [ 0x6a09_e667, 0xbb67_ae85, 0x3c6e_f372, 0xa54f_f53a, 0x510e_527f, 0x9b05_688c, 0x1f83_d9ab, 0x5be0_cd19, ] # Initialize round constants _lowerCamelCase : int = [ 0x428a_2f98, 0x7137_4491, 0xb5c0_fbcf, 0xe9b5_dba5, 0x3956_c25b, 0x59f1_11f1, 0x923f_82a4, 0xab1c_5ed5, 0xd807_aa98, 0x1283_5b01, 0x2431_85be, 0x550c_7dc3, 0x72be_5d74, 0x80de_b1fe, 0x9bdc_06a7, 0xc19b_f174, 0xe49b_69c1, 0xefbe_4786, 0x0fc1_9dc6, 0x240c_a1cc, 0x2de9_2c6f, 0x4a74_84aa, 0x5cb0_a9dc, 0x76f9_88da, 0x983e_5152, 0xa831_c66d, 0xb003_27c8, 0xbf59_7fc7, 0xc6e0_0bf3, 0xd5a7_9147, 0x06ca_6351, 0x1429_2967, 0x27b7_0a85, 0x2e1b_2138, 0x4d2c_6dfc, 0x5338_0d13, 0x650a_7354, 0x766a_0abb, 0x81c2_c92e, 0x9272_2c85, 0xa2bf_e8a1, 0xa81a_664b, 0xc24b_8b70, 0xc76c_51a3, 0xd192_e819, 0xd699_0624, 0xf40e_3585, 0x106a_a070, 0x19a4_c116, 0x1e37_6c08, 0x2748_774c, 0x34b0_bcb5, 0x391c_0cb3, 0x4ed8_aa4a, 0x5b9c_ca4f, 0x682e_6ff3, 0x748f_82ee, 0x78a5_636f, 0x84c8_7814, 0x8cc7_0208, 0x90be_fffa, 0xa450_6ceb, 0xbef9_a3f7, 0xc671_78f2, ] _lowerCamelCase : Union[str, Any] = self.preprocessing(self.data) self.final_hash() @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : bytes) ->bytes: """simple docstring""" _lowerCamelCase : Optional[int] = b"""\x80""" + (b"""\x00""" * (63 - (len(_UpperCamelCase) + 8) % 64)) _lowerCamelCase : List[Any] = struct.pack(""">Q""" , (len(_UpperCamelCase) * 8)) return data + padding + big_endian_integer def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->None: """simple docstring""" _lowerCamelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCamelCase : Dict = list(struct.unpack(""">16L""" , _UpperCamelCase)) # add 48 0-ed integers words += [0] * 48 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCamelCase : Tuple = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) _lowerCamelCase : Any = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) _lowerCamelCase : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCamelCase : Optional[int] = self.ror(_UpperCamelCase , 6) ^ self.ror(_UpperCamelCase , 11) ^ self.ror(_UpperCamelCase , 25) _lowerCamelCase : str = (e & f) ^ ((~e & 0xffff_ffff) & g) _lowerCamelCase : Union[str, Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCamelCase : List[str] = self.ror(_UpperCamelCase , 2) ^ self.ror(_UpperCamelCase , 13) ^ self.ror(_UpperCamelCase , 22) _lowerCamelCase : List[str] = (a & b) ^ (a & c) ^ (b & c) _lowerCamelCase : Dict = (sa + maj) % 0x1_0000_0000 _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCamelCase : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values _lowerCamelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes) ] _lowerCamelCase : Union[str, Any] = """""".join([hex(_UpperCamelCase)[2:].zfill(8) for value in self.hashes]) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int) ->int: """simple docstring""" return 0xffff_ffff & (value << (32 - rotations)) | (value >> rotations) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->None: """simple docstring""" import hashlib _lowerCamelCase : str = bytes("""Test String""" , """utf-8""") self.assertEqual(SHAaaa(_UpperCamelCase).hash , hashlib.shaaaa(_UpperCamelCase).hexdigest()) def A__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : Union[str, Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _lowerCamelCase : Tuple = f.read() else: _lowerCamelCase : List[Any] = bytes(__A , """utf-8""" ) print(SHAaaa(__A ).hash ) if __name__ == "__main__": main()
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
1
def A__ ( __A , __A , __A ): '''simple docstring''' if len(__A ) != len(__A ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCamelCase : Dict = [p / w for p, w in zip(__A , __A )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCamelCase : Union[str, Any] = sorted(__A ) # declaring useful variables _lowerCamelCase : List[str] = len(__A ) _lowerCamelCase : Dict = 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : int = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCamelCase : str = sorted_profit_by_weight[length - i - 1] _lowerCamelCase : int = profit_by_weight.index(__A ) _lowerCamelCase : List[str] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) lowerCAmelCase : Optional[int] =[int(x) for x in input("Input profits separated by spaces: ").split()] lowerCAmelCase : Union[str, Any] =[int(x) for x in input("Input weights separated by spaces: ").split()] lowerCAmelCase : Tuple =int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
15
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __snake_case ( __lowerCAmelCase ): '''simple docstring''' @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""") _lowerCamelCase : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""") _lowerCamelCase : Union[str, Any] = bertabert.config.encoder.vocab_size _lowerCamelCase : List[Any] = tokenizer.sep_token_id _lowerCamelCase : Any = tokenizer.cls_token_id _lowerCamelCase : Optional[Any] = 128 _lowerCamelCase : Dict = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""") _lowerCamelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""") _lowerCamelCase : List[Any] = train_dataset.select(range(32)) _lowerCamelCase : Tuple = val_dataset.select(range(16)) _lowerCamelCase : Tuple = 4 def _map_to_encoder_decoder_inputs(_UpperCamelCase : Optional[Any]): # Tokenizer will automatically set [BOS] <text> [EOS] _lowerCamelCase : Dict = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCamelCase , max_length=512) _lowerCamelCase : Any = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCamelCase , max_length=128) _lowerCamelCase : Dict = inputs.input_ids _lowerCamelCase : str = inputs.attention_mask _lowerCamelCase : Tuple = outputs.input_ids _lowerCamelCase : Optional[int] = outputs.input_ids.copy() _lowerCamelCase : List[str] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _lowerCamelCase : List[str] = outputs.attention_mask assert all(len(_UpperCamelCase) == 512 for x in inputs.input_ids) assert all(len(_UpperCamelCase) == 128 for x in outputs.input_ids) return batch def _compute_metrics(_UpperCamelCase : str): _lowerCamelCase : List[str] = pred.label_ids _lowerCamelCase : str = pred.predictions # all unnecessary tokens are removed _lowerCamelCase : List[str] = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = sum([int(pred_str[i] == label_str[i]) for i in range(len(_UpperCamelCase))]) / len(_UpperCamelCase) return {"accuracy": accuracy} # map train dataset _lowerCamelCase : Any = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCamelCase , batch_size=_UpperCamelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _lowerCamelCase : Tuple = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCamelCase , batch_size=_UpperCamelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _lowerCamelCase : int = self.get_auto_remove_tmp_dir() _lowerCamelCase : Dict = SeqaSeqTrainingArguments( output_dir=_UpperCamelCase , per_device_train_batch_size=_UpperCamelCase , per_device_eval_batch_size=_UpperCamelCase , predict_with_generate=_UpperCamelCase , evaluation_strategy="""steps""" , do_train=_UpperCamelCase , do_eval=_UpperCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _lowerCamelCase : Dict = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # start training trainer.train()
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase : Optional[int] =[ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] lowerCAmelCase : Any =[ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] lowerCAmelCase : Any =( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) lowerCAmelCase : Tuple =( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) lowerCAmelCase : List[Any] =[ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def A__ ( __A , __A ): '''simple docstring''' for tf_name, hf_name in patterns: _lowerCamelCase : List[Any] = k.replace(__A , __A ) return k def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = BigBirdPegasusConfig(**__A ) _lowerCamelCase : str = BigBirdPegasusForConditionalGeneration(__A ) _lowerCamelCase : Optional[Any] = torch_model.state_dict() _lowerCamelCase : Any = {} # separating decoder weights _lowerCamelCase : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} _lowerCamelCase : int = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): _lowerCamelCase : List[str] = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue _lowerCamelCase : Any = DECODER_PATTERNS _lowerCamelCase : str = rename_state_dict_key(__A , __A ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _lowerCamelCase : Optional[Any] = v.T _lowerCamelCase : Optional[int] = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): _lowerCamelCase : int = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue _lowerCamelCase : int = REMAINING_PATTERNS _lowerCamelCase : Dict = rename_state_dict_key(__A , __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _lowerCamelCase : str = v.T _lowerCamelCase : int = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _lowerCamelCase : List[str] = mapping["""model.embed_positions.weight"""] _lowerCamelCase : int = mapping.pop("""model.embed_positions.weight""" ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = torch_model.load_state_dict(__A , strict=__A ) _lowerCamelCase : Any = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[Any] = tf.train.list_variables(__A ) _lowerCamelCase : Dict = {} _lowerCamelCase : Any = ["""global_step"""] for name, shape in tqdm(__A , desc="""converting tf checkpoint to dict""" ): _lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCamelCase : Optional[Any] = tf.train.load_variable(__A , __A ) _lowerCamelCase : Union[str, Any] = array return tf_weights def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : str = get_tf_weights_as_numpy(__A ) _lowerCamelCase : int = convert_bigbird_pegasus(__A , __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase : Any =argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") lowerCAmelCase : int =parser.parse_args() lowerCAmelCase : List[str] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
15
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
1
import warnings from .generation import TFGenerationMixin class __snake_case ( __lowerCAmelCase ): '''simple docstring''' warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , __lowerCAmelCase , )
15
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase : Union[str, Any] ="\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" lowerCAmelCase : Optional[int] ="\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" lowerCAmelCase : str ="\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[ """https://en.wikipedia.org/wiki/ROUGE_(metric)""", """https://github.com/google-research/google-research/tree/master/rouge""", ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]=False) ->int: """simple docstring""" if rouge_types is None: _lowerCamelCase : str = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] _lowerCamelCase : Dict = rouge_scorer.RougeScorer(rouge_types=_UpperCamelCase , use_stemmer=_UpperCamelCase) if use_aggregator: _lowerCamelCase : int = scoring.BootstrapAggregator() else: _lowerCamelCase : Union[str, Any] = [] for ref, pred in zip(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Dict = scorer.score(_UpperCamelCase , _UpperCamelCase) if use_aggregator: aggregator.add_scores(_UpperCamelCase) else: scores.append(_UpperCamelCase) if use_aggregator: _lowerCamelCase : str = aggregator.aggregate() else: _lowerCamelCase : Dict = {} for key in scores[0]: _lowerCamelCase : str = [score[key] for score in scores] return result
15
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
1
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['onnx'] def __init__( self : Optional[Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->int: """simple docstring""" requires_backends(self , ["""onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Optional[int]) ->int: """simple docstring""" requires_backends(cls , ["""onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , *_UpperCamelCase : List[str] , **_UpperCamelCase : List[Any]) ->List[str]: """simple docstring""" requires_backends(cls , ["""onnx"""])
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase : Optional[Any] =["small", "medium", "large"] lowerCAmelCase : Dict ="lm_head.decoder.weight" lowerCAmelCase : str ="lm_head.weight" def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : List[Any] = torch.load(__A ) _lowerCamelCase : Tuple = d.pop(__A ) os.makedirs(__A , exist_ok=__A ) torch.save(__A , os.path.join(__A , __A ) ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) lowerCAmelCase : Optional[int] =parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase : Union[str, Any] =os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") lowerCAmelCase : str =F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase : List[str] =random.Random() def A__ ( __A , __A=1.0 , __A=None , __A=None ): '''simple docstring''' if rng is None: _lowerCamelCase : str = global_rng _lowerCamelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : str=7 , _UpperCamelCase : Dict=400 , _UpperCamelCase : str=2000 , _UpperCamelCase : str=10 , _UpperCamelCase : Any=160 , _UpperCamelCase : List[Any]=8 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : List[Any]=4000 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Dict=True , ) ->List[Any]: """simple docstring""" _lowerCamelCase : str = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Optional[int] = min_seq_length _lowerCamelCase : Optional[Any] = max_seq_length _lowerCamelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase : Optional[int] = padding_value _lowerCamelCase : Any = sampling_rate _lowerCamelCase : Optional[Any] = return_attention_mask _lowerCamelCase : str = do_normalize _lowerCamelCase : int = feature_size _lowerCamelCase : Dict = chunk_length _lowerCamelCase : Optional[int] = hop_length def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Dict=False , _UpperCamelCase : int=False) ->Union[str, Any]: """simple docstring""" def _flatten(_UpperCamelCase : Optional[Any]): return list(itertools.chain(*_UpperCamelCase)) if equal_length: _lowerCamelCase : Tuple = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size _lowerCamelCase : Union[str, Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: _lowerCamelCase : Dict = [np.asarray(_UpperCamelCase) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = WhisperFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : int = WhisperFeatureExtractionTester(self) def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: """simple docstring""" _lowerCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[str] = feat_extract_first.save_pretrained(_UpperCamelCase)[0] check_json_file_has_correct_format(_UpperCamelCase) _lowerCamelCase : Tuple = self.feature_extraction_class.from_pretrained(_UpperCamelCase) _lowerCamelCase : Tuple = feat_extract_first.to_dict() _lowerCamelCase : Any = feat_extract_second.to_dict() _lowerCamelCase : Optional[Any] = feat_extract_first.mel_filters _lowerCamelCase : Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase)) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] = os.path.join(_UpperCamelCase , """feat_extract.json""") feat_extract_first.to_json_file(_UpperCamelCase) _lowerCamelCase : List[str] = self.feature_extraction_class.from_json_file(_UpperCamelCase) _lowerCamelCase : Optional[Any] = feat_extract_first.to_dict() _lowerCamelCase : Dict = feat_extract_second.to_dict() _lowerCamelCase : List[Any] = feat_extract_first.mel_filters _lowerCamelCase : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase)) self.assertEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase : Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] _lowerCamelCase : List[Any] = [np.asarray(_UpperCamelCase) for speech_input in speech_inputs] # Test feature size _lowerCamelCase : Tuple = feature_extractor(_UpperCamelCase , padding="""max_length""" , return_tensors="""np""").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input _lowerCamelCase : Tuple = feature_extractor(speech_inputs[0] , return_tensors="""np""").input_features _lowerCamelCase : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""").input_features self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) # Test batched _lowerCamelCase : Dict = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features _lowerCamelCase : Optional[Any] = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) # Test 2-D numpy arrays are batched. _lowerCamelCase : Any = [floats_list((1, x))[0] for x in (800, 800, 800)] _lowerCamelCase : Tuple = np.asarray(_UpperCamelCase) _lowerCamelCase : List[str] = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features _lowerCamelCase : List[str] = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) # Test truncation required _lowerCamelCase : Union[str, Any] = [floats_list((1, x))[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200)] _lowerCamelCase : Optional[int] = [np.asarray(_UpperCamelCase) for speech_input in speech_inputs] _lowerCamelCase : List[str] = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase : int = [np.asarray(_UpperCamelCase) for speech_input in speech_inputs_truncated] _lowerCamelCase : Tuple = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features _lowerCamelCase : Dict = feature_extractor(_UpperCamelCase , return_tensors="""np""").input_features for enc_seq_a, enc_seq_a in zip(_UpperCamelCase , _UpperCamelCase): self.assertTrue(np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: """simple docstring""" import torch _lowerCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _lowerCamelCase : int = np.random.rand(100 , 32).astype(np.floataa) _lowerCamelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase : List[str] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""") self.assertTrue(np_processed.input_features.dtype == np.floataa) _lowerCamelCase : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : str = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""") # automatic decoding with librispeech _lowerCamelCase : Any = ds.sort("""id""").select(range(_UpperCamelCase))[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ]) # fmt: on _lowerCamelCase : Union[str, Any] = self._load_datasamples(1) _lowerCamelCase : Dict = WhisperFeatureExtractor() _lowerCamelCase : Any = feature_extractor(_UpperCamelCase , return_tensors="""pt""").input_features self.assertEqual(input_features.shape , (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _UpperCamelCase , atol=1E-4)) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _lowerCamelCase : List[str] = self._load_datasamples(1)[0] _lowerCamelCase : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _lowerCamelCase : Optional[int] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_UpperCamelCase)[0] self.assertTrue(np.all(np.mean(_UpperCamelCase) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(_UpperCamelCase) - 1) < 1E-3))
15
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def A__ ( __A , __A , __A ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : List[Any] = MobileBertConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) _lowerCamelCase : Union[str, Any] = MobileBertForPreTraining(__A ) # Load weights from tf checkpoint _lowerCamelCase : Dict = load_tf_weights_in_mobilebert(__A , __A , __A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase : str =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
15
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
1
from collections.abc import Callable import numpy as np def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCamelCase : int = np.zeros((n + 1,) ) _lowerCamelCase : Dict = ya _lowerCamelCase : Tuple = xa for k in range(__A ): _lowerCamelCase : int = y[k] + step_size * ode_func(__A , y[k] ) _lowerCamelCase : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(__A , y[k] ) + ode_func(x + step_size , __A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
1
def A__ ( __A , __A ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowerCamelCase : str = str(bin(__A ) )[2:] # remove the leading "0b" _lowerCamelCase : Dict = str(bin(__A ) )[2:] # remove the leading "0b" _lowerCamelCase : Optional[Any] = max(len(__A ) , len(__A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__A ) , b_binary.zfill(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
15
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
1
import math import os import sys def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = """""" try: with open(__A , """rb""" ) as binary_file: _lowerCamelCase : List[Any] = binary_file.read() for dat in data: _lowerCamelCase : Optional[int] = F"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def A__ ( __A , __A , __A , __A ): '''simple docstring''' lexicon.pop(__A ) _lowerCamelCase : str = last_match_id if math.loga(__A ).is_integer(): for curr_key in lexicon: _lowerCamelCase : Any = """0""" + lexicon[curr_key] _lowerCamelCase : str = bin(__A )[2:] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : List[str] = {"""0""": """0""", """1""": """1"""} _lowerCamelCase , _lowerCamelCase : List[Any] = """""", """""" _lowerCamelCase : Dict = len(__A ) for i in range(len(__A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCamelCase : Any = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__A , __A , __A , __A ) index += 1 _lowerCamelCase : Optional[int] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowerCamelCase : Tuple = lexicon[curr_string] result += last_match_id return result def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = os.path.getsize(__A ) _lowerCamelCase : List[Any] = bin(__A )[2:] _lowerCamelCase : Optional[int] = len(__A ) return "0" * (length_length - 1) + file_length_binary + compressed def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = 8 try: with open(__A , """wb""" ) as opened_file: _lowerCamelCase : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__A ) , __A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__A , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = read_file_binary(__A ) _lowerCamelCase : List[Any] = compress_data(__A ) _lowerCamelCase : List[str] = add_file_length(__A , __A ) write_file_binary(__A , __A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
15
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
1
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *_UpperCamelCase : List[str] , **_UpperCamelCase : List[Any]) ->Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[int]) ->str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : Any) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Any , **_UpperCamelCase : str) ->List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[Any]) ->int: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *_UpperCamelCase : List[str] , **_UpperCamelCase : Optional[int]) ->List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , *_UpperCamelCase : str , **_UpperCamelCase : Any) ->List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : Optional[int]) ->str: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , *_UpperCamelCase : List[str] , **_UpperCamelCase : Dict) ->Optional[int]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : List[Any]) ->Any: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : List[str]) ->str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Dict) ->Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) class __snake_case ( metaclass=__lowerCAmelCase ): '''simple docstring''' _snake_case = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_UpperCamelCase : Any , **_UpperCamelCase : str) ->List[str]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *_UpperCamelCase : Dict , **_UpperCamelCase : int) ->int: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""])
15
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = model.config _lowerCamelCase : List[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase : Tuple = MBartConfig( is_decoder=__A , is_encoder_decoder=__A , add_cross_attention=__A , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__A , add_final_layer_norm=__A , ) return encoder_config, decoder_config def A__ ( __A ): '''simple docstring''' if "encoder.model" in name: _lowerCamelCase : Optional[Any] = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: _lowerCamelCase : Optional[int] = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: _lowerCamelCase : Optional[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCamelCase : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: _lowerCamelCase : Optional[int] = """encoder.""" + name if "attn.proj" in name: _lowerCamelCase : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: _lowerCamelCase : Any = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCamelCase : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCamelCase : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCamelCase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": _lowerCamelCase : List[str] = """encoder.layernorm.weight""" if name == "encoder.norm.bias": _lowerCamelCase : Tuple = """encoder.layernorm.bias""" return name def A__ ( __A , __A ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase : str = orig_state_dict.pop(__A ) if "qkv" in key: _lowerCamelCase : Any = key.split(""".""" ) _lowerCamelCase : Dict = int(key_split[3] ) _lowerCamelCase : Optional[int] = int(key_split[5] ) _lowerCamelCase : List[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : List[str] = val[:dim, :] _lowerCamelCase : Tuple = val[dim : dim * 2, :] _lowerCamelCase : List[str] = val[-dim:, :] else: _lowerCamelCase : Optional[Any] = val[:dim] _lowerCamelCase : Tuple = val[dim : dim * 2] _lowerCamelCase : List[str] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase : Union[str, Any] = val return orig_state_dict def A__ ( __A , __A=None , __A=False ): '''simple docstring''' # load original model _lowerCamelCase : int = DonutModel.from_pretrained(__A ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase : int = get_configs(__A ) _lowerCamelCase : Tuple = DonutSwinModel(__A ) _lowerCamelCase : str = MBartForCausalLM(__A ) _lowerCamelCase : Dict = VisionEncoderDecoderModel(encoder=__A , decoder=__A ) model.eval() _lowerCamelCase : List[str] = original_model.state_dict() _lowerCamelCase : str = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # verify results on scanned document _lowerCamelCase : List[str] = load_dataset("""hf-internal-testing/example-documents""" ) _lowerCamelCase : Dict = dataset["""test"""][0]["""image"""].convert("""RGB""" ) _lowerCamelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(__A , from_slow=__A ) _lowerCamelCase : Any = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase : str = DonutProcessor(__A , __A ) _lowerCamelCase : List[Any] = processor(__A , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase : List[Any] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _lowerCamelCase : int = """When is the coffee break?""" _lowerCamelCase : Any = task_prompt.replace("""{user_input}""" , __A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase : int = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase : str = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase : int = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase : List[Any] = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase : str = """hello world""" else: raise ValueError("""Model name not supported""" ) _lowerCamelCase : Dict = original_model.decoder.tokenizer(__A , add_special_tokens=__A , return_tensors="""pt""" )[ """input_ids""" ] _lowerCamelCase : Optional[int] = original_model.encoder.model.patch_embed(__A ) _lowerCamelCase , _lowerCamelCase : List[str] = model.encoder.embeddings(__A ) assert torch.allclose(__A , __A , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase : Any = original_model.encoder(__A ) _lowerCamelCase : Tuple = model.encoder(__A ).last_hidden_state assert torch.allclose(__A , __A , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase : Any = original_model(__A , __A , __A ).logits _lowerCamelCase : Optional[Any] = model(__A , decoder_input_ids=__A ).logits assert torch.allclose(__A , __A , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": lowerCAmelCase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) lowerCAmelCase : Optional[int] =parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
1
def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: _lowerCamelCase : Optional[int] = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__A ) else: _lowerCamelCase : Optional[Any] = sylvester(number - 1 ) _lowerCamelCase : Tuple = num - 1 _lowerCamelCase : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
15
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]=13 , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=True , _UpperCamelCase : str=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Any=True , _UpperCamelCase : int=True , _UpperCamelCase : str=False , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Optional[int]=99 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : int=32 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : int=512 , _UpperCamelCase : Dict=12 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : Optional[int]=3 , _UpperCamelCase : Union[str, Any]=4 , _UpperCamelCase : Optional[Any]="last" , _UpperCamelCase : List[str]=None , _UpperCamelCase : int=None , ) ->Optional[Any]: """simple docstring""" _lowerCamelCase : str = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Union[str, Any] = seq_length _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Tuple = use_input_lengths _lowerCamelCase : Union[str, Any] = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : str = gelu_activation _lowerCamelCase : List[Any] = sinusoidal_embeddings _lowerCamelCase : str = causal _lowerCamelCase : Dict = asm _lowerCamelCase : Union[str, Any] = n_langs _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Tuple = n_special _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Optional[int] = type_sequence_label_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Any = num_labels _lowerCamelCase : str = num_choices _lowerCamelCase : Union[str, Any] = summary_type _lowerCamelCase : Dict = use_proj _lowerCamelCase : int = scope def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : Union[str, Any] = None if self.use_input_lengths: _lowerCamelCase : int = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _lowerCamelCase : List[Any] = None if self.use_token_type_ids: _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : List[str] = None if self.use_labels: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , 2).float() _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , ) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = FlaubertModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Dict = model(_UpperCamelCase , lengths=_UpperCamelCase , langs=_UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , langs=_UpperCamelCase) _lowerCamelCase : Optional[Any] = model(_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Tuple , ) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = FlaubertWithLMHeadModel(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : str = model(_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , ) ->str: """simple docstring""" _lowerCamelCase : str = FlaubertForQuestionAnsweringSimple(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model(_UpperCamelCase) _lowerCamelCase : int = model(_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[int] , ) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[int] = FlaubertForQuestionAnswering(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : str = model(_UpperCamelCase) _lowerCamelCase : Tuple = model( _UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , cls_index=_UpperCamelCase , is_impossible=_UpperCamelCase , p_mask=_UpperCamelCase , ) _lowerCamelCase : List[Any] = model( _UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , cls_index=_UpperCamelCase , is_impossible=_UpperCamelCase , ) ((_lowerCamelCase) , ) : List[Any] = result_with_labels.to_tuple() _lowerCamelCase : Dict = model(_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase) ((_lowerCamelCase) , ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , ) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = FlaubertForSequenceClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = model(_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , ) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : int = FlaubertForTokenClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : int , _UpperCamelCase : Any , ) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.num_choices _lowerCamelCase : List[Any] = FlaubertForMultipleChoice(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Tuple = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Union[str, Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Dict = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCamelCase : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _snake_case = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str) ->Any: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Tuple=False) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _lowerCamelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase) _lowerCamelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : int = FlaubertModelTester(self) _lowerCamelCase : List[str] = ConfigTester(self , config_class=_UpperCamelCase , emb_dim=37) def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = FlaubertModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) @slow @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _lowerCamelCase : Any = True _lowerCamelCase : List[Any] = model_class(config=_UpperCamelCase) _lowerCamelCase : Tuple = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.jit.trace( _UpperCamelCase , (inputs_dict["""input_ids"""].to("""cpu"""), inputs_dict["""attention_mask"""].to("""cpu"""))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCamelCase , os.path.join(_UpperCamelCase , """traced_model.pt""")) _lowerCamelCase : List[Any] = torch.jit.load(os.path.join(_UpperCamelCase , """traced_model.pt""") , map_location=_UpperCamelCase) loaded(inputs_dict["""input_ids"""].to(_UpperCamelCase) , inputs_dict["""attention_mask"""].to(_UpperCamelCase)) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : str = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""") _lowerCamelCase : Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(_UpperCamelCase)[0] _lowerCamelCase : Tuple = torch.Size((1, 11, 768)) self.assertEqual(output.shape , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1E-4))
15
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
1
import math lowerCAmelCase : List[str] =10 lowerCAmelCase : List[Any] =7 lowerCAmelCase : Dict =BALLS_PER_COLOUR * NUM_COLOURS def A__ ( __A = 20 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = math.comb(__A , __A ) _lowerCamelCase : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __A ) _lowerCamelCase : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
15
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] if isinstance(__A , __A ): for v in tree.values(): shapes.extend(_fetch_dims(__A ) ) elif isinstance(__A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__A ) ) elif isinstance(__A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : str = [] for d in reversed(__A ): idx.append(flat_idx % d ) _lowerCamelCase : List[str] = flat_idx // d return tuple(reversed(__A ) ) @torch.jit.ignore def A__ ( __A , __A , __A , __A = None , __A = None , ): '''simple docstring''' # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__A ) -> None: _lowerCamelCase : Optional[int] = True for i in range(len(__A ) ): _lowerCamelCase : int = -1 * (i + 1) l[reversed_idx] &= tally _lowerCamelCase : str = l[reversed_idx] if start_edges is None: _lowerCamelCase : Optional[int] = [s == 0 for s in start] reduce_edge_list(__A ) if end_edges is None: _lowerCamelCase : List[str] = [e == (d - 1) for e, d in zip(__A , __A )] reduce_edge_list(__A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__A ) == 0: return [()] elif len(__A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _lowerCamelCase : List[Tuple[slice, ...]] = [] _lowerCamelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__A , __A ): if s == e: path_list.append(slice(__A , s + 1 ) ) else: break _lowerCamelCase : Tuple[slice, ...] = tuple(__A ) _lowerCamelCase : Tuple = len(__A ) # start == end, and we're done if divergence_idx == len(__A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCamelCase : List[Any] = start[divergence_idx] return tuple( path + (slice(__A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _lowerCamelCase : List[str] = end[divergence_idx] return tuple( path + (slice(__A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _lowerCamelCase : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def A__ ( __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : List[str] = t.shape[:no_batch_dims] _lowerCamelCase : str = list(_flat_idx_to_idx(__A , __A ) ) # _get_minimal_slice_set is inclusive _lowerCamelCase : List[str] = list(_flat_idx_to_idx(flat_end - 1 , __A ) ) # Get an ordered list of slices to perform _lowerCamelCase : int = _get_minimal_slice_set( __A , __A , __A , ) _lowerCamelCase : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def A__ ( __A , __A , __A , __A , __A = False , __A = None , __A = False , ): '''simple docstring''' if not (len(__A ) > 0): raise ValueError("""Must provide at least one input""" ) _lowerCamelCase : Dict = [shape[:no_batch_dims] for shape in _fetch_dims(__A )] _lowerCamelCase : Union[str, Any] = tuple([max(__A ) for s in zip(*__A )] ) def _prep_inputs(__A ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _lowerCamelCase : Tuple = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _lowerCamelCase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _lowerCamelCase : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _lowerCamelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , __A ) _lowerCamelCase : str = None if _out is not None: _lowerCamelCase : int = tensor_tree_map(lambda __A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _lowerCamelCase : List[str] = 1 for d in orig_batch_dims: flat_batch_dim *= d _lowerCamelCase : Union[str, Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__A ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _lowerCamelCase : Any = 0 _lowerCamelCase : List[Any] = prepped_outputs for _ in range(__A ): # Chunk the input if not low_mem: _lowerCamelCase : Dict = _select_chunk else: _lowerCamelCase : Optional[int] = partial( _chunk_slice , flat_start=__A , flat_end=min(__A , i + chunk_size ) , no_batch_dims=len(__A ) , ) _lowerCamelCase : Dict[str, Any] = tensor_tree_map(__A , __A ) # Run the layer on the chunk _lowerCamelCase : Dict = layer(**__A ) # Allocate space for the output if out is None: _lowerCamelCase : Dict = tensor_tree_map(lambda __A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __A ) # Put the chunk in its pre-allocated space if isinstance(__A , __A ): def assign(__A , __A ) -> None: for k, v in da.items(): if isinstance(__A , __A ): assign(__A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _lowerCamelCase : List[str] = da[k] assign(__A , __A ) elif isinstance(__A , __A ): for xa, xa in zip(__A , __A ): if _add_into_out: xa[i : i + chunk_size] += xa else: _lowerCamelCase : Optional[int] = xa elif isinstance(__A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _lowerCamelCase : Tuple = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size _lowerCamelCase : Optional[int] = tensor_tree_map(lambda __A : t.view(orig_batch_dims + t.shape[1:] ) , __A ) return out class __snake_case : '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int = 512 , ) ->int: """simple docstring""" _lowerCamelCase : List[str] = max_chunk_size _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[tuple] = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Callable , _UpperCamelCase : tuple , _UpperCamelCase : int) ->int: """simple docstring""" logging.info("""Tuning chunk size...""") if min_chunk_size >= self.max_chunk_size: return min_chunk_size _lowerCamelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] _lowerCamelCase : Dict = [c for c in candidates if c > min_chunk_size] _lowerCamelCase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_UpperCamelCase : int) -> bool: try: with torch.no_grad(): fn(*_UpperCamelCase , chunk_size=_UpperCamelCase) return True except RuntimeError: return False _lowerCamelCase : int = 0 _lowerCamelCase : Union[str, Any] = len(_UpperCamelCase) - 1 while i > min_viable_chunk_size_index: _lowerCamelCase : Optional[int] = test_chunk_size(candidates[i]) if not viable: _lowerCamelCase : str = (min_viable_chunk_size_index + i) // 2 else: _lowerCamelCase : Optional[int] = i _lowerCamelCase : List[Any] = (i + len(_UpperCamelCase) - 1) // 2 return candidates[min_viable_chunk_size_index] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Iterable , _UpperCamelCase : Iterable) ->bool: """simple docstring""" _lowerCamelCase : Dict = True for aa, aa in zip(_UpperCamelCase , _UpperCamelCase): assert type(_UpperCamelCase) == type(_UpperCamelCase) if isinstance(_UpperCamelCase , (list, tuple)): consistent &= self._compare_arg_caches(_UpperCamelCase , _UpperCamelCase) elif isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Dict = [v for _, v in sorted(aa.items() , key=lambda _UpperCamelCase: x[0])] _lowerCamelCase : Any = [v for _, v in sorted(aa.items() , key=lambda _UpperCamelCase: x[0])] consistent &= self._compare_arg_caches(_UpperCamelCase , _UpperCamelCase) else: consistent &= aa == aa return consistent def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Callable , _UpperCamelCase : tuple , _UpperCamelCase : int , ) ->int: """simple docstring""" _lowerCamelCase : List[str] = True _lowerCamelCase : tuple = tree_map(lambda _UpperCamelCase: a.shape if isinstance(_UpperCamelCase , torch.Tensor) else a , _UpperCamelCase , _UpperCamelCase) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , _UpperCamelCase) else: # Otherwise, we can reuse the precomputed value _lowerCamelCase : List[str] = False if not consistent: _lowerCamelCase : Optional[Any] = self._determine_favorable_chunk_size( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) _lowerCamelCase : str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
15
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : int =logging.get_logger(__name__) class __snake_case : '''simple docstring''' def __init__( self : str , _UpperCamelCase : str = None , _UpperCamelCase : uuid.UUID = None , _UpperCamelCase : Any=None , _UpperCamelCase : List[Any]=None) ->str: """simple docstring""" if not conversation_id: _lowerCamelCase : Dict = uuid.uuida() if past_user_inputs is None: _lowerCamelCase : Dict = [] if generated_responses is None: _lowerCamelCase : str = [] _lowerCamelCase : uuid.UUID = conversation_id _lowerCamelCase : List[str] = past_user_inputs _lowerCamelCase : List[str] = generated_responses _lowerCamelCase : Optional[str] = text def __eq__( self : Union[str, Any] , _UpperCamelCase : Union[str, Any]) ->Optional[int]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : bool = False) ->Tuple: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""") _lowerCamelCase : Optional[int] = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""") else: _lowerCamelCase : Union[str, Any] = text def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input) _lowerCamelCase : Optional[int] = None def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str) ->str: """simple docstring""" self.generated_responses.append(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _lowerCamelCase : str = """user""" if is_user else """bot""" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __lowerCAmelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Tuple , *_UpperCamelCase : str , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) if self.tokenizer.pad_token_id is None: _lowerCamelCase : Any = self.tokenizer.eos_token def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Union[str, Any]=None , **_UpperCamelCase : Union[str, Any]) ->int: """simple docstring""" _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : List[Any] = {} if min_length_for_response is not None: _lowerCamelCase : Dict = min_length_for_response if minimum_tokens is not None: _lowerCamelCase : Dict = minimum_tokens if "max_length" in generate_kwargs: _lowerCamelCase : Any = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _lowerCamelCase : int = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCamelCase) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , _UpperCamelCase : Union[Conversation, List[Conversation]] , _UpperCamelCase : Optional[Any]=0 , **_UpperCamelCase : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : str = super().__call__(_UpperCamelCase , num_workers=_UpperCamelCase , **_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) and len(_UpperCamelCase) == 1: return outputs[0] return outputs def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Conversation , _UpperCamelCase : Tuple=32) ->Dict[str, Any]: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""") if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""") if hasattr(self.tokenizer , """_build_conversation_input_ids"""): _lowerCamelCase : List[str] = self.tokenizer._build_conversation_input_ids(_UpperCamelCase) else: # If the tokenizer cannot handle conversations, we default to only the old version _lowerCamelCase : Optional[int] = self._legacy_parse_and_tokenize(_UpperCamelCase) if self.framework == "pt": _lowerCamelCase : Tuple = torch.LongTensor([input_ids]) elif self.framework == "tf": _lowerCamelCase : Optional[Any] = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=10 , **_UpperCamelCase : Optional[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : Dict = generate_kwargs.get("""max_length""" , self.model.config.max_length) _lowerCamelCase : Union[str, Any] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""") _lowerCamelCase : Optional[Any] = max_length - minimum_tokens _lowerCamelCase : Tuple = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _lowerCamelCase : List[str] = model_inputs["""attention_mask"""][:, -trim:] _lowerCamelCase : List[Any] = model_inputs.pop("""conversation""") _lowerCamelCase : Any = max_length _lowerCamelCase : str = self.model.generate(**_UpperCamelCase , **_UpperCamelCase) if self.model.config.is_encoder_decoder: _lowerCamelCase : Optional[Any] = 1 else: _lowerCamelCase : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=True) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = model_outputs["""output_ids"""] _lowerCamelCase : Dict = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase , ) _lowerCamelCase : Tuple = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(_UpperCamelCase) return conversation def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Conversation) ->Dict: """simple docstring""" _lowerCamelCase : str = self.tokenizer.eos_token_id _lowerCamelCase : int = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase)) if len(_UpperCamelCase) > self.tokenizer.model_max_length: _lowerCamelCase : List[str] = input_ids[-self.tokenizer.model_max_length :] return input_ids
15
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import numpy as np import datasets lowerCAmelCase : Optional[int] ="\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" lowerCAmelCase : int ="\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" lowerCAmelCase : Tuple ="\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""") , id="""X"""), }) , ) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Any , _UpperCamelCase : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : int = np.array(_UpperCamelCase) _lowerCamelCase : Tuple = np.array(_UpperCamelCase) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("""Expected `X` to be a 2D vector""") if len(reference_distribution.shape) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""") if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""") # Get mahalanobis distance for each prediction _lowerCamelCase : int = X - np.mean(_UpperCamelCase) _lowerCamelCase : List[str] = np.cov(reference_distribution.T) try: _lowerCamelCase : Tuple = np.linalg.inv(_UpperCamelCase) except np.linalg.LinAlgError: _lowerCamelCase : Tuple = np.linalg.pinv(_UpperCamelCase) _lowerCamelCase : Optional[Any] = np.dot(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = np.dot(_UpperCamelCase , X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
15
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
1
import argparse import os import re lowerCAmelCase : Optional[Any] ="src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase : List[Any] =re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings lowerCAmelCase : List[Any] =re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def A__ ( __A , __A = False ): '''simple docstring''' with open(__A , """r""" , encoding="""utf-8""" ) as f: _lowerCamelCase : List[Any] = f.read() _lowerCamelCase : Optional[Any] = content.split("""\n""" ) _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[int] = 0 while line_idx < len(__A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _lowerCamelCase : Union[str, Any] = len(re.search(r"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 _lowerCamelCase : Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _lowerCamelCase : Dict = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _lowerCamelCase : Tuple = sorted(__A , key=lambda __A : _re_identifier.search(__A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(__A ) ) elif "\n".join(__A ) != content: return True def A__ ( __A = False ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [os.path.join(__A , __A ) for f in os.listdir(__A ) if f.endswith(""".py""" )] _lowerCamelCase : Any = [sort_auto_mapping(__A , overwrite=__A ) for fname in fnames] if not overwrite and any(__A ): _lowerCamelCase : List[str] = [f for f, d in zip(__A , __A ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(__A )}. Run `make style` to fix""" """ this.""" ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCAmelCase : Optional[Any] =parser.parse_args() sort_all_auto_mappings(not args.check_only)
15
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[str]) ->str: """simple docstring""" _lowerCamelCase : Any = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""") _lowerCamelCase : List[Any] = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2) _lowerCamelCase : Tuple = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" for example in examples: _lowerCamelCase : Any = video_classifier(_UpperCamelCase) self.assertEqual( _UpperCamelCase , [ {"""score""": ANY(_UpperCamelCase), """label""": ANY(_UpperCamelCase)}, {"""score""": ANY(_UpperCamelCase), """label""": ANY(_UpperCamelCase)}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _lowerCamelCase : Any = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10}) _lowerCamelCase : str = pipeline( """video-classification""" , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4) _lowerCamelCase : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""") _lowerCamelCase : str = video_classifier(_UpperCamelCase , top_k=2) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4) , [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}] , ) _lowerCamelCase : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4) , [ [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" pass
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
1
import datasets from .evaluate import evaluate lowerCAmelCase : int ="\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCAmelCase : Optional[Any] ="\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCAmelCase : str ="\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string"""), """prediction_text""": datasets.Value("""string""")}, """references""": { """id""": datasets.Value("""string"""), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string"""), """answer_start""": datasets.Value("""int32"""), }), }, }) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} _lowerCamelCase : str = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] _lowerCamelCase : List[Any] = evaluate(dataset=_UpperCamelCase , predictions=_UpperCamelCase) return score
15
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase : List[str] =logging.getLogger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : str=None) ->str: """simple docstring""" super().__init__( _UpperCamelCase , question_encoder_tokenizer=_UpperCamelCase , generator_tokenizer=_UpperCamelCase , index=_UpperCamelCase , init_retrieval=_UpperCamelCase , ) _lowerCamelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : int) ->List[Any]: """simple docstring""" logger.info("""initializing retrieval""") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""") # needs to be set manually _lowerCamelCase : str = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCamelCase : Dict = str(distributed_port + 1) _lowerCamelCase : str = dist.new_group(ranks=_UpperCamelCase , backend="""gloo""") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dist.get_rank(group=self.process_group) == 0 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]=torch.floataa) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = torch.empty(_UpperCamelCase , dtype=_UpperCamelCase) dist.scatter(_UpperCamelCase , src=0 , scatter_list=_UpperCamelCase , group=self.process_group) return target_tensor def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCamelCase : Union[str, Any] = next((addr for addr in addrs if addr.startswith("""e""")) , _UpperCamelCase) return ifname def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : int) ->Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self._main_retrieve(_UpperCamelCase , _UpperCamelCase) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCamelCase) # distributed training _lowerCamelCase : int = dist.get_world_size(group=self.process_group) # gather logic _lowerCamelCase : int = None if self._is_main(): _lowerCamelCase : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(_UpperCamelCase)] dist.gather(torch.tensor(_UpperCamelCase) , dst=0 , gather_list=_UpperCamelCase , group=self.process_group) # scatter logic _lowerCamelCase : int = question_hidden_states.shape[0] _lowerCamelCase : Any = [] _lowerCamelCase : Tuple = [] if self._is_main(): assert len(_UpperCamelCase) == world_size _lowerCamelCase , _lowerCamelCase : List[str] = self._main_retrieve(torch.cat(_UpperCamelCase).numpy() , _UpperCamelCase) _lowerCamelCase , _lowerCamelCase : Tuple = torch.tensor(_UpperCamelCase), torch.tensor(_UpperCamelCase) _lowerCamelCase : List[Any] = self._chunk_tensor(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = self._chunk_tensor(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = self._scattered(_UpperCamelCase , [n_queries, n_docs] , target_type=torch.intaa) _lowerCamelCase : Dict = self._scattered(_UpperCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCamelCase)
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int=7 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : Optional[int]=18 , _UpperCamelCase : Any=30 , _UpperCamelCase : Optional[Any]=400 , _UpperCamelCase : int=True , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=True , _UpperCamelCase : str=[0.5, 0.5, 0.5] , _UpperCamelCase : int=[0.5, 0.5, 0.5] , ) ->Tuple: """simple docstring""" _lowerCamelCase : Any = size if size is not None else {"""height""": 18, """width""": 18} _lowerCamelCase : Dict = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : Dict = image_size _lowerCamelCase : List[Any] = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : int = do_resize _lowerCamelCase : Tuple = size _lowerCamelCase : Union[str, Any] = do_normalize _lowerCamelCase : Dict = image_mean _lowerCamelCase : str = image_std def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = DPTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: """simple docstring""" _lowerCamelCase : Dict = DPTImageProcessingTester(self) @property def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCamelCase , """image_mean""")) self.assertTrue(hasattr(_UpperCamelCase , """image_std""")) self.assertTrue(hasattr(_UpperCamelCase , """do_normalize""")) self.assertTrue(hasattr(_UpperCamelCase , """do_resize""")) self.assertTrue(hasattr(_UpperCamelCase , """size""")) def _SCREAMING_SNAKE_CASE ( self : int) ->Dict: """simple docstring""" _lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18}) _lowerCamelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42}) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCamelCase : Optional[int] = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray) # Test not batched input _lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCamelCase : List[str] = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCamelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor) # Test not batched input _lowerCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCamelCase : str = image_processing(_UpperCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
15
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'naver-clova-ix/donut-base-finetuned-docvqa' _snake_case = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) _snake_case = 'document_qa' _snake_case = AutoProcessor _snake_case = VisionEncoderDecoderModel _snake_case = ['image', 'text'] _snake_case = ['text'] def __init__( self : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : int) ->Dict: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""") super().__init__(*_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : "Image" , _UpperCamelCase : str) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[str] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _lowerCamelCase : Optional[int] = task_prompt.replace("""{user_input}""" , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = self.pre_processor.tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors="""pt""").input_ids _lowerCamelCase : Dict = self.pre_processor(_UpperCamelCase , return_tensors="""pt""").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Optional[Any]) ->Optional[int]: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCamelCase , ).sequences def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[Any]) ->Dict: """simple docstring""" _lowerCamelCase : Optional[int] = self.pre_processor.batch_decode(_UpperCamelCase)[0] _lowerCamelCase : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , """""") _lowerCamelCase : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""") _lowerCamelCase : Optional[int] = re.sub(R"""<.*?>""" , """""" , _UpperCamelCase , count=1).strip() # remove first task start token _lowerCamelCase : List[str] = self.pre_processor.tokenajson(_UpperCamelCase) return sequence["answer"]
15
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Union[str, Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : int = 8 , **_UpperCamelCase : Dict , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = do_rescale _lowerCamelCase : str = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str]) ->np.ndarray: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None) ->Union[str, Any]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = get_image_size(_UpperCamelCase) _lowerCamelCase : str = (old_height // size + 1) * size - old_height _lowerCamelCase : List[Any] = (old_width // size + 1) * size - old_width return pad(_UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : ImageInput , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[float] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCamelCase : str , ) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : List[Any] = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : List[str] = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : str = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Optional[int] = [to_numpy_array(_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Union[str, Any] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_pad: _lowerCamelCase : Union[str, Any] = [self.pad(_UpperCamelCase , size=_UpperCamelCase) for image in images] _lowerCamelCase : Optional[Any] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' if index == number_of_items: return 0 _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : str = 0 _lowerCamelCase : List[Any] = knapsack(__A , __A , __A , __A , index + 1 ) if weights[index] <= max_weight: _lowerCamelCase : Optional[int] = values[index] + knapsack( __A , __A , __A , max_weight - weights[index] , index + 1 ) return max(__A , __A ) if __name__ == "__main__": import doctest doctest.testmod()
15
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = RobertaTokenizer _snake_case = RobertaTokenizerFast _snake_case = True _snake_case = {'cls_token': '<s>'} def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCamelCase : List[str] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : List[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCamelCase : Union[str, Any] = {"""unk_token""": """<unk>"""} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(_UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : int , **_UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , **_UpperCamelCase : Tuple) ->Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str) ->Any: """simple docstring""" _lowerCamelCase : Tuple = """lower newer""" _lowerCamelCase : Dict = """lower newer""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map) _lowerCamelCase : List[Any] = """lower newer""" _lowerCamelCase : str = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCamelCase : Any = tokenizer.tokenize(_UpperCamelCase) # , add_prefix_space=True) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase) , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=_UpperCamelCase) , [0, 3_1414, 232, 328, 2]) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=_UpperCamelCase) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : int = self.tokenizer_class.from_pretrained("""roberta-base""") _lowerCamelCase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer.encode( """sequence builders""" , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase) _lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase) _lowerCamelCase : Dict = tokenizer.build_inputs_with_special_tokens(_UpperCamelCase , _UpperCamelCase) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = """Encode this sequence.""" _lowerCamelCase : Any = tokenizer.byte_encoder[""" """.encode("""utf-8""")[0]] # Testing encoder arguments _lowerCamelCase : Any = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase , add_prefix_space=_UpperCamelCase) _lowerCamelCase : int = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase) tokenizer.add_special_tokens({"""bos_token""": """<s>"""}) _lowerCamelCase : Optional[Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase) # Testing spaces after special tokens _lowerCamelCase : Optional[Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase)}) # mask token has a left space _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(_UpperCamelCase) _lowerCamelCase : str = """Encode <mask> sequence""" _lowerCamelCase : Union[str, Any] = """Encode <mask>sequence""" _lowerCamelCase : str = tokenizer.encode(_UpperCamelCase) _lowerCamelCase : Optional[int] = encoded.index(_UpperCamelCase) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = tokenizer.encode(_UpperCamelCase) _lowerCamelCase : Any = encoded.index(_UpperCamelCase) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : str = """A, <mask> AllenNLP sentence.""" _lowerCamelCase : int = tokenizer_r.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer_p.encode_plus(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""]) , sum(tokens_p["""token_type_ids"""])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""]) / len(tokens_r["""attention_mask"""]) , sum(tokens_p["""attention_mask"""]) / len(tokens_p["""attention_mask"""]) , ) _lowerCamelCase : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""]) _lowerCamelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2]) self.assertSequenceEqual( _UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""]) self.assertSequenceEqual( _UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""]) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2): _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : List[str] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) _lowerCamelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , _UpperCamelCase) self.assertEqual(post_processor_state["""add_prefix_space"""] , _UpperCamelCase) self.assertEqual(post_processor_state["""trim_offsets"""] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): _lowerCamelCase : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCamelCase : str = F"""{text_of_1_token} {text_of_1_token}""" _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : List[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase) + 1, len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , ) _lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : Optional[Any] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase) + 1, len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , ) _lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase), len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCamelCase), len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , ) _lowerCamelCase : Union[str, Any] = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : List[str] = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase) + 1, 1 + len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , ) _lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : int = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase), 1 + len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , ) _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase , use_fast=_UpperCamelCase , add_prefix_space=_UpperCamelCase , trim_offsets=_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer_r(_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCamelCase))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCamelCase), 1 + len(_UpperCamelCase) + 1 + len(_UpperCamelCase)) , )
15
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase : Dict =[ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def A__ ( __A , __A=None ): '''simple docstring''' require_version(deps[pkg] , __A )
15
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
1
def A__ ( __A = 10**9 ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : List[str] = 2 _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[str] = 0 _lowerCamelCase : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _lowerCamelCase : List[str] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" _lowerCamelCase : List[Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_UpperCamelCase , """tf_padding""")) self.parent.assertTrue(hasattr(_UpperCamelCase , """depth_multiplier""")) class __snake_case : '''simple docstring''' def __init__( self : int , _UpperCamelCase : str , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : int=32 , _UpperCamelCase : Any=0.2_5 , _UpperCamelCase : str=8 , _UpperCamelCase : int=True , _UpperCamelCase : List[Any]=1024 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : Tuple="relu6" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Optional[int]=0.0_2 , _UpperCamelCase : str=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : List[str]=10 , _UpperCamelCase : Optional[int]=None , ) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : str = num_channels _lowerCamelCase : Tuple = image_size _lowerCamelCase : Union[str, Any] = depth_multiplier _lowerCamelCase : Tuple = min_depth _lowerCamelCase : List[str] = tf_padding _lowerCamelCase : Optional[int] = int(last_hidden_size * depth_multiplier) _lowerCamelCase : Optional[int] = output_stride _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Optional[int] = classifier_dropout_prob _lowerCamelCase : List[str] = use_labels _lowerCamelCase : Dict = is_training _lowerCamelCase : Tuple = num_labels _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = scope def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = MobileNetVaModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : List[str] = model(_UpperCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = self.num_labels _lowerCamelCase : int = MobileNetVaForImageClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model(_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _snake_case = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" _lowerCamelCase : Dict = MobileNetVaModelTester(self) _lowerCamelCase : List[Any] = MobileNetVaConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""") def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""") def _SCREAMING_SNAKE_CASE ( self : str) ->Dict: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(_UpperCamelCase) _lowerCamelCase : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" def check_hidden_states_output(_UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]): _lowerCamelCase : Optional[int] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)) _lowerCamelCase : Dict = outputs.hidden_states _lowerCamelCase : Any = 26 self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase) _lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : int = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : List[str] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = MobileNetVaModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""") if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""").to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : Optional[int] = image_processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**_UpperCamelCase) # verify the logits _lowerCamelCase : Optional[Any] = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape , _UpperCamelCase) _lowerCamelCase : List[str] = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5]).to(_UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4))
15
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
1
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = KandinskyVaaControlnetImgaImgPipeline _snake_case = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _snake_case = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _snake_case = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _snake_case = False @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: """simple docstring""" return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" return 32 @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->str: """simple docstring""" return 100 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: """simple docstring""" torch.manual_seed(0) _lowerCamelCase : Optional[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCamelCase : List[Any] = UNetaDConditionModel(**_UpperCamelCase) return model @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" torch.manual_seed(0) _lowerCamelCase : List[Any] = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.dummy_unet _lowerCamelCase : Dict = self.dummy_movq _lowerCamelCase : List[str] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCamelCase : Dict = DDIMScheduler(**_UpperCamelCase) _lowerCamelCase : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Any=0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) _lowerCamelCase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( _UpperCamelCase) # create init_image _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] _lowerCamelCase : int = Image.fromarray(np.uinta(_UpperCamelCase)).convert("""RGB""").resize((256, 256)) # create hint _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase)).to(_UpperCamelCase) if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : Any = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : Any = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : List[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : str = """cpu""" _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**_UpperCamelCase) _lowerCamelCase : str = pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowerCamelCase : List[str] = pipe(**self.get_dummy_inputs(_UpperCamelCase)) _lowerCamelCase : Any = output.images _lowerCamelCase : Dict = pipe( **self.get_dummy_inputs(_UpperCamelCase) , return_dict=_UpperCamelCase , )[0] _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCamelCase : str = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: """simple docstring""" _lowerCamelCase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""") _lowerCamelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") _lowerCamelCase : Optional[int] = init_image.resize((512, 512)) _lowerCamelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""") _lowerCamelCase : int = torch.from_numpy(np.array(_UpperCamelCase)).float() / 2_5_5.0 _lowerCamelCase : Dict = hint.permute(2 , 0 , 1).unsqueeze(0) _lowerCamelCase : Tuple = """A robot, 4k photo""" _lowerCamelCase : Optional[int] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(_UpperCamelCase) _lowerCamelCase : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa) _lowerCamelCase : List[str] = pipeline.to(_UpperCamelCase) pipeline.set_progress_bar_config(disable=_UpperCamelCase) _lowerCamelCase : str = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = pipe_prior( _UpperCamelCase , image=_UpperCamelCase , strength=0.8_5 , generator=_UpperCamelCase , negative_prompt="""""" , ).to_tuple() _lowerCamelCase : Optional[Any] = pipeline( image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , hint=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
15
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : str=13 , _UpperCamelCase : Any=7 , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Any=False , _UpperCamelCase : Dict=True , _UpperCamelCase : List[str]=99 , _UpperCamelCase : str=32 , _UpperCamelCase : Optional[Any]=5 , _UpperCamelCase : str=4 , _UpperCamelCase : Optional[Any]=64 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : str=512 , _UpperCamelCase : Tuple=16 , _UpperCamelCase : Any=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Any=2 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : int=2 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : str=4 , _UpperCamelCase : List[str]=1 , ) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Union[str, Any] = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Optional[Any] = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Optional[Any] = num_labels _lowerCamelCase : List[str] = num_choices _lowerCamelCase : Optional[Any] = scope _lowerCamelCase : int = q_groups _lowerCamelCase : Union[str, Any] = k_groups _lowerCamelCase : List[str] = v_groups _lowerCamelCase : Union[str, Any] = post_attention_groups _lowerCamelCase : List[Any] = intermediate_groups _lowerCamelCase : int = output_groups def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : int = None if self.use_input_mask: _lowerCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None _lowerCamelCase : Dict = None _lowerCamelCase : List[Any] = None if self.use_labels: _lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices) _lowerCamelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Union[str, Any] = SqueezeBertModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Tuple = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Dict = model(_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : List[str] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = SqueezeBertForQuestionAnswering(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : Optional[int] = SqueezeBertForSequenceClassification(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : Dict , _UpperCamelCase : str , _UpperCamelCase : List[str]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : int = self.num_labels _lowerCamelCase : str = SqueezeBertForTokenClassification(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : str = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.num_choices _lowerCamelCase : Tuple = SqueezeBertForMultipleChoice(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() _lowerCamelCase : Optional[int] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _lowerCamelCase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: """simple docstring""" _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : List[str] = config_and_inputs _lowerCamelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = True _snake_case = False def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" _lowerCamelCase : List[str] = SqueezeBertModelTester(self) _lowerCamelCase : List[str] = ConfigTester(self , config_class=_UpperCamelCase , dim=37) def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCamelCase) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = SqueezeBertModel.from_pretrained(_UpperCamelCase) self.assertIsNotNone(_UpperCamelCase) @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : int = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""") _lowerCamelCase : Any = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]]) _lowerCamelCase : int = model(_UpperCamelCase)[0] _lowerCamelCase : List[str] = torch.Size((1, 3)) self.assertEqual(output.shape , _UpperCamelCase) _lowerCamelCase : Tuple = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]]) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-4))
15
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'ibert' def __init__( self : Optional[Any] , _UpperCamelCase : Union[str, Any]=3_0522 , _UpperCamelCase : Dict=768 , _UpperCamelCase : str=12 , _UpperCamelCase : Union[str, Any]=12 , _UpperCamelCase : Dict=3072 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : Dict=2 , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : List[Any]=1E-1_2 , _UpperCamelCase : Any=1 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int="absolute" , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Any="none" , **_UpperCamelCase : Optional[int] , ) ->str: """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : str = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : int = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : List[str] = position_embedding_type _lowerCamelCase : Optional[int] = quant_mode _lowerCamelCase : List[Any] = force_dequant class __snake_case ( __lowerCAmelCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : str) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _lowerCamelCase : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCamelCase : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
15
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = [] _lowerCamelCase : Any = [] for rt in rc.restypes: _lowerCamelCase : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _lowerCamelCase : List[Any] = {name: i for i, name in enumerate(__A )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _lowerCamelCase : List[str] = torch.tensor( __A , dtype=torch.intaa , device=protein["""aatype"""].device , ) _lowerCamelCase : Optional[int] = torch.tensor( __A , dtype=torch.intaa , device=protein["""aatype"""].device , ) _lowerCamelCase : Optional[int] = torch.tensor( __A , dtype=torch.floataa , device=protein["""aatype"""].device , ) _lowerCamelCase : Union[str, Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _lowerCamelCase : Tuple = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : List[Any] = restype_atomaa_mask[protein_aatype] _lowerCamelCase : Optional[Any] = residx_atomaa_mask _lowerCamelCase : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _lowerCamelCase : Dict = restype_atomaa_to_atomaa[protein_aatype] _lowerCamelCase : Any = residx_atomaa_to_atomaa.long() # create the corresponding mask _lowerCamelCase : List[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): _lowerCamelCase : Optional[Any] = rc.restype_atoa[restype_letter] _lowerCamelCase : int = rc.residue_atoms[restype_name] for atom_name in atom_names: _lowerCamelCase : Tuple = rc.atom_order[atom_name] _lowerCamelCase : Any = 1 _lowerCamelCase : str = restype_atomaa_mask[protein_aatype] _lowerCamelCase : List[str] = residx_atomaa_mask return protein def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = tree_map(lambda __A : torch.tensor(__A , device=batch["""aatype"""].device ) , __A , np.ndarray ) _lowerCamelCase : Optional[Any] = tensor_tree_map(lambda __A : np.array(__A ) , make_atomaa_masks(__A ) ) return out
15
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
1
class __snake_case : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : str = "" , _UpperCamelCase : bool = False) ->None: """simple docstring""" _lowerCamelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _lowerCamelCase : str = is_leaf _lowerCamelCase : str = prefix def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str) ->tuple[str, str, str]: """simple docstring""" _lowerCamelCase : List[Any] = 0 for q, w in zip(self.prefix , _UpperCamelCase): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : list[str]) ->None: """simple docstring""" for word in words: self.insert(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : str) ->None: """simple docstring""" if self.prefix == word: _lowerCamelCase : List[str] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCamelCase : Optional[Any] = RadixNode(prefix=_UpperCamelCase , is_leaf=_UpperCamelCase) else: _lowerCamelCase : Dict = self.nodes[word[0]] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = incoming_node.match( _UpperCamelCase) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCamelCase) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCamelCase : Optional[Any] = remaining_prefix _lowerCamelCase : str = self.nodes[matching_string[0]] _lowerCamelCase : List[str] = RadixNode(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = aux_node if remaining_word == "": _lowerCamelCase : Union[str, Any] = True else: self.nodes[matching_string[0]].insert(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str) ->bool: """simple docstring""" _lowerCamelCase : Tuple = self.nodes.get(word[0] , _UpperCamelCase) if not incoming_node: return False else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = incoming_node.match( _UpperCamelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str) ->bool: """simple docstring""" _lowerCamelCase : List[str] = self.nodes.get(word[0] , _UpperCamelCase) if not incoming_node: return False else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = incoming_node.match( _UpperCamelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCamelCase) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: _lowerCamelCase : List[str] = list(self.nodes.values())[0] _lowerCamelCase : Any = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCamelCase : List[Any] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: _lowerCamelCase : Dict = False # If there is 1 edge, we merge it with its child else: _lowerCamelCase : Dict = list(incoming_node.nodes.values())[0] _lowerCamelCase : str = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCamelCase : Any = merging_node.nodes return True def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int = 0) ->None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""") for value in self.nodes.values(): value.print_tree(height + 1) def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = """banana bananas bandana band apple all beast""".split() _lowerCamelCase : int = RadixNode() root.insert_many(__A ) assert all(root.find(__A ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def A__ ( ): '''simple docstring''' assert test_trie() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[Any] = RadixNode() _lowerCamelCase : Dict = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(__A ) print("""Words:""" , __A ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
15
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = DiTPipeline _snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _snake_case = False def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" torch.manual_seed(0) _lowerCamelCase : Union[str, Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_UpperCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_UpperCamelCase , ) _lowerCamelCase : Dict = AutoencoderKL() _lowerCamelCase : Tuple = DDIMScheduler() _lowerCamelCase : Any = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : Any = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : Any = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Optional[int] = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Optional[int] = """cpu""" _lowerCamelCase : List[Any] = self.get_dummy_components() _lowerCamelCase : List[str] = self.pipeline_class(**_UpperCamelCase) pipe.to(_UpperCamelCase) pipe.set_progress_bar_config(disable=_UpperCamelCase) _lowerCamelCase : Dict = self.get_dummy_inputs(_UpperCamelCase) _lowerCamelCase : Any = pipe(**_UpperCamelCase).images _lowerCamelCase : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3)) _lowerCamelCase : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7]) _lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_UpperCamelCase , 1E-3) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_UpperCamelCase , expected_max_diff=1E-3) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @require_torch_gpu @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str) ->int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Tuple = torch.manual_seed(0) _lowerCamelCase : Dict = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""") pipe.to("""cuda""") _lowerCamelCase : List[str] = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCamelCase : Any = pipe.get_label_ids(_UpperCamelCase) _lowerCamelCase : List[Any] = pipe(_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=40 , output_type="""np""").images for word, image in zip(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : List[str] = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""") assert np.abs((expected_image - image).max()) < 1E-2 def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""") _lowerCamelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("""cuda""") _lowerCamelCase : Tuple = ["""vase""", """umbrella"""] _lowerCamelCase : Dict = pipe.get_label_ids(_UpperCamelCase) _lowerCamelCase : List[Any] = torch.manual_seed(0) _lowerCamelCase : List[Any] = pipe(_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=25 , output_type="""np""").images for word, image in zip(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F"""/dit/{word}_512.npy""") assert np.abs((expected_image - image).max()) < 1E-1
15
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
15
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = torch.nn.Linear(2 , 4 ) _lowerCamelCase : Optional[int] = torch.optim.AdamW(model.parameters() , lr=1.0 ) _lowerCamelCase : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(__A , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) _lowerCamelCase : Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _lowerCamelCase : Optional[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def A__ ( __A ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__A ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' @require_cuda def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_UpperCamelCase): _lowerCamelCase : str = Accelerator(cpu=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : str = Accelerator() _lowerCamelCase : List[Any] = GradientState() assert state.num_steps == 1 _lowerCamelCase : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _lowerCamelCase : Dict = False assert state.sync_gradients is False GradientState._reset_state() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = Accelerator() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = create_components() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Tuple = accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : str = Accelerator() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_UpperCamelCase : str , **_UpperCamelCase : Optional[Any]): pass with patch("""torch.cuda.set_device""" , _UpperCamelCase), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64"""): _lowerCamelCase : Any = Accelerator() self.assertEqual(str(accelerator.state.device) , """cuda:64""") def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" _lowerCamelCase : Tuple = Accelerator() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = get_signature(_UpperCamelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase) # make sure random weights don't match load_random_weights(_UpperCamelCase) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase)) > 1E-3) # make sure loaded weights match accelerator.load_state(_UpperCamelCase) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase)) < 1E-3) def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = Accelerator() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = get_signature(_UpperCamelCase) # saving hook def save_config(_UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]): _lowerCamelCase : int = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(_UpperCamelCase , """data.json""") , """w""") as f: json.dump(_UpperCamelCase , _UpperCamelCase) # loading hook def load_config(_UpperCamelCase : Optional[int] , _UpperCamelCase : Dict): with open(os.path.join(_UpperCamelCase , """data.json""") , """r""") as f: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[int] = config["""class_name"""] _lowerCamelCase : Union[str, Any] = accelerator.register_save_state_pre_hook(_UpperCamelCase) _lowerCamelCase : List[str] = accelerator.register_load_state_pre_hook(_UpperCamelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase) # make sure random weights don't match with hooks load_random_weights(_UpperCamelCase) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase)) > 1E-3) # random class name to verify correct one is loaded _lowerCamelCase : Tuple = """random""" # make sure loaded weights match with hooks accelerator.load_state(_UpperCamelCase) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase)) < 1E-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase) # make sure random weights don't match with hooks removed load_random_weights(_UpperCamelCase) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase)) > 1E-3) # random class name to verify correct one is loaded _lowerCamelCase : Optional[int] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(_UpperCamelCase) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase)) < 1E-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" _lowerCamelCase : Dict = Accelerator() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = create_components() _lowerCamelCase : List[str] = None # This should work _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertTrue(dummy_obj is None) def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = Accelerator() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = create_components() _lowerCamelCase : List[str] = [1, 2, 3] # This should work _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual( getattr(_UpperCamelCase , """_is_accelerate_prepared""" , _UpperCamelCase) , _UpperCamelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(_UpperCamelCase , """_is_accelerate_prepared""" , _UpperCamelCase) , _UpperCamelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCamelCase , """_is_accelerate_prepared""" , _UpperCamelCase) , _UpperCamelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCamelCase , """_is_accelerate_prepared""" , _UpperCamelCase) , _UpperCamelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCamelCase , """_is_accelerate_prepared""" , _UpperCamelCase) , _UpperCamelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(_UpperCamelCase , """_is_accelerate_prepared""" , _UpperCamelCase) , _UpperCamelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" from transformers import AutoModelForCausalLM _lowerCamelCase : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCamelCase , device_map={"""""": 0} , ) _lowerCamelCase : Union[str, Any] = Accelerator() # This should work _lowerCamelCase : int = accelerator.prepare(_UpperCamelCase) @slow @require_bnb def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: """simple docstring""" from transformers import AutoModelForCausalLM _lowerCamelCase : List[str] = Accelerator() with init_empty_weights(): _lowerCamelCase : Any = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCamelCase : Union[str, Any] = infer_auto_device_map(_UpperCamelCase) _lowerCamelCase : Any = """cpu""" _lowerCamelCase : List[str] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=_UpperCamelCase , load_in_abit=_UpperCamelCase , llm_inta_enable_fpaa_cpu_offload=_UpperCamelCase) # This should not work and get value error with self.assertRaises(_UpperCamelCase): _lowerCamelCase : Tuple = accelerator.prepare(_UpperCamelCase) @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: """simple docstring""" from transformers import AutoModelForCausalLM _lowerCamelCase : Union[str, Any] = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _lowerCamelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _lowerCamelCase : List[Any] = infer_auto_device_map(_UpperCamelCase) _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCamelCase , device_map=_UpperCamelCase , ) _lowerCamelCase : Optional[Any] = Accelerator() # This should not work and get value error with self.assertRaises(_UpperCamelCase): _lowerCamelCase : str = accelerator.prepare(_UpperCamelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): _lowerCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _lowerCamelCase : int = infer_auto_device_map(_UpperCamelCase) _lowerCamelCase : List[str] = 1 _lowerCamelCase : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=_UpperCamelCase , device_map=_UpperCamelCase , ) _lowerCamelCase : List[str] = Accelerator() # This should work _lowerCamelCase : List[Any] = accelerator.prepare(_UpperCamelCase) @require_cuda def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = torch.nn.Linear(10 , 10) _lowerCamelCase : Dict = torch.optim.SGD(model.parameters() , lr=0.0_1) _lowerCamelCase : Tuple = Accelerator(cpu=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = accelerator.prepare(_UpperCamelCase)
15
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
1
from __future__ import annotations def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = len(__A ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _lowerCamelCase : str = i + 1 else: _lowerCamelCase : str = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
15
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
1
import copy import re class __snake_case : '''simple docstring''' _snake_case = 'hp' _snake_case = {} _snake_case = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any) ->Tuple: """simple docstring""" _lowerCamelCase : Optional[int] = prefix _lowerCamelCase : Union[str, Any] = defaults cls.build_naming_info() @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : Any , _UpperCamelCase : List[Any]) ->int: """simple docstring""" if len(_UpperCamelCase) == 0: return "" _lowerCamelCase : Optional[Any] = None if any(char.isdigit() for char in word): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""") if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCamelCase) + 1): _lowerCamelCase : List[str] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _lowerCamelCase : int = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCamelCase : Dict): _lowerCamelCase : Union[str, Any] = """""" while integer != 0: _lowerCamelCase : Any = chr(ord("""A""") + integer % 10) + s integer //= 10 return s _lowerCamelCase : int = 0 while True: _lowerCamelCase : int = word + """#""" + int_to_alphabetic(_UpperCamelCase) if sword in info["reverse_short_word"]: continue else: _lowerCamelCase : Optional[Any] = sword break _lowerCamelCase : Tuple = short_word _lowerCamelCase : Union[str, Any] = word return short_word @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]) ->Any: """simple docstring""" _lowerCamelCase : Optional[Any] = param_name.split("""_""") _lowerCamelCase : int = [TrialShortNamer.shortname_for_word(_UpperCamelCase , _UpperCamelCase) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _lowerCamelCase : str = ["""""", """_"""] for separator in separators: _lowerCamelCase : Optional[Any] = separator.join(_UpperCamelCase) if shortname not in info["reverse_short_param"]: _lowerCamelCase : Any = shortname _lowerCamelCase : Optional[int] = param_name return shortname return param_name @staticmethod def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Dict: """simple docstring""" _lowerCamelCase : str = TrialShortNamer.shortname_for_key(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = short_name _lowerCamelCase : Optional[int] = param_name @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple) ->int: """simple docstring""" if cls.NAMING_INFO is not None: return _lowerCamelCase : str = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } _lowerCamelCase : int = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = info @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , _UpperCamelCase : List[str]) ->Dict: """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None _lowerCamelCase : List[str] = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""") if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _lowerCamelCase : Any = cls.NAMING_INFO["""short_param"""][k] if isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : int = 1 if v else 0 _lowerCamelCase : List[str] = """""" if isinstance(_UpperCamelCase , (int, float)) else """-""" _lowerCamelCase : Dict = F"""{key}{sep}{v}""" name.append(_UpperCamelCase) return "_".join(_UpperCamelCase) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , _UpperCamelCase : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = repr[len(cls.PREFIX) + 1 :] if repr == "": _lowerCamelCase : List[Any] = [] else: _lowerCamelCase : Dict = repr.split("""_""") _lowerCamelCase : Tuple = {} for value in values: if "-" in value: _lowerCamelCase , _lowerCamelCase : Tuple = value.split("""-""") else: _lowerCamelCase : int = re.sub("""[0-9.]""" , """""" , _UpperCamelCase) _lowerCamelCase : Tuple = float(re.sub("""[^0-9.]""" , """""" , _UpperCamelCase)) _lowerCamelCase : Dict = cls.NAMING_INFO["""reverse_short_param"""][p_k] _lowerCamelCase : int = p_v for k in cls.DEFAULTS: if k not in parameters: _lowerCamelCase : List[Any] = cls.DEFAULTS[k] return parameters
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Optional[int] = tempfile.mkdtemp() # fmt: off _lowerCamelCase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowerCamelCase : List[Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowerCamelCase : Optional[Any] = {"""unk_token""": """<unk>"""} _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(_UpperCamelCase)) _lowerCamelCase : List[str] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : int) ->Dict: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **_UpperCamelCase : List[str]) ->List[Any]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] _lowerCamelCase : List[Any] = [Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_rust_tokenizer() _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : str = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor_slow.save_pretrained(self.tmpdirname) _lowerCamelCase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) _lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor_fast.save_pretrained(self.tmpdirname) _lowerCamelCase : str = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , _UpperCamelCase) self.assertIsInstance(processor_fast.tokenizer , _UpperCamelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , _UpperCamelCase) self.assertIsInstance(processor_fast.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Tuple = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : List[Any] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : Any = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Tuple = """lower newer""" _lowerCamelCase : Optional[int] = processor(text=_UpperCamelCase) _lowerCamelCase : int = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = """lower newer""" _lowerCamelCase : Optional[int] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""input_ids""", """attention_mask""", """pixel_values"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[str] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.batch_decode(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" _lowerCamelCase : str = self.get_image_processor() _lowerCamelCase : Any = self.get_tokenizer() _lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """lower newer""" _lowerCamelCase : Any = self.prepare_image_inputs() _lowerCamelCase : List[str] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
15
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def A__ ( __A , __A , __A , __A , __A , __A = None , ): '''simple docstring''' _lowerCamelCase : Tuple = {} if train_file is not None: _lowerCamelCase : Union[str, Any] = [train_file] if eval_file is not None: _lowerCamelCase : Dict = [eval_file] if test_file is not None: _lowerCamelCase : Dict = [test_file] _lowerCamelCase : Any = datasets.load_dataset("""csv""" , data_files=__A ) _lowerCamelCase : Any = list(ds[list(files.keys() )[0]].features.keys() ) _lowerCamelCase : Optional[Any] = features_name.pop(__A ) _lowerCamelCase : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) _lowerCamelCase : Tuple = {label: i for i, label in enumerate(__A )} _lowerCamelCase : Optional[Any] = tokenizer.model_input_names _lowerCamelCase : Dict = {} if len(__A ) == 1: for k in files.keys(): _lowerCamelCase : Optional[Any] = ds[k].map( lambda __A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__A , max_length=__A , padding="""max_length""" ) , batched=__A , ) elif len(__A ) == 2: for k in files.keys(): _lowerCamelCase : Tuple = ds[k].map( lambda __A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__A , max_length=__A , padding="""max_length""" , ) , batched=__A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _lowerCamelCase : Optional[int] = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _lowerCamelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _lowerCamelCase : List[str] = {k: v for k, v in ex.items() if k in input_names} _lowerCamelCase : str = labelaid[ex[label_name]] yield (d, label) _lowerCamelCase : int = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _lowerCamelCase : Union[str, Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _lowerCamelCase : int = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _lowerCamelCase : Tuple = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _lowerCamelCase : int = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _lowerCamelCase : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase : List[str] =logging.getLogger(__name__) @dataclass class __snake_case : '''simple docstring''' _snake_case = field(metadata={'help': 'Which column contains the label'} ) _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'The path of the training file'} ) _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'The path of the development file'} ) _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'The path of the test file'} ) _snake_case = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case = field( default=__lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __snake_case : '''simple docstring''' _snake_case = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case = field( default=__lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case = field( default=__lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case = field(default=__lowerCAmelCase , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _snake_case = field( default=__lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def A__ ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowerCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _lowerCamelCase : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , ) def compute_metrics(__A ) -> Dict: _lowerCamelCase : str = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _lowerCamelCase : Any = TFTrainer( model=__A , args=__A , train_dataset=__A , eval_dataset=__A , compute_metrics=__A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCamelCase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCamelCase : List[str] = trainer.evaluate() _lowerCamelCase : int = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(__A , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(__A ) return results if __name__ == "__main__": main()
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase : int ={ "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } lowerCAmelCase : Any ={ "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } lowerCAmelCase : Optional[Any] ={ "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = ['input_ids', 'attention_mask'] _snake_case = DistilBertTokenizer def __init__( self : Tuple , _UpperCamelCase : int=None , _UpperCamelCase : int=None , _UpperCamelCase : Any=True , _UpperCamelCase : Optional[Any]="[UNK]" , _UpperCamelCase : int="[SEP]" , _UpperCamelCase : Optional[int]="[PAD]" , _UpperCamelCase : List[Any]="[CLS]" , _UpperCamelCase : int="[MASK]" , _UpperCamelCase : Tuple=True , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : str , ) ->str: """simple docstring""" super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , _UpperCamelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , _UpperCamelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _UpperCamelCase) != tokenize_chinese_chars ): _lowerCamelCase : Dict = getattr(_UpperCamelCase , normalizer_state.pop("""type""")) _lowerCamelCase : int = do_lower_case _lowerCamelCase : Optional[Any] = strip_accents _lowerCamelCase : Dict = tokenize_chinese_chars _lowerCamelCase : Optional[int] = normalizer_class(**_UpperCamelCase) _lowerCamelCase : List[str] = do_lower_case def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : str=None) ->str: """simple docstring""" _lowerCamelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Union[str, Any] = [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" _lowerCamelCase : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase) return tuple(_UpperCamelCase)
15
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase : List[Any] =logging.get_logger(__name__) lowerCAmelCase : Dict[Optional[str], Type[Formatter]] ={} lowerCAmelCase : Dict[Optional[str], str] ={} lowerCAmelCase : Dict[Optional[str], Exception] ={} def A__ ( __A , __A , __A = None , ): '''simple docstring''' _lowerCamelCase : List[str] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) _lowerCamelCase : Any = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) _lowerCamelCase : Union[str, Any] = format_type def A__ ( __A , __A , __A = None ): '''simple docstring''' _lowerCamelCase : int = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowerCamelCase : Optional[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: lowerCAmelCase : Any =ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: lowerCAmelCase : Dict =ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: lowerCAmelCase : Union[str, Any] =ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def A__ ( __A ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A__ ( __A , **__A ): '''simple docstring''' _lowerCamelCase : Any = get_format_type_from_alias(__A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
15
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
1
def A__ ( __A ): '''simple docstring''' def merge(__A , __A ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__A ) <= 1: return collection _lowerCamelCase : Optional[int] = len(__A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict =input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase : Dict =[int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
15
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
1
def A__ ( __A ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) _lowerCamelCase : str = sorted(string.lower() ) return len(__A ) == len(set(__A ) ) if __name__ == "__main__": lowerCAmelCase : Tuple =input("Enter a string ").strip() lowerCAmelCase : Optional[Any] =is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } lowerCAmelCase : Optional[int] =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' for attribute in key.split(""".""" ): _lowerCamelCase : Dict = getattr(__A , __A ) if weight_type is not None: _lowerCamelCase : Optional[Any] = getattr(__A , __A ).shape else: _lowerCamelCase : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowerCamelCase : int = value elif weight_type == "weight_g": _lowerCamelCase : List[Any] = value elif weight_type == "weight_v": _lowerCamelCase : Dict = value elif weight_type == "bias": _lowerCamelCase : Dict = value else: _lowerCamelCase : int = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[Any] = fairseq_model.state_dict() _lowerCamelCase : Any = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _lowerCamelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == """group""" , ) _lowerCamelCase : Any = True else: for key, mapped_key in MAPPING.items(): _lowerCamelCase : str = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue _lowerCamelCase : Optional[int] = True if "*" in mapped_key: _lowerCamelCase : Dict = name.split(__A )[0].split(""".""" )[-2] _lowerCamelCase : List[str] = mapped_key.replace("""*""" , __A ) if "weight_g" in name: _lowerCamelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: _lowerCamelCase : List[Any] = """weight_v""" elif "bias" in name: _lowerCamelCase : List[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCamelCase : Optional[Any] = """weight""" else: _lowerCamelCase : str = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Any = full_name.split("""conv_layers.""" )[-1] _lowerCamelCase : Dict = name.split(""".""" ) _lowerCamelCase : int = int(items[0] ) _lowerCamelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowerCamelCase : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowerCamelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) _lowerCamelCase : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowerCamelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def A__ ( __A , __A , __A=None , __A=None , __A=True ): '''simple docstring''' if config_path is not None: _lowerCamelCase : int = UniSpeechSatConfig.from_pretrained(__A ) else: _lowerCamelCase : int = UniSpeechSatConfig() _lowerCamelCase : Tuple = """""" if is_finetuned: _lowerCamelCase : Dict = UniSpeechSatForCTC(__A ) else: _lowerCamelCase : Union[str, Any] = UniSpeechSatForPreTraining(__A ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _lowerCamelCase : List[Any] = model[0].eval() recursively_load_weights(__A , __A ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCAmelCase : Any =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
15
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str =logging.get_logger(__name__) lowerCAmelCase : Tuple ={ "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'decision_transformer' _snake_case = ['past_key_values'] _snake_case = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , _UpperCamelCase : int=17 , _UpperCamelCase : Optional[int]=4 , _UpperCamelCase : Optional[Any]=128 , _UpperCamelCase : Tuple=4096 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : List[str]=1 , _UpperCamelCase : str=1024 , _UpperCamelCase : str=3 , _UpperCamelCase : str=1 , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Dict="relu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]=1E-5 , _UpperCamelCase : Union[str, Any]=0.0_2 , _UpperCamelCase : Any=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Tuple=5_0256 , _UpperCamelCase : Optional[Any]=5_0256 , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Union[str, Any]=False , **_UpperCamelCase : Union[str, Any] , ) ->Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] = state_dim _lowerCamelCase : str = act_dim _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Any = max_ep_len _lowerCamelCase : Union[str, Any] = action_tanh _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Dict = n_positions _lowerCamelCase : Dict = n_layer _lowerCamelCase : str = n_head _lowerCamelCase : Union[str, Any] = n_inner _lowerCamelCase : Any = activation_function _lowerCamelCase : int = resid_pdrop _lowerCamelCase : int = embd_pdrop _lowerCamelCase : Dict = attn_pdrop _lowerCamelCase : List[str] = layer_norm_epsilon _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Tuple = scale_attn_weights _lowerCamelCase : str = use_cache _lowerCamelCase : str = scale_attn_by_inverse_layer_idx _lowerCamelCase : int = reorder_and_upcast_attn _lowerCamelCase : Optional[int] = bos_token_id _lowerCamelCase : Dict = eos_token_id super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase)
15
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" _lowerCamelCase : int = """ylacombe/bark-small""" _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Tuple = """en_speaker_1""" _lowerCamelCase : Tuple = """This is a test string""" _lowerCamelCase : Optional[int] = """speaker_embeddings_path.json""" _lowerCamelCase : int = """speaker_embeddings""" def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : int) ->List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: """simple docstring""" _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : int = BarkProcessor(tokenizer=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) _lowerCamelCase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: """simple docstring""" _lowerCamelCase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) _lowerCamelCase : int = 35 _lowerCamelCase : Optional[int] = 2 _lowerCamelCase : Optional[Any] = 8 _lowerCamelCase : str = { """semantic_prompt""": np.ones(_UpperCamelCase), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len)), """fine_prompt""": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset _lowerCamelCase : List[str] = processor(text=self.input_string , voice_preset=_UpperCamelCase) _lowerCamelCase : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([])).tolist()) # test loading voice preset from npz file _lowerCamelCase : int = os.path.join(self.tmpdirname , """file.npz""") np.savez(_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : str = processor(text=self.input_string , voice_preset=_UpperCamelCase) _lowerCamelCase : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCamelCase , np.array([])).tolist()) # test loading voice preset from the hub _lowerCamelCase : List[str] = processor(text=self.input_string , voice_preset=self.voice_preset) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = BarkProcessor(tokenizer=_UpperCamelCase) _lowerCamelCase : str = processor(text=self.input_string) _lowerCamelCase : Union[str, Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
15
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
1
def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Optional[int] = """""" for i in table: res += inp[i - 1] return res def A__ ( __A ): '''simple docstring''' return data[1:] + data[0] def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = """""" for i in range(len(__A ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = int("""0b""" + data[0] + data[-1] , 2 ) _lowerCamelCase : Optional[Any] = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def A__ ( __A , __A , __A , __A , __A ): '''simple docstring''' _lowerCamelCase : Dict = message[:4] _lowerCamelCase : Any = message[4:] _lowerCamelCase : int = apply_table(__A , __A ) _lowerCamelCase : Dict = xor(__A , __A ) _lowerCamelCase : Union[str, Any] = apply_sbox(__A , temp[:4] ) # noqa: E741 _lowerCamelCase : int = apply_sbox(__A , temp[4:] ) _lowerCamelCase : int = """0""" * (2 - len(__A )) + l # noqa: E741 _lowerCamelCase : List[Any] = """0""" * (2 - len(__A )) + r _lowerCamelCase : str = apply_table(l + r , __A ) _lowerCamelCase : Optional[int] = xor(__A , __A ) return temp + right if __name__ == "__main__": lowerCAmelCase : Any =input("Enter 10 bit key: ") lowerCAmelCase : Any =input("Enter 8 bit message: ") lowerCAmelCase : Any =[6, 3, 7, 4, 8, 5, 10, 9] lowerCAmelCase : str =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCAmelCase : Union[str, Any] =[2, 4, 3, 1] lowerCAmelCase : int =[2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase : Dict =[4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase : int =[4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase : Optional[int] =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase : Union[str, Any] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase : Optional[int] =apply_table(key, paa_table) lowerCAmelCase : List[Any] =temp[:5] lowerCAmelCase : str =temp[5:] lowerCAmelCase : Union[str, Any] =left_shift(left) lowerCAmelCase : str =left_shift(right) lowerCAmelCase : List[Any] =apply_table(left + right, pa_table) lowerCAmelCase : List[str] =left_shift(left) lowerCAmelCase : Optional[int] =left_shift(right) lowerCAmelCase : Optional[int] =left_shift(left) lowerCAmelCase : Any =left_shift(right) lowerCAmelCase : str =apply_table(left + right, pa_table) # encryption lowerCAmelCase : Union[str, Any] =apply_table(message, IP) lowerCAmelCase : Optional[int] =function(expansion, sa, sa, keya, temp) lowerCAmelCase : int =temp[4:] + temp[:4] lowerCAmelCase : Any =function(expansion, sa, sa, keya, temp) lowerCAmelCase : Dict =apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption lowerCAmelCase : Any =apply_table(CT, IP) lowerCAmelCase : List[Any] =function(expansion, sa, sa, keya, temp) lowerCAmelCase : Any =temp[4:] + temp[:4] lowerCAmelCase : Union[str, Any] =function(expansion, sa, sa, keya, temp) lowerCAmelCase : Tuple =apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
15
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]: """simple docstring""" super().__init__( _UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , ) _lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths} _lowerCamelCase : Any = Text( cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" if self.streaming: _lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _lowerCamelCase : List[Any] = None _lowerCamelCase : Any = None _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , ) _lowerCamelCase : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory) return dataset
15
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = BlenderbotSmallTokenizer _snake_case = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" super().setUp() _lowerCamelCase : Union[str, Any] = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] _lowerCamelCase : List[Any] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : Optional[Any] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] _lowerCamelCase : List[str] = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") with open(self.merges_file , """w""" , encoding="""utf-8""") as fp: fp.write("""\n""".join(_UpperCamelCase)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **_UpperCamelCase : int) ->Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Any = """adapt act apte""" _lowerCamelCase : Any = """adapt act apte""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) _lowerCamelCase : Any = """adapt act apte""" _lowerCamelCase : List[Any] = ["""adapt""", """act""", """ap@@""", """te"""] _lowerCamelCase : Union[str, Any] = tokenizer.tokenize(_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : List[str] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase) , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""") assert tok("""sam""").input_ids == [1384] _lowerCamelCase : int = """I am a small frog.""" _lowerCamelCase : Tuple = tok([src_text] , padding=_UpperCamelCase , truncation=_UpperCamelCase)["""input_ids"""] _lowerCamelCase : List[Any] = tok.batch_decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase)[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""") _lowerCamelCase : str = """I am a small frog .""" _lowerCamelCase : str = """.""" _lowerCamelCase : Any = tok(_UpperCamelCase)["""input_ids"""] _lowerCamelCase : Tuple = tok(_UpperCamelCase)["""input_ids"""] assert encoded[-1] == encoded_dot[0]
15
lowerCAmelCase : Tuple =0 # The first color of the flag. lowerCAmelCase : Union[str, Any] =1 # The second color of the flag. lowerCAmelCase : Any =2 # The third color of the flag. lowerCAmelCase : List[str] =(red, white, blue) def A__ ( __A ): '''simple docstring''' if not sequence: return [] if len(__A ) == 1: return list(__A ) _lowerCamelCase : int = 0 _lowerCamelCase : Dict = len(__A ) - 1 _lowerCamelCase : str = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid] high -= 1 else: _lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip() lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")] print(F"""{dutch_national_flag_sort(unsorted)}""")
15
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase : Optional[int] =["gpt2"] lowerCAmelCase : Optional[int] ="gpt2" if is_tf_available(): class __snake_case ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : List[str]) ->Optional[Any]: """simple docstring""" super().__init__() _lowerCamelCase : int = tokenizer _lowerCamelCase : Any = AutoConfig.from_pretrained(_UpperCamelCase) _lowerCamelCase : Optional[Any] = TFGPTaLMHeadModel.from_config(_UpperCamelCase) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text"""),)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.tokenizer(_UpperCamelCase) _lowerCamelCase : Dict = tokenized["""input_ids"""].to_tensor() _lowerCamelCase : int = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _lowerCamelCase : Union[str, Any] = self.model(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase)["""logits"""] return outputs @require_tf @require_keras_nlp class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" super().setUp() _lowerCamelCase : List[str] = [GPTaTokenizer.from_pretrained(_UpperCamelCase) for checkpoint in (TOKENIZER_CHECKPOINTS)] _lowerCamelCase : Optional[int] = [TFGPTaTokenizer.from_pretrained(_UpperCamelCase) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) _lowerCamelCase : int = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _lowerCamelCase : List[Any] = list(zip(self.test_sentences , self.test_sentences[::-1])) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: _lowerCamelCase : List[str] = tokenizer([test_inputs] , return_tensors="""tf""") _lowerCamelCase : Tuple = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _lowerCamelCase : Any = python_outputs[key].numpy() _lowerCamelCase : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(_UpperCamelCase , tf.intaa) == tf_outputs_values)) @slow def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Dict = tf.function(_UpperCamelCase) for test_inputs in self.test_sentences: _lowerCamelCase : List[Any] = tf.constant(_UpperCamelCase) _lowerCamelCase : str = compiled_tokenizer(_UpperCamelCase) _lowerCamelCase : Any = tf_tokenizer(_UpperCamelCase) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Optional[Any] = ModelToSave(tokenizer=_UpperCamelCase) _lowerCamelCase : Any = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCamelCase : Any = model.serving(_UpperCamelCase) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _lowerCamelCase : Dict = Path(_UpperCamelCase) / """saved.model""" tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={"""serving_default""": model.serving}) _lowerCamelCase : Union[str, Any] = tf.saved_model.load(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = loaded_model.signatures["""serving_default"""](_UpperCamelCase)["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _lowerCamelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCamelCase : Optional[Any] = tf_tokenizer(_UpperCamelCase) # Build model with some sample inputs _lowerCamelCase : List[Any] = tf_tokenizer.get_config() _lowerCamelCase : Union[str, Any] = TFGPTaTokenizer.from_config(_UpperCamelCase) _lowerCamelCase : List[Any] = model_from_config(_UpperCamelCase) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _lowerCamelCase : Optional[Any] = 12_3123 for max_length in [3, 5, 1024]: _lowerCamelCase : List[str] = tf.convert_to_tensor([self.test_sentences[0]]) _lowerCamelCase : Optional[Any] = tf_tokenizer(_UpperCamelCase , max_length=_UpperCamelCase) _lowerCamelCase : Tuple = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
15
from __future__ import annotations lowerCAmelCase : int =[] def A__ ( __A , __A , __A ): '''simple docstring''' for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def A__ ( __A , __A ): '''simple docstring''' if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): _lowerCamelCase : int = 1 solve(__A , row + 1 ) _lowerCamelCase : List[str] = 0 return False def A__ ( __A ): '''simple docstring''' for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) lowerCAmelCase : int =8 lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
15
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'LayoutLMv3ImageProcessor' _snake_case = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Dict , _UpperCamelCase : Tuple=None , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Tuple) ->List[Any]: """simple docstring""" _lowerCamelCase : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _UpperCamelCase , ) _lowerCamelCase : List[Any] = kwargs.pop("""feature_extractor""") _lowerCamelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(_UpperCamelCase , _UpperCamelCase) def __call__( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCamelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCamelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCamelCase : bool = True , _UpperCamelCase : Union[bool, str, PaddingStrategy] = False , _UpperCamelCase : Union[bool, str, TruncationStrategy] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : int = 0 , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[str, TensorType]] = None , **_UpperCamelCase : Union[str, Any] , ) ->BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""") # first, apply the image processor _lowerCamelCase : str = self.image_processor(images=_UpperCamelCase , return_tensors=_UpperCamelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowerCamelCase : Union[str, Any] = features["""words"""] _lowerCamelCase : Optional[Any] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel values _lowerCamelCase : List[Any] = features.pop("""pixel_values""") if return_overflowing_tokens is True: _lowerCamelCase : List[str] = self.get_overflowing_images(_UpperCamelCase , encoded_inputs["""overflow_to_sample_mapping"""]) _lowerCamelCase : int = images return encoded_inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_UpperCamelCase) != len(_UpperCamelCase): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F""" {len(_UpperCamelCase)} and {len(_UpperCamelCase)}""") return images_with_overflow def _SCREAMING_SNAKE_CASE ( self : List[str] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[Any]) ->str: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *_UpperCamelCase : int , **_UpperCamelCase : Any) ->int: """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase) @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCamelCase , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCamelCase , ) return self.image_processor
15
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase : int ={ "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def A__ ( __A , __A , __A , __A=None ): '''simple docstring''' # Initialise PyTorch model _lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A ) _lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : int = finetuning_task _lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : int = XLNetForSequenceClassification(__A ) elif "squad" in finetuning_task: _lowerCamelCase : Dict = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A ) else: _lowerCamelCase : Any = XLNetLMHeadModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A ) # Save pytorch-model _lowerCamelCase : Optional[Any] = os.path.join(__A , __A ) _lowerCamelCase : Any = os.path.join(__A , __A ) print(F"""Save PyTorch model to {os.path.abspath(__A )}""" ) torch.save(model.state_dict() , __A ) print(F"""Save configuration file to {os.path.abspath(__A )}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowerCAmelCase : Union[str, Any] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
15
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase : List[Any] =pytest.mark.integration @require_faiss class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str) ->Dict: """simple docstring""" _lowerCamelCase : Dict = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(_UpperCamelCase) for x in np.arange(30).tolist()]}) return dset def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" import faiss _lowerCamelCase : Dataset = self._create_dummy_dataset() _lowerCamelCase : Optional[Any] = dset.map( lambda _UpperCamelCase , _UpperCamelCase: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=_UpperCamelCase , keep_in_memory=_UpperCamelCase) _lowerCamelCase : Dict = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT) _lowerCamelCase , _lowerCamelCase : Optional[int] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""") dset.drop_index("""vecs""") def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" import faiss _lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _lowerCamelCase , _lowerCamelCase : Optional[int] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: """simple docstring""" import faiss _lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCamelCase) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name) dset.load_faiss_index("""vecs2""" , tmp_file.name) os.unlink(tmp_file.name) _lowerCamelCase , _lowerCamelCase : str = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""") def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" _lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name="""vecs""") dset.drop_index("""vecs""") self.assertRaises(_UpperCamelCase , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa))) def _SCREAMING_SNAKE_CASE ( self : int) ->Dict: """simple docstring""" from elasticsearch import Elasticsearch _lowerCamelCase : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""") as mocked_search, patch( """elasticsearch.client.IndicesClient.create""") as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""") as mocked_bulk: _lowerCamelCase : Union[str, Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30) _lowerCamelCase : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} _lowerCamelCase : Any = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : List[Any] = dset.get_nearest_examples("""filename""" , """my_name-train_29""") self.assertEqual(examples["""filename"""][0] , """my_name-train_29""") @require_faiss class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->str: """simple docstring""" import faiss _lowerCamelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 10) # single query _lowerCamelCase : List[Any] = np.zeros(5 , dtype=np.floataa) _lowerCamelCase : int = 1 _lowerCamelCase , _lowerCamelCase : Tuple = index.search(_UpperCamelCase) self.assertRaises(_UpperCamelCase , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries _lowerCamelCase : List[str] = np.eye(5 , dtype=np.floataa)[::-1] _lowerCamelCase , _lowerCamelCase : Tuple = index.search_batch(_UpperCamelCase) self.assertRaises(_UpperCamelCase , index.search_batch , queries[0]) _lowerCamelCase : int = [scores[0] for scores in total_scores] _lowerCamelCase : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase) , 0) self.assertListEqual([4, 3, 2, 1, 0] , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" import faiss _lowerCamelCase : List[str] = FaissIndex(string_factory="""Flat""") index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) _lowerCamelCase : Union[str, Any] = FaissIndex(string_factory="""LSH""") index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(_UpperCamelCase): _lowerCamelCase : List[str] = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: """simple docstring""" import faiss _lowerCamelCase : str = faiss.IndexFlat(5) _lowerCamelCase : List[str] = FaissIndex(custom_index=_UpperCamelCase) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" import faiss _lowerCamelCase : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCamelCase) as tmp_file: index.save(tmp_file.name) _lowerCamelCase : Optional[int] = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) _lowerCamelCase : Optional[Any] = np.zeros(5 , dtype=np.floataa) _lowerCamelCase : Tuple = 1 _lowerCamelCase , _lowerCamelCase : Optional[int] = index.search(_UpperCamelCase) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def A__ ( __A ): '''simple docstring''' import faiss _lowerCamelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _lowerCamelCase : int = """index.faiss""" _lowerCamelCase : List[Any] = F"""mock://{index_name}""" index.save(__A , storage_options=mockfs.storage_options ) _lowerCamelCase : str = FaissIndex.load(__A , storage_options=mockfs.storage_options ) _lowerCamelCase : List[str] = np.zeros(5 , dtype=np.floataa ) _lowerCamelCase : Any = 1 _lowerCamelCase , _lowerCamelCase : Union[str, Any] = index.search(__A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: """simple docstring""" from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""") as mocked_search, patch( """elasticsearch.client.IndicesClient.create""") as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""") as mocked_bulk: _lowerCamelCase : Optional[int] = Elasticsearch() _lowerCamelCase : List[Any] = {"""acknowledged""": True} _lowerCamelCase : Union[str, Any] = ElasticSearchIndex(es_client=_UpperCamelCase) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(["""foo""", """bar""", """foobar"""]) # single query _lowerCamelCase : int = """foo""" _lowerCamelCase : List[str] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} _lowerCamelCase , _lowerCamelCase : Optional[int] = index.search(_UpperCamelCase) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout _lowerCamelCase : Dict = """foo""" _lowerCamelCase : str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} _lowerCamelCase , _lowerCamelCase : List[Any] = index.search(_UpperCamelCase , request_timeout=30) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries _lowerCamelCase : List[str] = ["""foo""", """bar""", """foobar"""] _lowerCamelCase : Union[str, Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} _lowerCamelCase , _lowerCamelCase : Optional[Any] = index.search_batch(_UpperCamelCase) _lowerCamelCase : str = [scores[0] for scores in total_scores] _lowerCamelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase) , 0) self.assertListEqual([1, 1, 1] , _UpperCamelCase) # batched queries with timeout _lowerCamelCase : Union[str, Any] = ["""foo""", """bar""", """foobar"""] _lowerCamelCase : str = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} _lowerCamelCase , _lowerCamelCase : Any = index.search_batch(_UpperCamelCase , request_timeout=30) _lowerCamelCase : List[Any] = [scores[0] for scores in total_scores] _lowerCamelCase : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase) , 0) self.assertListEqual([1, 1, 1] , _UpperCamelCase)
15
def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = 0 for ch in input_str: _lowerCamelCase : Optional[Any] = ord(__A ) _lowerCamelCase : List[str] = pow(2 , __A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
15
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = MgpstrTokenizer _snake_case = False _snake_case = {} _snake_case = False def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: """simple docstring""" super().setUp() # fmt: off _lowerCamelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : Optional[int] = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") def _SCREAMING_SNAKE_CASE ( self : Any , **_UpperCamelCase : List[Any]) ->int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[str]) ->str: """simple docstring""" _lowerCamelCase : str = """tester""" _lowerCamelCase : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""") def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Any = self.get_tokenizers(do_lower_case=_UpperCamelCase) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): _lowerCamelCase : Optional[Any] = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token}) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] , add_special_tokens=_UpperCamelCase) self.assertEqual(len(_UpperCamelCase) , 1) _lowerCamelCase : Any = tokenizer.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase) self.assertTrue(special_token not in decoded) def _SCREAMING_SNAKE_CASE ( self : Dict) ->str: """simple docstring""" _lowerCamelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): _lowerCamelCase , _lowerCamelCase : List[Any] = self.get_input_output_texts(_UpperCamelCase) _lowerCamelCase : Dict = tokenizer.tokenize(_UpperCamelCase) _lowerCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(_UpperCamelCase) _lowerCamelCase : Any = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) self.assertListEqual(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase) self.assertNotEqual(len(_UpperCamelCase) , 0) _lowerCamelCase : str = tokenizer.decode(_UpperCamelCase) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase) self.assertEqual(text_a.replace(""" """ , """""") , _UpperCamelCase) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""") def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""") def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" pass
15
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int: """simple docstring""" _lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""") _lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : str = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""") _lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]]) # The dog is cute and lives in the garden house _lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach() self.assertEqual(output.shape , _UpperCamelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
15
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Union[str, Any] ={ "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int =[ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
15
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple =logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['pixel_values'] def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} _lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase) _lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = do_resize _lowerCamelCase : int = size _lowerCamelCase : Optional[int] = resample _lowerCamelCase : int = do_center_crop _lowerCamelCase : Optional[Any] = crop_size _lowerCamelCase : Union[str, Any] = do_rescale _lowerCamelCase : List[str] = rescale_factor _lowerCamelCase : List[Any] = do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return resize( _UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""") return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image: """simple docstring""" _lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] = resample if resample is not None else self.resample _lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Dict = image_std if image_std is not None else self.image_std _lowerCamelCase : Optional[Any] = size if size is not None else self.size _lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase) _lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""") _lowerCamelCase : int = make_list_of_images(_UpperCamelCase) if not valid_images(_UpperCamelCase): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""") if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""") # All transformations expect numpy arrays. _lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images] if do_resize: _lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images] if do_center_crop: _lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images] if do_rescale: _lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images] if do_normalize: _lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images] _lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images] _lowerCamelCase : int = {"""pixel_values""": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
15
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCAmelCase : Optional[int] =re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCAmelCase : str =10 lowerCAmelCase : Optional[Any] =256 def A__ ( __A ): '''simple docstring''' if len(__A ) < MIN_NUM_TOKENS: return None _lowerCamelCase : Union[str, Any] = MinHash(num_perm=__A ) for token in set(__A ): min_hash.update(token.encode() ) return min_hash def A__ ( __A ): '''simple docstring''' return {t for t in NON_ALPHA.split(__A ) if len(t.strip() ) > 0} class __snake_case : '''simple docstring''' def __init__( self : Tuple , *, _UpperCamelCase : float = 0.8_5 , ) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = duplication_jaccard_threshold _lowerCamelCase : List[str] = NUM_PERM _lowerCamelCase : Any = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) _lowerCamelCase : Tuple = defaultdict(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : MinHash) ->None: """simple docstring""" _lowerCamelCase : List[str] = self._index.query(_UpperCamelCase) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""") return self._index.insert(_UpperCamelCase , _UpperCamelCase) if len(_UpperCamelCase) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCamelCase) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int) ->List[List[Dict]]: """simple docstring""" _lowerCamelCase : Tuple = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCamelCase : Optional[int] = [base] + list(_UpperCamelCase) # reformat the cluster to be a list of dict _lowerCamelCase : Dict = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_UpperCamelCase) return duplicate_clusters def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Union[str, Any]) ->None: """simple docstring""" _lowerCamelCase : List[Any] = self.get_duplicate_clusters() with open(_UpperCamelCase , """w""") as f: json.dump(_UpperCamelCase , _UpperCamelCase) def A__ ( __A ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[str] = element _lowerCamelCase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def A__ ( __A ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : List[Any] = DuplicationIndex(duplication_jaccard_threshold=__A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A ) ) , max_queue_size=100 ) ): di.add(__A , __A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = get_tokens(__A ) _lowerCamelCase : Any = get_tokens(__A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCAmelCase : Optional[int] =None def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Any = [] for elementa in cluster: _lowerCamelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCamelCase : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(__A , __A ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCamelCase : str = 1 extremes.append(__A ) return extremes def A__ ( __A , __A , __A ): '''simple docstring''' global _shared_dataset _lowerCamelCase : int = dataset _lowerCamelCase : str = [] _lowerCamelCase : Optional[Any] = partial(_find_cluster_extremes_shared , jaccard_threshold=__A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A ) , ): extremes_list.append(__A ) return extremes_list def A__ ( __A , __A = 0.85 ): '''simple docstring''' _lowerCamelCase : Tuple = make_duplicate_clusters(__A , __A ) _lowerCamelCase : Optional[int] = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCamelCase : Optional[int] = {} _lowerCamelCase : Optional[int] = find_extremes(__A , __A , __A ) for extremes in extremes_clusters: for element in extremes: _lowerCamelCase : Optional[Any] = element _lowerCamelCase : Any = duplicate_indices - set(extreme_dict.keys() ) _lowerCamelCase : List[Any] = dataset.filter(lambda __A , __A : idx not in remove_indices , with_indices=__A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCamelCase : str = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCamelCase : List[str] = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(__A )}""" ) print(F"""Number of duplicate clusters: {len(__A )}""" ) print(F"""Files in duplicate cluster: {len(__A )}""" ) print(F"""Unique files in duplicate cluster: {len(__A )}""" ) print(F"""Filtered dataset size: {len(__A )}""" ) return ds_filter, duplicate_clusters
15
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : str ={ "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } lowerCAmelCase : Union[str, Any] ={ "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } @lru_cache() def A__ ( ): '''simple docstring''' _lowerCamelCase : Any = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCamelCase : int = bs[:] _lowerCamelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 _lowerCamelCase : Any = [chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Any = set() _lowerCamelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : str = char return pairs class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] def __init__( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any]="replace" , _UpperCamelCase : Tuple="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : Dict="<s>" , _UpperCamelCase : str="<unk>" , _UpperCamelCase : str="<pad>" , _UpperCamelCase : List[str]="<mask>" , _UpperCamelCase : Tuple=False , **_UpperCamelCase : int , ) ->Dict: """simple docstring""" _lowerCamelCase : str = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else bos_token _lowerCamelCase : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else eos_token _lowerCamelCase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else sep_token _lowerCamelCase : Any = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else cls_token _lowerCamelCase : Optional[int] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else unk_token _lowerCamelCase : List[str] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token super().__init__( errors=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Any = json.load(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : int = errors # how to handle errors in decoding _lowerCamelCase : Any = bytes_to_unicode() _lowerCamelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase , encoding="""utf-8""") as merges_handle: _lowerCamelCase : Optional[int] = merges_handle.read().split("""\n""")[1:-1] _lowerCamelCase : Optional[int] = [tuple(merge.split()) for merge in bpe_merges] _lowerCamelCase : int = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase : Optional[Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str: """simple docstring""" return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str) ->List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] _lowerCamelCase : List[str] = tuple(_UpperCamelCase) _lowerCamelCase : str = get_pairs(_UpperCamelCase) if not pairs: return token while True: _lowerCamelCase : int = min(_UpperCamelCase , key=lambda _UpperCamelCase: self.bpe_ranks.get(_UpperCamelCase , float("""inf"""))) if bigram not in self.bpe_ranks: break _lowerCamelCase , _lowerCamelCase : Optional[Any] = bigram _lowerCamelCase : int = [] _lowerCamelCase : Any = 0 while i < len(_UpperCamelCase): try: _lowerCamelCase : Union[str, Any] = word.index(_UpperCamelCase , _UpperCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _lowerCamelCase : Optional[int] = j if word[i] == first and i < len(_UpperCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _lowerCamelCase : Optional[Any] = tuple(_UpperCamelCase) _lowerCamelCase : List[Any] = new_word if len(_UpperCamelCase) == 1: break else: _lowerCamelCase : Dict = get_pairs(_UpperCamelCase) _lowerCamelCase : List[Any] = """ """.join(_UpperCamelCase) _lowerCamelCase : Optional[Any] = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Any) ->Optional[int]: """simple docstring""" _lowerCamelCase : int = [] for token in re.findall(self.pat , _UpperCamelCase): _lowerCamelCase : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase).split(""" """)) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Union[str, Any]) ->List[Any]: """simple docstring""" return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : List[Any]) ->List[Any]: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Dict) ->List[str]: """simple docstring""" _lowerCamelCase : Optional[int] = """""".join(_UpperCamelCase) _lowerCamelCase : List[Any] = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return _lowerCamelCase : Dict = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) _lowerCamelCase : Any = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") _lowerCamelCase : Union[str, Any] = 0 with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCamelCase: kv[1]): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""") _lowerCamelCase : Dict = token_index writer.write(""" """.join(_UpperCamelCase) + """\n""") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] _lowerCamelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase)) + [1] return [1] + ([0] * len(_UpperCamelCase)) + [1, 1] + ([0] * len(_UpperCamelCase)) + [1] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]: """simple docstring""" _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False , **_UpperCamelCase : str) ->int: """simple docstring""" _lowerCamelCase : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase) > 0 and not text[0].isspace()): _lowerCamelCase : Dict = """ """ + text return (text, kwargs)
15
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ): '''simple docstring''' output_path.parent.mkdir(parents=__A , exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , ) else: export( __A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , ) @torch.no_grad() def A__ ( __A , __A , __A , __A = False ): '''simple docstring''' _lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowerCamelCase : str = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowerCamelCase : List[str] = """cpu""" _lowerCamelCase : Dict = Path(__A ) # VAE DECODER _lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _lowerCamelCase : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part _lowerCamelCase : Tuple = vae_decoder.decode onnx_export( __A , model_args=( torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__A , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase : Optional[Any] =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
15
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : Dict =logging.getLogger() def A__ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _lowerCamelCase : int = parser.parse_args() return args.f class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple) ->None: """simple docstring""" _lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : List[str]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Dict = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""") with patch.object(_UpperCamelCase , """argv""" , _UpperCamelCase): _lowerCamelCase : Tuple = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCamelCase , 0.6_6_6) @slow @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]: """simple docstring""" _lowerCamelCase : Any = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_UpperCamelCase) _lowerCamelCase : int = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCamelCase) _lowerCamelCase : str = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_UpperCamelCase)
15
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K) def A__ ( __A , __A , __A , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
15
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Tuple = {} _lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""] _lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] ) return output lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments) lowerCAmelCase : int =parser.parse_args() if args.num_workers is None: lowerCAmelCase : Any =multiprocessing.cpu_count() lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) lowerCAmelCase : str =time.time() lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowerCAmelCase : Dict =time.time() lowerCAmelCase : Dict =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowerCAmelCase : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
15
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A__ ( __A = 8 ): '''simple docstring''' _lowerCamelCase : str = ascii_letters + digits + punctuation return "".join(secrets.choice(__A ) for _ in range(__A ) ) def A__ ( __A , __A ): '''simple docstring''' # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__A ) _lowerCamelCase : Optional[int] = i // 3 _lowerCamelCase : Union[str, Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _lowerCamelCase : Optional[Any] = ( chars_incl + random(__A , quotient + remainder ) + random(__A , __A ) + random(__A , __A ) ) _lowerCamelCase : List[Any] = list(__A ) shuffle(__A ) return "".join(__A ) # random is a generalised function for letters, characters and numbers def A__ ( __A , __A ): '''simple docstring''' return "".join(secrets.choice(__A ) for _ in range(__A ) ) def A__ ( __A , __A ): '''simple docstring''' pass # Put your code here... def A__ ( __A , __A ): '''simple docstring''' pass # Put your code here... def A__ ( __A , __A ): '''simple docstring''' pass # Put your code here... def A__ ( __A , __A = 8 ): '''simple docstring''' if len(__A ) < min_length: # Your Password must be at least 8 characters long return False _lowerCamelCase : Dict = any(char in ascii_uppercase for char in password ) _lowerCamelCase : str = any(char in ascii_lowercase for char in password ) _lowerCamelCase : Any = any(char in digits for char in password ) _lowerCamelCase : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A__ ( ): '''simple docstring''' _lowerCamelCase : Dict = int(input("""Please indicate the max length of your password: """ ).strip() ) _lowerCamelCase : List[Any] = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(__A ) ) print( """Alternative Password generated:""" , alternative_password_generator(__A , __A ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
15
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: """simple docstring""" return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]: """simple docstring""" if str(_UpperCamelCase).startswith("""mps"""): _lowerCamelCase : int = torch.manual_seed(_UpperCamelCase) else: _lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase) _lowerCamelCase : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""") def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int) ->Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: """simple docstring""" self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa) _lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""") _lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCamelCase : str = None _lowerCamelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components) _lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components) _lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCamelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : str = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Dict = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[Any] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]: """simple docstring""" _start_torch_memory_measurement() _lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Any = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , ) _lowerCamelCase : Any = output.images[0] assert image.shape == (64, 64, 3) _lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCamelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) # pipeline 2 _start_torch_memory_measurement() _lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase) _lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase) _lowerCamelCase : List[str] = pipe_a( prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , ) _lowerCamelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCamelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""") assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase) def A__ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
15
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCAmelCase : Optional[int] =TypeVar("T") class __snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : list[T] , _UpperCamelCase : Callable[[T, T], T]) ->None: """simple docstring""" _lowerCamelCase : Any | T = None _lowerCamelCase : int = len(_UpperCamelCase) _lowerCamelCase : list[T] = [any_type for _ in range(self.N)] + arr _lowerCamelCase : List[Any] = fnc self.build() def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->None: """simple docstring""" for p in range(self.N - 1 , 0 , -1): _lowerCamelCase : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : T) ->None: """simple docstring""" p += self.N _lowerCamelCase : List[Any] = v while p > 1: _lowerCamelCase : Union[str, Any] = p // 2 _lowerCamelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1]) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int) ->T | None: # noqa: E741 """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = l + self.N, r + self.N _lowerCamelCase : T | None = None while l <= r: if l % 2 == 1: _lowerCamelCase : int = self.st[l] if res is None else self.fn(_UpperCamelCase , self.st[l]) if r % 2 == 0: _lowerCamelCase : List[Any] = self.st[r] if res is None else self.fn(_UpperCamelCase , self.st[r]) _lowerCamelCase , _lowerCamelCase : Tuple = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCAmelCase : Optional[int] =[1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowerCAmelCase : str ={ 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowerCAmelCase : Union[str, Any] =SegmentTree(test_array, min) lowerCAmelCase : Any =SegmentTree(test_array, max) lowerCAmelCase : Any =SegmentTree(test_array, lambda a, b: a + b) def A__ ( ): '''simple docstring''' for i in range(len(__A ) ): for j in range(__A , len(__A ) ): _lowerCamelCase : Optional[int] = reduce(__A , test_array[i : j + 1] ) _lowerCamelCase : Union[str, Any] = reduce(__A , test_array[i : j + 1] ) _lowerCamelCase : Union[str, Any] = reduce(lambda __A , __A : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__A , __A ) assert max_range == max_segment_tree.query(__A , __A ) assert sum_range == sum_segment_tree.query(__A , __A ) test_all_segments() for index, value in test_updates.items(): lowerCAmelCase : Union[str, Any] =value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Any =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' _snake_case = 'swin' _snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple: """simple docstring""" super().__init__(**_UpperCamelCase) _lowerCamelCase : List[str] = image_size _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : str = depths _lowerCamelCase : str = len(_UpperCamelCase) _lowerCamelCase : Optional[Any] = num_heads _lowerCamelCase : Tuple = window_size _lowerCamelCase : int = mlp_ratio _lowerCamelCase : Optional[int] = qkv_bias _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : str = attention_probs_dropout_prob _lowerCamelCase : Tuple = drop_path_rate _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Dict = use_absolute_embeddings _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : str = initializer_range _lowerCamelCase : Dict = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1)) _lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)] _lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: """simple docstring""" return 1E-4
15
1
from __future__ import annotations from math import pi def A__ ( __A , __A , __A ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
15
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = (EulerDiscreteScheduler,) _snake_case = 10 def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase) return config def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : Any = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : str = torch.manual_seed(0) _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : int = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Dict = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : int = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""") _lowerCamelCase : int = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = self.dummy_model() _lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCamelCase : Dict = sample.to(_UpperCamelCase) for i, t in enumerate(scheduler.timesteps): _lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : Tuple = output.prev_sample _lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : int = self.get_scheduler_config() _lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Tuple = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : List[Any] = output.prev_sample _lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : List[str] = self.scheduler_classes[0] _lowerCamelCase : Optional[int] = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase) _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase) for t in scheduler.timesteps: _lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase) _lowerCamelCase : int = output.prev_sample _lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase)) _lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase)) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
15
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A__ ( __A , __A=7 ): '''simple docstring''' _lowerCamelCase : List[Any] = None if token is not None: _lowerCamelCase : Tuple = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) _lowerCamelCase : int = """636036""" _lowerCamelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" _lowerCamelCase : List[Any] = requests.get(__A , headers=__A ).json() return result["workflow_runs"] def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_daily_ci_runs(__A ) _lowerCamelCase : Optional[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _lowerCamelCase : str = workflow_run["""id"""] break return workflow_run_id def A__ ( __A , __A , __A ): '''simple docstring''' _lowerCamelCase : str = get_last_daily_ci_runs(__A ) if workflow_run_id is not None: _lowerCamelCase : Tuple = get_artifacts_links(worflow_run_id=__A , token=__A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _lowerCamelCase : Optional[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=__A , artifact_url=__A , output_dir=__A , token=__A ) def A__ ( __A , __A , __A ): '''simple docstring''' get_last_daily_ci_artifacts(__A , __A , __A ) _lowerCamelCase : List[str] = {} for artifact_name in artifact_names: _lowerCamelCase : str = os.path.join(__A , F"""{artifact_name}.zip""" ) if os.path.isfile(__A ): _lowerCamelCase : Tuple = {} with zipfile.ZipFile(__A ) as z: for filename in z.namelist(): if not os.path.isdir(__A ): # read the file with z.open(__A ) as f: _lowerCamelCase : Any = f.read().decode("""UTF-8""" ) return results
15
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : Dict ={"vocab_file": "vocab.json"} lowerCAmelCase : List[str] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCAmelCase : int ={"mgp-str": 27} class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]: """simple docstring""" super().__init__( unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , ) with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle: _lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : str) ->Any: """simple docstring""" return len(self.vocab) def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = [] for s in text: char_tokens.extend(_UpperCamelCase) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]: """simple docstring""" return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict: """simple docstring""" return self.decoder.get(_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase)) return _lowerCamelCase : Tuple = os.path.join( _UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""") return (vocab_file,)
15
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'AutoImageProcessor' _snake_case = 'AutoTokenizer' def __init__( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any]) ->Tuple: """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : str = self.image_processor def __call__( self : Union[str, Any] , _UpperCamelCase : List[str]=None , _UpperCamelCase : str=None , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Union[str, Any]) ->Any: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _lowerCamelCase : Union[str, Any] = self.tokenizer(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase) if images is not None: _lowerCamelCase : Any = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase) if text is not None and images is not None: _lowerCamelCase : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase) , tensor_type=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *_UpperCamelCase : int , **_UpperCamelCase : Any) ->Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : int , *_UpperCamelCase : List[Any] , **_UpperCamelCase : Union[str, Any]) ->Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
15
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple = ["""a""", """b""", """c"""] # Defaults to last layer if both are None _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""c"""]) self.assertEqual(_UpperCamelCase , [2]) # Out indices set to match out features _lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features set to match out indices _lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [0, 2]) # Out features selected from negative indices _lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase) self.assertEqual(_UpperCamelCase , ["""a""", """c"""]) self.assertEqual(_UpperCamelCase , [-3, -1]) def _SCREAMING_SNAKE_CASE ( self : int) ->int: """simple docstring""" with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase) # Out features must be a list with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""]) # Out features must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""]) # Out indices must be a list or tuple with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""]) # Out indices must be a subset of stage names with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""]) # Out features and out indices must be the same length with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""]) # Out features should match out indices with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""]) # Out features and out indices should be in order with self.assertRaises(_UpperCamelCase): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""]) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""]) def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: """simple docstring""" _lowerCamelCase : int = BackboneMixin() _lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""] _lowerCamelCase : Tuple = ["""a""", """c"""] _lowerCamelCase : List[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly _lowerCamelCase : str = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""]) self.assertEqual(backbone.out_indices , [0, 1]) _lowerCamelCase : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""]) self.assertEqual(backbone.out_indices , [-3, -1])
15
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __snake_case : '''simple docstring''' _snake_case = 42 _snake_case = None _snake_case = None def A__ ( ): '''simple docstring''' _lowerCamelCase : int = Node(1 ) _lowerCamelCase : str = Node(2 ) _lowerCamelCase : Dict = Node(3 ) _lowerCamelCase : str = Node(4 ) _lowerCamelCase : Any = Node(5 ) return tree def A__ ( __A ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A__ ( __A ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A__ ( __A ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A__ ( __A ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A__ ( __A ): '''simple docstring''' _lowerCamelCase : list[Any] = [] if root is None: return output _lowerCamelCase : List[str] = deque([root] ) while process_queue: _lowerCamelCase : Tuple = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : list[Any] = [] def populate_output(__A , __A ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__A , __A ) return output def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : list[Any] = [] def populate_output(__A , __A ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__A , __A ) return output def A__ ( __A ): '''simple docstring''' if root is None: return [] _lowerCamelCase : list[Sequence[Node | None]] = [] _lowerCamelCase : str = 0 _lowerCamelCase : Optional[Any] = height(__A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__A , __A ) ) _lowerCamelCase : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__A , __A ) ) _lowerCamelCase : List[Any] = 0 return output def A__ ( ): # Main function for testing. '''simple docstring''' _lowerCamelCase : Dict = make_tree() print(F"""In-order Traversal: {inorder(__A )}""" ) print(F"""Pre-order Traversal: {preorder(__A )}""" ) print(F"""Post-order Traversal: {postorder(__A )}""" , """\n""" ) print(F"""Height of Tree: {height(__A )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__A ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__A ) + 1 ): print(F"""Level {level}:""" , get_nodes_from_left_to_right(__A , level=__A ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
import math def A__ ( __A ): '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( __A , __A=1 , **__A ): '''simple docstring''' _lowerCamelCase : Dict = factor * value _lowerCamelCase : str = value while not is_prime(__A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__A ) return value
15
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : Dict ={ "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = 'detr' _snake_case = ['past_key_values'] _snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Any , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Any=3 , _UpperCamelCase : Optional[Any]=100 , _UpperCamelCase : int=6 , _UpperCamelCase : Optional[Any]=2048 , _UpperCamelCase : Union[str, Any]=8 , _UpperCamelCase : str=6 , _UpperCamelCase : List[str]=2048 , _UpperCamelCase : Optional[int]=8 , _UpperCamelCase : str=0.0 , _UpperCamelCase : List[Any]=0.0 , _UpperCamelCase : Any=True , _UpperCamelCase : Optional[Any]="relu" , _UpperCamelCase : Tuple=256 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Optional[Any]=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Dict=1.0 , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Dict="sine" , _UpperCamelCase : Dict="resnet50" , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=False , _UpperCamelCase : str=1 , _UpperCamelCase : int=5 , _UpperCamelCase : Optional[int]=2 , _UpperCamelCase : List[Any]=1 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : str=5 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : List[str]=0.1 , **_UpperCamelCase : Any , ) ->str: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""") if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""") _lowerCamelCase : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""]) elif isinstance(_UpperCamelCase , _UpperCamelCase): _lowerCamelCase : Dict = backbone_config.get("""model_type""") _lowerCamelCase : List[str] = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase : Tuple = config_class.from_dict(_UpperCamelCase) # set timm attributes to None _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = None, None, None _lowerCamelCase : Optional[int] = use_timm_backbone _lowerCamelCase : Union[str, Any] = backbone_config _lowerCamelCase : Dict = num_channels _lowerCamelCase : Optional[int] = num_queries _lowerCamelCase : Tuple = d_model _lowerCamelCase : Union[str, Any] = encoder_ffn_dim _lowerCamelCase : Optional[Any] = encoder_layers _lowerCamelCase : str = encoder_attention_heads _lowerCamelCase : List[Any] = decoder_ffn_dim _lowerCamelCase : List[str] = decoder_layers _lowerCamelCase : Tuple = decoder_attention_heads _lowerCamelCase : List[str] = dropout _lowerCamelCase : Any = attention_dropout _lowerCamelCase : List[str] = activation_dropout _lowerCamelCase : Optional[int] = activation_function _lowerCamelCase : List[Any] = init_std _lowerCamelCase : Optional[Any] = init_xavier_std _lowerCamelCase : Optional[Any] = encoder_layerdrop _lowerCamelCase : Optional[int] = decoder_layerdrop _lowerCamelCase : Union[str, Any] = encoder_layers _lowerCamelCase : List[Any] = auxiliary_loss _lowerCamelCase : int = position_embedding_type _lowerCamelCase : int = backbone _lowerCamelCase : Optional[int] = use_pretrained_backbone _lowerCamelCase : List[str] = dilation # Hungarian matcher _lowerCamelCase : int = class_cost _lowerCamelCase : Optional[Any] = bbox_cost _lowerCamelCase : int = giou_cost # Loss coefficients _lowerCamelCase : str = mask_loss_coefficient _lowerCamelCase : List[str] = dice_loss_coefficient _lowerCamelCase : Dict = bbox_loss_coefficient _lowerCamelCase : Optional[int] = giou_loss_coefficient _lowerCamelCase : int = eos_coefficient super().__init__(is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: """simple docstring""" return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->int: """simple docstring""" return self.d_model @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , _UpperCamelCase : PretrainedConfig , **_UpperCamelCase : List[str]) ->List[Any]: """simple docstring""" return cls(backbone_config=_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict[str, any]: """simple docstring""" _lowerCamelCase : Tuple = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _lowerCamelCase : List[str] = self.backbone_config.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output class __snake_case ( __lowerCAmelCase ): '''simple docstring''' _snake_case = version.parse('1.11' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ]) @property def _SCREAMING_SNAKE_CASE ( self : int) ->float: """simple docstring""" return 1E-5 @property def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int: """simple docstring""" return 12
15
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def A__ ( __A , __A , __A = False ): '''simple docstring''' if radian_mode: return [magnitude * cos(__A ), magnitude * sin(__A )] return [magnitude * cos(radians(__A ) ), magnitude * sin(radians(__A ) )] def A__ ( __A , __A , __A = 10**-1 ): '''simple docstring''' _lowerCamelCase : NDArray[floataa] = cross(__A , __A ) _lowerCamelCase : float = sum(__A ) return abs(__A ) < eps if __name__ == "__main__": # Test to check if it works lowerCAmelCase : List[str] =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCAmelCase : NDArray[floataa] =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCAmelCase : Any =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCAmelCase : int =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCAmelCase : List[str] =array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCAmelCase : Any =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
15
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' _snake_case = ViTImageProcessor if is_vision_available() else None @property def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = (3, 32, 128) _lowerCamelCase : str = tempfile.mkdtemp() # fmt: off _lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase)))) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(_UpperCamelCase) + """\n""") _lowerCamelCase : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: """simple docstring""" _lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) _lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1)) return image_input def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Tuple = self.get_image_processor() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: """simple docstring""" _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_image_processor() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") _lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0) _lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Any) ->int: """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""") _lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Optional[int] = """test""" _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase) _lowerCamelCase : Dict = tokenizer(_UpperCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = """test""" _lowerCamelCase : List[str] = self.prepare_image_inputs() _lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(_UpperCamelCase): processor() def _SCREAMING_SNAKE_CASE ( self : Any) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_image_processor() _lowerCamelCase : List[str] = self.get_tokenizer() _lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Any = processor.char_decode(_UpperCamelCase) _lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase) _lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Dict = self.get_image_processor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : int = None _lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : int = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase) _lowerCamelCase : Any = torch.randn(1 , 27 , 38) _lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257) _lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522) _lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
15
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase : Union[str, Any] =logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCamelCase : Dict , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[int]=None , **_UpperCamelCase : Union[str, Any]) ->int: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) _lowerCamelCase : Optional[Any] = eval_examples _lowerCamelCase : Dict = post_process_function _lowerCamelCase : int = quant_trainer_args _lowerCamelCase : Union[str, Any] = 128 # default number of calibration samples def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[int]=None) ->Optional[int]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""") _lowerCamelCase : Union[str, Any] = calib_dataset if calib_dataset is not None else self.calib_dataset _lowerCamelCase : str = self._remove_unused_columns(_UpperCamelCase , description="""Calibration""") return DataLoader( _UpperCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_UpperCamelCase , ) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = self.train_dataset if calib_dataset is None else calib_dataset _lowerCamelCase : Optional[int] = self.get_calib_dataloader(_UpperCamelCase) _lowerCamelCase : List[str] = self.model quant_trainer.configure_model(_UpperCamelCase , self.quant_trainer_args , calib=_UpperCamelCase) model.eval() quant_trainer.enable_calibration(_UpperCamelCase) logger.info("""***** Running calibration *****""") logger.info(F""" Num examples = {self.calib_num}""") logger.info(F""" Batch size = {calib_dataloader.batch_size}""") for step, inputs in enumerate(_UpperCamelCase): # Prediction step _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = self.prediction_step(_UpperCamelCase , _UpperCamelCase , prediction_loss_only=_UpperCamelCase) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_UpperCamelCase , self.quant_trainer_args) _lowerCamelCase : Any = model def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : str = "eval") ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset _lowerCamelCase : Dict = self.get_eval_dataloader(_UpperCamelCase) _lowerCamelCase : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowerCamelCase : Dict = self.compute_metrics _lowerCamelCase : List[str] = None _lowerCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCamelCase : List[Any] = eval_loop( _UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCamelCase , ) finally: _lowerCamelCase : List[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _lowerCamelCase : Dict = self.post_process_function(_UpperCamelCase , _UpperCamelCase , output.predictions) _lowerCamelCase : int = self.compute_metrics(_UpperCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): _lowerCamelCase : List[str] = metrics.pop(_UpperCamelCase) self.log(_UpperCamelCase) else: _lowerCamelCase : List[Any] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _lowerCamelCase : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCamelCase) return metrics def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : str = "test") ->Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple = self.get_test_dataloader(_UpperCamelCase) # Temporarily disable metric computation, we will do it in the loop here. _lowerCamelCase : Optional[int] = self.compute_metrics _lowerCamelCase : Dict = None _lowerCamelCase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCamelCase : Union[str, Any] = eval_loop( _UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCamelCase , ) finally: _lowerCamelCase : Tuple = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _lowerCamelCase : Optional[Any] = self.post_process_function(_UpperCamelCase , _UpperCamelCase , output.predictions , """predict""") _lowerCamelCase : Union[str, Any] = self.compute_metrics(_UpperCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F"""{metric_key_prefix}_"""): _lowerCamelCase : List[Any] = metrics.pop(_UpperCamelCase) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[str]="./") ->Union[str, Any]: """simple docstring""" _lowerCamelCase : List[Any] = self.eval_dataset _lowerCamelCase : List[Any] = self.get_eval_dataloader(_UpperCamelCase) _lowerCamelCase : Optional[Any] = next(iter(_UpperCamelCase)) # saving device - to make it consistent _lowerCamelCase : Dict = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") # convert to tuple _lowerCamelCase : Optional[Any] = tuple(v.to(_UpperCamelCase) for k, v in batch.items()) logger.info("""Converting model to be onnx compatible""") from pytorch_quantization.nn import TensorQuantizer _lowerCamelCase : Optional[int] = True _lowerCamelCase : Union[str, Any] = self.model.to(_UpperCamelCase) model.eval() model.float() _lowerCamelCase : Any = model.module if hasattr(_UpperCamelCase , """module""") else model quant_trainer.configure_model(_UpperCamelCase , self.quant_trainer_args) _lowerCamelCase : Tuple = os.path.join(_UpperCamelCase , """model.onnx""") logger.info(F"""exporting model to {output_model_file}""") _lowerCamelCase : List[str] = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , export_params=_UpperCamelCase , opset_version=13 , do_constant_folding=_UpperCamelCase , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=_UpperCamelCase , ) logger.info("""onnx export finished""")
15
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
1
class __snake_case : '''simple docstring''' def __init__( self : int) ->Tuple: """simple docstring""" _lowerCamelCase : Tuple = {} def _SCREAMING_SNAKE_CASE ( self : str) ->None: """simple docstring""" print(self.vertex) for i in self.vertex: print(_UpperCamelCase , """ -> """ , """ -> """.join([str(_UpperCamelCase) for j in self.vertex[i]])) def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : int , _UpperCamelCase : int) ->None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCamelCase) else: # else make a new vertex _lowerCamelCase : Tuple = [to_vertex] def _SCREAMING_SNAKE_CASE ( self : str) ->None: """simple docstring""" _lowerCamelCase : List[str] = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(_UpperCamelCase , _UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : list) ->None: """simple docstring""" _lowerCamelCase : str = True print(_UpperCamelCase , end=""" """) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCamelCase , _UpperCamelCase) if __name__ == "__main__": lowerCAmelCase : Any =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
15
def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) if n == 0: return 0 _lowerCamelCase : Tuple = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Any = max( __A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) ) return max_revue def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) _lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__A , __A , __A ) def A__ ( __A , __A , __A ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCamelCase : int = float("""-inf""" ) for i in range(1 , n + 1 ): _lowerCamelCase : Optional[Any] = max( __A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , ) _lowerCamelCase : Optional[Any] = max_revenue return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' _enforce_args(__A , __A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] _lowerCamelCase : Any = 0 for i in range(1 , n + 1 ): _lowerCamelCase : Any = max_rev[i] for j in range(1 , i + 1 ): _lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] ) _lowerCamelCase : int = max_revenue_i return max_rev[n] def A__ ( __A , __A ): '''simple docstring''' if n < 0: _lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__A ) if n > len(__A ): _lowerCamelCase : List[Any] = ( """Each integral piece of rod must have a corresponding price. """ F"""Got n = {n} but length of prices = {len(__A )}""" ) raise ValueError(__A ) def A__ ( ): '''simple docstring''' _lowerCamelCase : str = [6, 10, 12, 15, 20, 23] _lowerCamelCase : List[str] = len(__A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCamelCase : Tuple = 36 _lowerCamelCase : Any = top_down_cut_rod(__A , __A ) _lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A ) _lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
1
import numpy as np import qiskit def A__ ( __A = 8 , __A = None ): '''simple docstring''' _lowerCamelCase : Any = np.random.default_rng(seed=__A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCamelCase : Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. _lowerCamelCase : Dict = rng.integers(2 , size=__A ) # The set of states Alice will prepare. _lowerCamelCase : Optional[int] = rng.integers(2 , size=__A ) # Measurement basis for Bob's qubits. _lowerCamelCase : Dict = rng.integers(2 , size=__A ) # Quantum Circuit to simulate BB84 _lowerCamelCase : List[Any] = qiskit.QuantumCircuit(__A , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__A ): if alice_state[index] == 1: bbaa_circ.x(__A ) if alice_basis[index] == 1: bbaa_circ.h(__A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__A ): if bob_basis[index] == 1: bbaa_circ.h(__A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCamelCase : str = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCamelCase : int = qiskit.execute(__A , __A , shots=1 , seed_simulator=__A ) # Returns the result of measurement. _lowerCamelCase : Optional[Any] = job.result().get_counts(__A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCamelCase : str = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __A , __A , __A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCamelCase : Any = gen_key[:key_len] if len(__A ) >= key_len else gen_key.ljust(__A , """0""" ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
15
from __future__ import annotations class __snake_case : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str: """simple docstring""" _lowerCamelCase : Union[str, Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCamelCase) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Any = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _lowerCamelCase : Optional[Any] = """""" for ch in content: ans += chr(ord(_UpperCamelCase) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool: """simple docstring""" assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase) try: with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
15
1