code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = 11 UpperCAmelCase_ = int("1" + "0" * digit_len ) for num in range(lowerCAmelCase__ , lowerCAmelCase__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCAmelCase__ , lowerCAmelCase__ ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 UpperCAmelCase_ = 10 return solutions def a__ ( lowerCAmelCase__ = 2 ): UpperCAmelCase_ = 1.0 for fraction in fraction_list(lowerCAmelCase__ ): UpperCAmelCase_ = Fraction(lowerCAmelCase__ ) result *= frac.denominator / frac.numerator return int(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
711
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] lowerCamelCase = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] lowerCamelCase = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): lowerCamelCase = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" lowerCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def a__ ( lowerCAmelCase__ ): # Make sure the supplied data is a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowerCAmelCase__ ) UpperCAmelCase_ = "".join(bin(lowerCAmelCase__ )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ = len(lowerCAmelCase__ ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ = b"=" * ((6 - len(lowerCAmelCase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowerCAmelCase__ ) % 6) else: UpperCAmelCase_ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowerCAmelCase__ ) , 6 ) ).encode() + padding ) def a__ ( lowerCAmelCase__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = ( "argument should be a bytes-like object or ASCII string, " f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowerCAmelCase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: UpperCAmelCase_ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) UpperCAmelCase_ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowerCAmelCase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ = encoded_data[:-padding] UpperCAmelCase_ = "".join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ = "".join( bin(B64_CHARSET.index(lowerCAmelCase__ ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowerCAmelCase__ ) , 8 ) ] return bytes(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
0
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase = """Usage of script: script_name <size_of_canvas:int>""" lowerCamelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [[False for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] return canvas def a__ ( lowerCAmelCase__ ): for i, row in enumerate(lowerCAmelCase__ ): for j, _ in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ = bool(random.getrandbits(1 ) ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = np.array(lowerCAmelCase__ ) UpperCAmelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase__ ): for c, pt in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ = __judge_point( lowerCAmelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase_ = current_canvas.tolist() return return_canvas def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase_ = pt if pt: if alive < 2: UpperCAmelCase_ = False elif alive == 2 or alive == 3: UpperCAmelCase_ = True elif alive > 3: UpperCAmelCase_ = False else: if alive == 3: UpperCAmelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase = int(sys.argv[1]) # main working structure of this module. lowerCamelCase = create_canvas(canvas_size) seed(c) lowerCamelCase , lowerCamelCase = plt.subplots() fig.show() lowerCamelCase = ListedColormap(["""w""", """k"""]) try: while True: lowerCamelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
714
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase = TypeVar("""T""") def a__ ( lowerCAmelCase__ ): return (position - 1) // 2 def a__ ( lowerCAmelCase__ ): return (2 * position) + 1 def a__ ( lowerCAmelCase__ ): return (2 * position) + 2 class lowercase__ ( Generic[T] ): '''simple docstring''' def __init__( self : int ) -> None: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = {} UpperCAmelCase_ = 0 def __len__( self : Optional[int] ) -> int: '''simple docstring''' return self.elements def __repr__( self : str ) -> str: '''simple docstring''' return str(self.heap ) def lowercase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.elements == 0 def lowercase__ ( self : List[str] , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) UpperCAmelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def lowercase__ ( self : int ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def lowercase__ ( self : Dict , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' UpperCAmelCase_ = self.position_map[elem] UpperCAmelCase_ = (elem, weight) if position > 0: UpperCAmelCase_ = get_parent_position(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : T ) -> None: '''simple docstring''' UpperCAmelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCAmelCase_ = get_parent_position(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap[curr_pos] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def lowercase__ ( self : Any , _UpperCAmelCase : T ) -> None: '''simple docstring''' UpperCAmelCase_ = self.position_map[elem] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[curr_pos] UpperCAmelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCAmelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_left_position] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: '''simple docstring''' UpperCAmelCase_ = self.heap[nodea_pos][0] UpperCAmelCase_ = self.heap[nodea_pos][0] UpperCAmelCase_ , UpperCAmelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCAmelCase_ = nodea_pos UpperCAmelCase_ = nodea_pos class lowercase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Any ) -> None: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = 0 def __repr__( self : List[str] ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self : Optional[Any] ) -> int: '''simple docstring''' return self.nodes def lowercase__ ( self : int , _UpperCAmelCase : T ) -> None: '''simple docstring''' if node not in self.connections: UpperCAmelCase_ = {} self.nodes += 1 def lowercase__ ( self : int , _UpperCAmelCase : T , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCAmelCase_ = weight UpperCAmelCase_ = weight def a__ ( lowerCAmelCase__ , ): UpperCAmelCase_ = {node: maxsize for node in graph.connections} UpperCAmelCase_ = {node: None for node in graph.connections} UpperCAmelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization UpperCAmelCase_ = priority_queue.extract_min() UpperCAmelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) UpperCAmelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCAmelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) UpperCAmelCase_ = node return dist, parent
715
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DownBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ResnetDownsampleBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnDownBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CrossAttnDownBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SimpleCrossAttnDownBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SkipDownBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_skip_sample=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnSkipDownBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : str ) -> str: '''simple docstring''' return super().get_dummy_input(include_skip_sample=_UpperCAmelCase ) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DownEncoderBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = { "in_channels": 32, "out_channels": 32, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnDownEncoderBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = { "in_channels": 32, "out_channels": 32, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UNetMidBlockaD # noqa F405 UpperCamelCase = '''mid''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = { "in_channels": 32, "temb_channels": 128, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UNetMidBlockaDCrossAttn # noqa F405 UpperCamelCase = '''mid''' def lowercase__ ( self : Any ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCamelCase = '''mid''' @property def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ResnetUpsampleBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CrossAttnUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SimpleCrossAttnUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase , include_encoder_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SkipUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnSkipUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UpDecoderBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' UpperCAmelCase_ = {"in_channels": 32, "out_channels": 32} UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnUpDecoderBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = {"in_channels": 32, "out_channels": 32} UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_UpperCAmelCase )
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
"""simple docstring""" from __future__ import annotations lowerCamelCase = list[list[int]] # assigning initial values to the grid lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a__ ( lowerCAmelCase__ ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a__ ( lowerCAmelCase__ ): if location := find_empty_location(lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = digit if sudoku(lowerCAmelCase__ ) is not None: return grid UpperCAmelCase_ = 0 return None def a__ ( lowerCAmelCase__ ): for row in grid: for cell in row: print(lowerCAmelCase__ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
718
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''gpt_bigcode''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , _UpperCAmelCase : List[str]=50257 , _UpperCAmelCase : Any=1024 , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]="gelu_pytorch_tanh" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=50256 , _UpperCAmelCase : Optional[Any]=50256 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = n_positions UpperCAmelCase_ = n_embd UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head UpperCAmelCase_ = n_inner UpperCAmelCase_ = activation_function UpperCAmelCase_ = resid_pdrop UpperCAmelCase_ = embd_pdrop UpperCAmelCase_ = attn_pdrop UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scale_attn_weights UpperCAmelCase_ = use_cache UpperCAmelCase_ = attention_softmax_in_fpaa UpperCAmelCase_ = scale_attention_softmax_in_fpaa UpperCAmelCase_ = multi_query UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
719
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
0
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCamelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} state_dict.pop("pixel_mean" , lowerCAmelCase__ ) state_dict.pop("pixel_std" , lowerCAmelCase__ ) UpperCAmelCase_ = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(2 ) ) if layer_nb == 0: UpperCAmelCase_ = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: UpperCAmelCase_ = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: UpperCAmelCase_ = key.replace("layers.2" , "proj_out" ) UpperCAmelCase_ = value UpperCAmelCase_ = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="ybelkada/segment-anything" ): UpperCAmelCase_ = hf_hub_download(lowerCAmelCase__ , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: UpperCAmelCase_ = SamConfig() elif "sam_vit_l" in model_name: UpperCAmelCase_ = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCAmelCase_ = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: UpperCAmelCase_ = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCAmelCase_ = SamConfig( vision_config=lowerCAmelCase__ , ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" ) UpperCAmelCase_ = replace_keys(lowerCAmelCase__ ) UpperCAmelCase_ = SamImageProcessor() UpperCAmelCase_ = SamProcessor(image_processor=lowerCAmelCase__ ) UpperCAmelCase_ = SamModel(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = hf_model.to("cuda" ) UpperCAmelCase_ = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) UpperCAmelCase_ = [[[400, 650]]] UpperCAmelCase_ = [[1]] UpperCAmelCase_ = processor(images=np.array(lowerCAmelCase__ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 UpperCAmelCase_ = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 UpperCAmelCase_ = ((75, 275, 1725, 850),) UpperCAmelCase_ = processor(images=np.array(lowerCAmelCase__ ) , input_boxes=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. UpperCAmelCase_ = [[[400, 650], [800, 650]]] UpperCAmelCase_ = [[1, 1]] UpperCAmelCase_ = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() lowerCamelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) lowerCamelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase = """src/diffusers""" # Matches is_xxx_available() lowerCamelCase = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCamelCase = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCamelCase = """ {0} = None """ lowerCamelCase = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ lowerCamelCase = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = _re_backend.findall(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 0: return None return "_and_".join(lowerCAmelCase__ ) def a__ ( ): with open(os.path.join(lowerCAmelCase__ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ = 0 UpperCAmelCase_ = {} # Go through the end of the file while line_index < len(lowerCAmelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase__ ) and len(lines[line_index] ) > 1: UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _re_single_line_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_ = objects else: line_index += 1 return backend_specific_objects def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase__ , lowerCAmelCase__ ) else: return DUMMY_CLASS.format(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__=None ): if backend_specific_objects is None: UpperCAmelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase__ , lowerCAmelCase__ ) for o in objects] ) UpperCAmelCase_ = dummy_file return dummy_files def a__ ( lowerCAmelCase__=False ): UpperCAmelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "utils" ) UpperCAmelCase_ = { backend: os.path.join(lowerCAmelCase__ , f"""dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py""" ) for backend in dummy_files.keys() } UpperCAmelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
721
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Initialise PyTorch model UpperCAmelCase_ = FunnelConfig.from_json_file(lowerCAmelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = FunnelBaseModel(lowerCAmelCase__ ) if base_model else FunnelModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=512, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def a__ ( lowerCAmelCase__ ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) lowerCamelCase = parser.parse_args() lowerCamelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
702
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''CLIPImageProcessor''' UpperCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : List[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[str] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: UpperCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowercase__ ( self : List[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def a__ ( lowerCAmelCase__ = 3 ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(lowerCAmelCase__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) UpperCAmelCase_ = QuantumRegister(lowerCAmelCase__ , "qr" ) UpperCAmelCase_ = ClassicalRegister(lowerCAmelCase__ , "cr" ) UpperCAmelCase_ = QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = number_of_qubits for i in range(lowerCAmelCase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCAmelCase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase__ , lowerCAmelCase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCAmelCase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCAmelCase__ , lowerCAmelCase__ ) # simulate with 10000 shots UpperCAmelCase_ = Aer.get_backend("qasm_simulator" ) UpperCAmelCase_ = execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10000 ) return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
705
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
707
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True A = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
708
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
0
"""simple docstring""" import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 ): UpperCAmelCase_ = end or len(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase_ = array[temp_index - 1] temp_index -= 1 UpperCAmelCase_ = temp_index_value return array def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Max Heap UpperCAmelCase_ = index UpperCAmelCase_ = 2 * index + 1 # Left Node UpperCAmelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase_ = right_index if largest != index: UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index] heapify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for i in range(n - 1 , 0 , -1 ): UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i] heapify(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) return array def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = low UpperCAmelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i] i += 1 def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return array UpperCAmelCase_ = 2 * math.ceil(math.loga(len(lowerCAmelCase__ ) ) ) UpperCAmelCase_ = 16 return intro_sort(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCAmelCase__ ) max_depth -= 1 UpperCAmelCase_ = median_of_a(lowerCAmelCase__ , lowerCAmelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) UpperCAmelCase_ = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) intro_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = p return insertion_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = input("""Enter numbers separated by a comma : """).strip() lowerCamelCase = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
709
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = str(lowerCAmelCase__ ) return n == n[::-1] def a__ ( lowerCAmelCase__ = 1000000 ): UpperCAmelCase_ = 0 for i in range(1 , lowerCAmelCase__ ): if is_palindrome(lowerCAmelCase__ ) and is_palindrome(bin(lowerCAmelCase__ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
710
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
0
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=1 ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = tokenizer UpperCAmelCase_ = dataset UpperCAmelCase_ = len(_UpperCAmelCase ) if n_tasks is None else n_tasks UpperCAmelCase_ = n_copies def __iter__( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = start_length UpperCAmelCase_ = eof_strings UpperCAmelCase_ = tokenizer def __call__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_UpperCAmelCase ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = re.split("(%s)" % "|".join(lowerCAmelCase__ ) , lowerCAmelCase__ ) # last string should be "" return "".join(string_list[:-2] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=20 , **lowerCAmelCase__ ): UpperCAmelCase_ = defaultdict(lowerCAmelCase__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCAmelCase__ ) ): with torch.no_grad(): UpperCAmelCase_ = batch["ids"].shape[-1] UpperCAmelCase_ = accelerator.unwrap_model(lowerCAmelCase__ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=lowerCAmelCase__ , **lowerCAmelCase__ ) # each task is generated batch_size times UpperCAmelCase_ = batch["task_id"].repeat(lowerCAmelCase__ ) UpperCAmelCase_ = accelerator.pad_across_processes( lowerCAmelCase__ , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase_ = generated_tokens.cpu().numpy() UpperCAmelCase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCAmelCase__ , lowerCAmelCase__ ): gen_token_dict[task].append(lowerCAmelCase__ ) UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase_ = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) code_gens[task].append(remove_last_block(lowerCAmelCase__ ) ) return code_gens def a__ ( ): # Setup configuration UpperCAmelCase_ = HfArgumentParser(lowerCAmelCase__ ) UpperCAmelCase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase_ = "false" if args.num_workers is None: UpperCAmelCase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase_ = Accelerator() set_seed(args.seed , device_specific=lowerCAmelCase__ ) # Load model and tokenizer UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ = tokenizer.eos_token UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase_ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCAmelCase__ , lowerCAmelCase__ )] ), } # Load evaluation dataset and metric UpperCAmelCase_ = load_dataset("openai_humaneval" ) UpperCAmelCase_ = load_metric("code_eval" ) UpperCAmelCase_ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) UpperCAmelCase_ = args.n_samples // args.batch_size UpperCAmelCase_ = TokenizedDataset(lowerCAmelCase__ , human_eval["test"] , n_copies=lowerCAmelCase__ , n_tasks=lowerCAmelCase__ ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase_ = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = complete_code( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , n_tasks=lowerCAmelCase__ , batch_size=args.batch_size , **lowerCAmelCase__ , ) if accelerator.is_main_process: UpperCAmelCase_ = [] for task in tqdm(range(lowerCAmelCase__ ) ): UpperCAmelCase_ = human_eval["test"][task]["test"] UpperCAmelCase_ = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase_ , UpperCAmelCase_ = code_eval_metric.compute( references=lowerCAmelCase__ , predictions=lowerCAmelCase__ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
711
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''xlnet''' UpperCamelCase = ['''mems'''] UpperCamelCase = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , _UpperCAmelCase : str=32000 , _UpperCAmelCase : str=1024 , _UpperCAmelCase : Tuple=24 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : List[Any]=4096 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any="bi" , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[Any]=1e-12 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=-1 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : str="last" , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]="tanh" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : List[str]=2 , **_UpperCAmelCase : Optional[Any] , ) -> str: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = n_layer UpperCAmelCase_ = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCAmelCase_ = d_model // n_head UpperCAmelCase_ = ff_activation UpperCAmelCase_ = d_inner UpperCAmelCase_ = untie_r UpperCAmelCase_ = attn_type UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = dropout UpperCAmelCase_ = mem_len UpperCAmelCase_ = reuse_len UpperCAmelCase_ = bi_data UpperCAmelCase_ = clamp_len UpperCAmelCase_ = same_length UpperCAmelCase_ = summary_type UpperCAmelCase_ = summary_use_proj UpperCAmelCase_ = summary_activation UpperCAmelCase_ = summary_last_dropout UpperCAmelCase_ = start_n_top UpperCAmelCase_ = end_n_top UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _UpperCAmelCase , ) UpperCAmelCase_ = kwargs["use_cache"] UpperCAmelCase_ = use_mems_eval UpperCAmelCase_ = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
712
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''nllb-moe''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any]=128112 , _UpperCAmelCase : Optional[int]=1024 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[Any]=4096 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[str]=4096 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]=0.05 , _UpperCAmelCase : List[Any]=0.05 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict="relu" , _UpperCAmelCase : Dict=1024 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[str]="float32" , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=128 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=0.001 , _UpperCAmelCase : str=0.001 , _UpperCAmelCase : Optional[Any]="all" , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=0.2 , _UpperCAmelCase : str=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=False , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase_ = router_z_loss_coef UpperCAmelCase_ = router_aux_loss_coef UpperCAmelCase_ = decoder_sparse_step UpperCAmelCase_ = encoder_sparse_step UpperCAmelCase_ = num_experts UpperCAmelCase_ = expert_capacity UpperCAmelCase_ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCAmelCase_ = router_dtype UpperCAmelCase_ = router_ignore_padding_tokens UpperCAmelCase_ = batch_prioritized_routing UpperCAmelCase_ = second_expert_policy UpperCAmelCase_ = normalize_router_prob_before_dropping UpperCAmelCase_ = moe_eval_capacity_token_fraction UpperCAmelCase_ = moe_token_dropout UpperCAmelCase_ = output_router_logits super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
713
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : int ) -> None: '''simple docstring''' warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
714
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
0
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=0 ): UpperCAmelCase_ = [] for old_item in old_list: UpperCAmelCase_ = old_item.replace("in_layers.0" , "norm1" ) UpperCAmelCase_ = new_item.replace("in_layers.2" , "conv1" ) UpperCAmelCase_ = new_item.replace("out_layers.0" , "norm2" ) UpperCAmelCase_ = new_item.replace("out_layers.3" , "conv2" ) UpperCAmelCase_ = new_item.replace("emb_layers.1" , "time_emb_proj" ) UpperCAmelCase_ = new_item.replace("skip_connection" , "conv_shortcut" ) UpperCAmelCase_ = shave_segments(lowerCAmelCase__ , n_shave_prefix_segments=lowerCAmelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( lowerCAmelCase__ , lowerCAmelCase__=0 ): UpperCAmelCase_ = [] for old_item in old_list: UpperCAmelCase_ = old_item UpperCAmelCase_ = new_item.replace("norm.weight" , "group_norm.weight" ) UpperCAmelCase_ = new_item.replace("norm.bias" , "group_norm.bias" ) UpperCAmelCase_ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) UpperCAmelCase_ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) UpperCAmelCase_ = shave_segments(lowerCAmelCase__ , n_shave_prefix_segments=lowerCAmelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase_ = old_checkpoint[path] UpperCAmelCase_ = old_tensor.shape[0] // 3 UpperCAmelCase_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase_ = old_tensor.shape[0] // config["num_head_channels"] // 3 UpperCAmelCase_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase_ = query.reshape(lowerCAmelCase__ ) UpperCAmelCase_ = key.reshape(lowerCAmelCase__ ) UpperCAmelCase_ = value.reshape(lowerCAmelCase__ ) for path in paths: UpperCAmelCase_ = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase_ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) UpperCAmelCase_ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) UpperCAmelCase_ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase_ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase_ = old_checkpoint[path["old"]][:, :, 0] else: UpperCAmelCase_ = old_checkpoint[path["old"]] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint["time_embed.0.weight"] UpperCAmelCase_ = checkpoint["time_embed.0.bias"] UpperCAmelCase_ = checkpoint["time_embed.2.weight"] UpperCAmelCase_ = checkpoint["time_embed.2.bias"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase_ = checkpoint["out.0.weight"] UpperCAmelCase_ = checkpoint["out.0.bias"] UpperCAmelCase_ = checkpoint["out.2.weight"] UpperCAmelCase_ = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the middle blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the output blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(1 , lowerCAmelCase__ ): UpperCAmelCase_ = (i - 1) // (config["num_res_blocks"] + 1) UpperCAmelCase_ = (i - 1) % (config["num_res_blocks"] + 1) UpperCAmelCase_ = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase_ = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase_ = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase_ = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""input_blocks.{i}.0""", "new": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase_ = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path, resnet_op] , config=lowerCAmelCase__ ) if len(lowerCAmelCase__ ): UpperCAmelCase_ = renew_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = { "old": f"""input_blocks.{i}.1""", "new": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase_ = { f"""input_blocks.{i}.1.qkv.bias""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCAmelCase__ , config=lowerCAmelCase__ , ) UpperCAmelCase_ = middle_blocks[0] UpperCAmelCase_ = middle_blocks[1] UpperCAmelCase_ = middle_blocks[2] UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) UpperCAmelCase_ = renew_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , attention_paths_to_split=lowerCAmelCase__ , config=lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = i // (config["num_res_blocks"] + 1) UpperCAmelCase_ = i % (config["num_res_blocks"] + 1) UpperCAmelCase_ = [shave_segments(lowerCAmelCase__ , 2 ) for name in output_blocks[i]] UpperCAmelCase_ = {} for layer in output_block_layers: UpperCAmelCase_ , UpperCAmelCase_ = layer.split("." )[0], shave_segments(lowerCAmelCase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [layer_name] if len(lowerCAmelCase__ ) > 1: UpperCAmelCase_ = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase_ = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""output_blocks.{i}.0""", "new": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase_ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) UpperCAmelCase_ = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase_ = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(lowerCAmelCase__ ) == 2: UpperCAmelCase_ = [] if len(lowerCAmelCase__ ): UpperCAmelCase_ = renew_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = { "old": f"""output_blocks.{i}.1""", "new": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase_ = { f"""output_blocks.{i}.1.qkv.bias""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=lowerCAmelCase__ , ) else: UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase_ = ".".join(["output_blocks", str(lowerCAmelCase__ ), path["old"]] ) UpperCAmelCase_ = ".".join(["up_blocks", str(lowerCAmelCase__ ), "resnets", str(lowerCAmelCase__ ), path["new"]] ) UpperCAmelCase_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCamelCase = parser.parse_args() lowerCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCamelCase = json.loads(f.read()) lowerCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCamelCase = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowerCamelCase = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowerCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
715
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ = 1000 ): UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 UpperCAmelCase_ = [] for i in range(1 , n + 1 ): UpperCAmelCase_ = prev_numerator + 2 * prev_denominator UpperCAmelCase_ = prev_numerator + prev_denominator if len(str(lowerCAmelCase__ ) ) > len(str(lowerCAmelCase__ ) ): result.append(lowerCAmelCase__ ) UpperCAmelCase_ = numerator UpperCAmelCase_ = denominator return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"{solution() = }")
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
"""simple docstring""" from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''image''': Image()} ) UpperCamelCase = Features({'''labels''': ClassLabel} ) UpperCamelCase = '''image''' UpperCamelCase = '''labels''' def lowercase__ ( self : int , _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase_ = copy.deepcopy(self ) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowercase__ ( self : Tuple ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
718
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowerCamelCase = logging.getLogger() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "all_results.json" ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) else: raise ValueError(f"""can't find {path}""" ) return results lowerCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' import xla_spawn UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): UpperCAmelCase_ = time() xla_spawn.main() UpperCAmelCase_ = time() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' import xla_spawn UpperCAmelCase_ = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): xla_spawn.main()
719
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
0
"""simple docstring""" from math import isclose, sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = point_y / 4 / point_x UpperCAmelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase_ = outgoing_gradient**2 + 4 UpperCAmelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase_ = x_minus if isclose(lowerCAmelCase__ , lowerCAmelCase__ ) else x_plus UpperCAmelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( lowerCAmelCase__ = 1.4 , lowerCAmelCase__ = -9.6 ): UpperCAmelCase_ = 0 UpperCAmelCase_ = first_x_coord UpperCAmelCase_ = first_y_coord UpperCAmelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = next_point(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = int(lowerCAmelCase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(lowerCAmelCase__ , 2 ) return binary_recursive(lowerCAmelCase__ ) + str(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = str(lowerCAmelCase__ ).strip() if not number: raise ValueError("No input value was provided" ) UpperCAmelCase_ = "-" if number.startswith("-" ) else "" UpperCAmelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"""{negative}0b{binary_recursive(int(lowerCAmelCase__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
721
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
0
"""simple docstring""" from scipy.stats import spearmanr import datasets lowerCamelCase = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowerCamelCase = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowerCamelCase = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def lowercase__ ( self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowercase__ ( unittest.TestCase ): UpperCamelCase = JukeboxTokenizer UpperCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def lowercase__ ( self : int ) -> int: '''simple docstring''' import torch UpperCAmelCase_ = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) UpperCAmelCase_ = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' import torch UpperCAmelCase_ = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) UpperCAmelCase_ = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
701
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , lowerCAmelCase__ ).groups()[0] class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : int=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = file_names UpperCAmelCase_ = image_transform UpperCAmelCase_ = label_to_id def __len__( self : Any ) -> int: '''simple docstring''' return len(self.file_names ) def __getitem__( self : Optional[int] , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.file_names[idx] UpperCAmelCase_ = PIL.Image.open(_UpperCAmelCase ) UpperCAmelCase_ = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase_ = self.image_transform(_UpperCAmelCase ) UpperCAmelCase_ = extract_label(_UpperCAmelCase ) if self.label_to_id is not None: UpperCAmelCase_ = self.label_to_id[label] return {"image": image, "label": label} def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config["num_epochs"] ) UpperCAmelCase_ = int(config["seed"] ) UpperCAmelCase_ = int(config["batch_size"] ) UpperCAmelCase_ = config["image_size"] if not isinstance(lowerCAmelCase__ , (list, tuple) ): UpperCAmelCase_ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase_ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase_ = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase_ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase_ = os.path.split(lowerCAmelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCAmelCase__ , lowerCAmelCase__ ) # Grab all the image filenames UpperCAmelCase_ = [os.path.join(args.data_dir , lowerCAmelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase_ = [extract_label(lowerCAmelCase__ ) for fname in file_names] UpperCAmelCase_ = list(set(lowerCAmelCase__ ) ) id_to_label.sort() UpperCAmelCase_ = {lbl: i for i, lbl in enumerate(lowerCAmelCase__ )} # Set the seed before splitting the data. np.random.seed(lowerCAmelCase__ ) torch.manual_seed(lowerCAmelCase__ ) torch.cuda.manual_seed_all(lowerCAmelCase__ ) # Split our filenames between train and validation UpperCAmelCase_ = np.random.permutation(len(lowerCAmelCase__ ) ) UpperCAmelCase_ = int(0.8 * len(lowerCAmelCase__ ) ) UpperCAmelCase_ = random_perm[:cut] UpperCAmelCase_ = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase_ = Compose([RandomResizedCrop(lowerCAmelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase_ = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCAmelCase__ , label_to_id=lowerCAmelCase__ ) # For evaluation, we use a deterministic Resize UpperCAmelCase_ = Compose([Resize(lowerCAmelCase__ ), ToTensor()] ) UpperCAmelCase_ = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCAmelCase__ , label_to_id=lowerCAmelCase__ ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4 ) UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = create_model("resnet50d" , pretrained=lowerCAmelCase__ , num_classes=len(lowerCAmelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase_ = False for param in model.get_classifier().parameters(): UpperCAmelCase_ = True # We normalize the batches of images to be a bit faster. UpperCAmelCase_ = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase_ = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase_ = OneCycleLR(optimizer=lowerCAmelCase__ , max_lr=lowerCAmelCase__ , epochs=lowerCAmelCase__ , steps_per_epoch=len(lowerCAmelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase_ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase_ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase_ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase_ = os.path.splitext(lowerCAmelCase__ )[0] if "epoch" in training_difference: UpperCAmelCase_ = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase_ = None else: UpperCAmelCase_ = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase_ = resume_step // len(lowerCAmelCase__ ) resume_step -= starting_epoch * len(lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() if args.with_tracking: UpperCAmelCase_ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase_ = accelerator.skip_first_batches(lowerCAmelCase__ , lowerCAmelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase_ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase_ = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase_ = (batch["image"] - mean) / std UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = torch.nn.functional.cross_entropy(lowerCAmelCase__ , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase_ = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) model.eval() UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase_ = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase_ = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase_ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase_ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(lowerCAmelCase__ ), "epoch": epoch, } , step=lowerCAmelCase__ , ) if checkpointing_steps == "epoch": UpperCAmelCase_ = f"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase_ = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) if args.with_tracking: accelerator.end_training() def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=lowerCAmelCase__ , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=lowerCAmelCase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCAmelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
702
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if len(lowerCAmelCase__ ) < k or k < 0: raise ValueError("Invalid Input" ) UpperCAmelCase_ = UpperCAmelCase_ = sum(array[:k] ) for i in range(len(lowerCAmelCase__ ) - k ): UpperCAmelCase_ = current_sum - array[i] + array[i + k] UpperCAmelCase_ = max(lowerCAmelCase__ , lowerCAmelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCamelCase = [randint(-1_000, 1_000) for i in range(100)] lowerCamelCase = randint(0, 110) print(F"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) lowerCamelCase = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions lowerCamelCase = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) lowerCamelCase = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase = np.expand_dims(test_image, axis=0) lowerCamelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase = """Normal""" if result[0][0] == 1: lowerCamelCase = """Abnormality detected"""
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowerCamelCase = 0 for log in Path().glob("""*.log"""): lowerCamelCase = 0 with open(log, """r""") as f: for line in f: lowerCamelCase = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase = [] log.unlink() lowerCamelCase = """""" lowerCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase = [] lowerCamelCase = {} for test in failed_tests: lowerCamelCase = test[0].split("""::""") lowerCamelCase = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase = [test[0] for test in failed_table] lowerCamelCase = list(set(files)) # Count number of instances in failed_tests lowerCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: lowerCamelCase = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase = len(err) + 10 lowerCamelCase = message[: 3_000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowerCamelCase = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowerCamelCase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowerCamelCase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase = row[0] else: lowerCamelCase = """""" lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
705
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 UpperCAmelCase_ = sum(lowerCAmelCase__ ) create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return result def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if sum(lowerCAmelCase__ ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase__ )) < max_sum: return if sum(lowerCAmelCase__ ) == max_sum: result.append(lowerCAmelCase__ ) return for index in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): create_state_space_tree( lowerCAmelCase__ , lowerCAmelCase__ , index + 1 , [*path, nums[index]] , lowerCAmelCase__ , remaining_nums_sum - nums[index] , ) lowerCamelCase = [3, 34, 4, 12, 5, 2] lowerCamelCase = 9 lowerCamelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
706
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , **_UpperCAmelCase : Any ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(_UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , _UpperCAmelCase : Union[str, List[str]] = None , **_UpperCAmelCase : Optional[int] , ) -> Tuple: '''simple docstring''' if "text_queries" in kwargs: UpperCAmelCase_ = kwargs.pop("text_queries" ) if isinstance(_UpperCAmelCase , (str, Image.Image) ): UpperCAmelCase_ = {"image": image, "candidate_labels": candidate_labels} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def lowercase__ ( self : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} if "threshold" in kwargs: UpperCAmelCase_ = kwargs["threshold"] if "top_k" in kwargs: UpperCAmelCase_ = kwargs["top_k"] return {}, {}, postprocess_params def lowercase__ ( self : str , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = load_image(inputs["image"] ) UpperCAmelCase_ = inputs["candidate_labels"] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = candidate_labels.split("," ) UpperCAmelCase_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self : int , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = model_inputs.pop("target_size" ) UpperCAmelCase_ = model_inputs.pop("candidate_label" ) UpperCAmelCase_ = model_inputs.pop("is_last" ) UpperCAmelCase_ = self.model(**_UpperCAmelCase ) UpperCAmelCase_ = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def lowercase__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [] for model_output in model_outputs: UpperCAmelCase_ = model_output["candidate_label"] UpperCAmelCase_ = BaseModelOutput(_UpperCAmelCase ) UpperCAmelCase_ = self.image_processor.post_process_object_detection( outputs=_UpperCAmelCase , threshold=_UpperCAmelCase , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase_ = outputs["scores"][index].item() UpperCAmelCase_ = self._get_bounding_box(outputs["boxes"][index][0] ) UpperCAmelCase_ = {"score": score, "label": label, "box": box} results.append(_UpperCAmelCase ) UpperCAmelCase_ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase ) if top_k: UpperCAmelCase_ = results[:top_k] return results def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = box.int().tolist() UpperCAmelCase_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
707
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [0] * len(lowerCAmelCase__ ) UpperCAmelCase_ = [] UpperCAmelCase_ = [1] * len(lowerCAmelCase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase__ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase__ ) while queue: UpperCAmelCase_ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase__ ) print(max(lowerCAmelCase__ ) ) # Adjacency list of Graph A = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
708
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "ylacombe/bark-small" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = "en_speaker_1" UpperCAmelCase_ = "This is a test string" UpperCAmelCase_ = "speaker_embeddings_path.json" UpperCAmelCase_ = "speaker_embeddings" def lowercase__ ( self : str , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ = 35 UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = { "semantic_prompt": np.ones(_UpperCAmelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) UpperCAmelCase_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) UpperCAmelCase_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_UpperCAmelCase ) UpperCAmelCase_ = processor(text=self.input_string ) UpperCAmelCase_ = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
709
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase = 8 def a__ ( lowerCAmelCase__ , lowerCAmelCase__=BITS ): UpperCAmelCase_ = x.device UpperCAmelCase_ = (x * 255).int().clamp(0 , 255 ) UpperCAmelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase__ ) UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "d -> d 1 1" ) UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "b c h w -> b c 1 h w" ) UpperCAmelCase_ = ((x & mask) != 0).float() UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "b c d h w -> b (c d) h w" ) UpperCAmelCase_ = bits * 2 - 1 return bits def a__ ( lowerCAmelCase__ , lowerCAmelCase__=BITS ): UpperCAmelCase_ = x.device UpperCAmelCase_ = (x > 0).int() UpperCAmelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase__ , dtype=torch.intaa ) UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "d -> d 1 1" ) UpperCAmelCase_ = rearrange(lowerCAmelCase__ , "b (c d) h w -> b c d h w" , d=8 ) UpperCAmelCase_ = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = True , lowerCAmelCase__=None , lowerCAmelCase__ = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCAmelCase_ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCAmelCase_ = self.alphas_cumprod[timestep] UpperCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCAmelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCAmelCase_ = self.bit_scale if self.config.clip_sample: UpperCAmelCase_ = torch.clamp(lowerCAmelCase__ , -scale , lowerCAmelCase__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCAmelCase_ = self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCAmelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCAmelCase_ = model_output.device if torch.is_tensor(lowerCAmelCase__ ) else "cpu" UpperCAmelCase_ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase__ ).to(lowerCAmelCase__ ) UpperCAmelCase_ = self._get_variance(lowerCAmelCase__ , lowerCAmelCase__ ) ** 0.5 * eta * noise UpperCAmelCase_ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="epsilon" , lowerCAmelCase__=None , lowerCAmelCase__ = True , ): UpperCAmelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCAmelCase_ , UpperCAmelCase_ = torch.split(lowerCAmelCase__ , sample.shape[1] , dim=1 ) else: UpperCAmelCase_ = None # 1. compute alphas, betas UpperCAmelCase_ = self.alphas_cumprod[t] UpperCAmelCase_ = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCAmelCase_ = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" UpperCAmelCase_ = self.bit_scale if self.config.clip_sample: UpperCAmelCase_ = torch.clamp(lowerCAmelCase__ , -scale , lowerCAmelCase__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCAmelCase_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ = 0 if t > 0: UpperCAmelCase_ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase__ ).to(model_output.device ) UpperCAmelCase_ = (self._get_variance(lowerCAmelCase__ , predicted_variance=lowerCAmelCase__ ) ** 0.5) * noise UpperCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : Optional[float] = 1.0 , ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ = bit_scale UpperCAmelCase_ = ( ddim_bit_scheduler_step if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Dict , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 256 , _UpperCAmelCase : Optional[int] = 50 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' UpperCAmelCase_ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_UpperCAmelCase , ) UpperCAmelCase_ = decimal_to_bits(_UpperCAmelCase ) * self.bit_scale UpperCAmelCase_ = latents.to(self.device ) self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCAmelCase_ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample UpperCAmelCase_ = bits_to_decimal(_UpperCAmelCase ) if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
710
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str = None , _UpperCAmelCase : list = None ) -> str: '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase_ = os.path.abspath("examples" ) for item in os.listdir(_UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase_ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_UpperCAmelCase , feature_script=_UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase_ = compare_against_test( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = "\n".join(_UpperCAmelCase ) if special_strings is not None: for string in special_strings: UpperCAmelCase_ = diff.replace(_UpperCAmelCase , "" ) self.assertEqual(_UpperCAmelCase , "" ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.one_complete_example("complete_nlp_example.py" , _UpperCAmelCase ) self.one_complete_example("complete_nlp_example.py" , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.one_complete_example("complete_cv_example.py" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = False @classmethod def lowercase__ ( cls : Tuple ) -> str: '''simple docstring''' super().setUpClass() UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase__ ( cls : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) self.assertNotIn("epoch 0:" , _UpperCAmelCase ) self.assertIn("epoch 1:" , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) if torch.cuda.is_available(): UpperCAmelCase_ = torch.cuda.device_count() else: UpperCAmelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _UpperCAmelCase ) self.assertIn("epoch 1:" , _UpperCAmelCase ) else: self.assertIn("epoch 0:" , _UpperCAmelCase ) self.assertIn("epoch 1:" , _UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) UpperCAmelCase_ = re.findall("({.+})" , _UpperCAmelCase ) UpperCAmelCase_ = [r for r in results if "accuracy" in r][-1] UpperCAmelCase_ = ast.literal_eval(_UpperCAmelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase_ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "tracking" ) ) ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
711
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCamelCase = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def a__ ( lowerCAmelCase__ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase_ = list(s_dict.keys() ) for key in keys: UpperCAmelCase_ = r".*/layers_(\d+)" UpperCAmelCase_ = key if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = re.sub(r"layers_(\d+)" , r"block/\1/layer" , lowerCAmelCase__ ) UpperCAmelCase_ = r"(encoder|decoder)\/" if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).groups() if groups[0] == "encoder": UpperCAmelCase_ = re.sub(r"/mlp/" , r"/1/mlp/" , lowerCAmelCase__ ) UpperCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , lowerCAmelCase__ ) elif groups[0] == "decoder": UpperCAmelCase_ = re.sub(r"/mlp/" , r"/2/mlp/" , lowerCAmelCase__ ) UpperCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , lowerCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase_ = new_key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""{key} -> {new_key}""" ) UpperCAmelCase_ = s_dict.pop(lowerCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase_ = s_dict[key].shape[0] UpperCAmelCase_ = s_dict[key] for idx in range(lowerCAmelCase__ ): UpperCAmelCase_ = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase__ ) return s_dict lowerCamelCase = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase__ , "r" ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = re.findall(r"(.*) = ([0-9.]*)" , lowerCAmelCase__ ) UpperCAmelCase_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase_ = float(lowerCAmelCase__ ) if "." in value else int(lowerCAmelCase__ ) UpperCAmelCase_ = re.findall(r"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase__ )[0] UpperCAmelCase_ = str(activation[1] ) UpperCAmelCase_ = num_experts UpperCAmelCase_ = SwitchTransformersConfig(**lowerCAmelCase__ ) return config def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="./" , lowerCAmelCase__=8 ): # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) if gin_file is not None: UpperCAmelCase_ = convert_gin_to_config(lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCAmelCase_ = SwitchTransformersConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = SwitchTransformersForConditionalGeneration(lowerCAmelCase__ ) UpperCAmelCase_ = flax_params["target"] UpperCAmelCase_ = flatten_dict(lowerCAmelCase__ , sep="/" ) UpperCAmelCase_ = rename_keys(lowerCAmelCase__ ) UpperCAmelCase_ = unflatten_dict(lowerCAmelCase__ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
712
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowerCamelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def a__ ( ): UpperCAmelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ = g.get_repo("huggingface/diffusers" ) UpperCAmelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ = sorted(issue.get_comments() , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) UpperCAmelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
713
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
0
"""simple docstring""" import heapq import sys import numpy as np lowerCamelCase = tuple[int, int] class lowercase__ : '''simple docstring''' def __init__( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = set() def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float("inf" ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCAmelCase ) else: # update # print("update", item) UpperCAmelCase_ = [] ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' if item in self.set: self.set.remove(_UpperCAmelCase ) UpperCAmelCase_ = [] ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' return self.elements[0][1] def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) = heapq.heappop(self.elements ) self.set.remove(_UpperCAmelCase ) return (priority, item) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # euclidean distance UpperCAmelCase_ = np.array(lowerCAmelCase__ ) UpperCAmelCase_ = np.array(lowerCAmelCase__ ) return np.linalg.norm(a - b ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # integer division by time variable return consistent_heuristic(lowerCAmelCase__ , lowerCAmelCase__ ) // t def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ , lowerCAmelCase__ ) return ans def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = np.chararray((n, n) ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): UpperCAmelCase_ = "*" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (j, (n - 1) - i) in blocks: UpperCAmelCase_ = "#" UpperCAmelCase_ = "-" UpperCAmelCase_ = back_pointer[goal] while x != start: ((UpperCAmelCase_) , (UpperCAmelCase_)) = x # print(x) UpperCAmelCase_ = "-" UpperCAmelCase_ = back_pointer[x] UpperCAmelCase_ = "-" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) UpperCAmelCase_ = back_pointer[goal] while x != start: print(lowerCAmelCase__ , end=" " ) UpperCAmelCase_ = back_pointer[x] print(lowerCAmelCase__ ) sys.exit() def a__ ( lowerCAmelCase__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): for itera in range(lowerCAmelCase__ ): open_list[itera].remove_element(lowerCAmelCase__ ) # print("s", s) # print("j", j) ((UpperCAmelCase_) , (UpperCAmelCase_)) = s UpperCAmelCase_ = (x - 1, y) UpperCAmelCase_ = (x + 1, y) UpperCAmelCase_ = (x, y + 1) UpperCAmelCase_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase__ ) UpperCAmelCase_ = -1 UpperCAmelCase_ = float("inf" ) if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1: UpperCAmelCase_ = g_function[s] + 1 UpperCAmelCase_ = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase__ , key(lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCAmelCase__ ): if key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) <= Wa * key( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ): open_list[j].put( lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__ ( ): UpperCAmelCase_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCamelCase = make_common_ground() lowerCamelCase = blocks_blk # hyper parameters lowerCamelCase = 1 lowerCamelCase = 1 lowerCamelCase = 20 lowerCamelCase = 3 # one consistent and two other inconsistent # start and end destination lowerCamelCase = (0, 0) lowerCamelCase = (n - 1, n - 1) lowerCamelCase = 1 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {start: 0, goal: float("inf" )} UpperCAmelCase_ = {start: -1, goal: -1} UpperCAmelCase_ = [] UpperCAmelCase_ = set() for i in range(lowerCAmelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , lowerCAmelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCAmelCase_ , UpperCAmelCase_ = open_list[i].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_inad.append(lowerCAmelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCAmelCase_ = open_list[0].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_anchor.append(lowerCAmelCase__ ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCAmelCase__ ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
714
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
0
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , ): output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: UpperCAmelCase_ = "cpu" UpperCAmelCase_ = Path(lowerCAmelCase__ ) # VAE DECODER UpperCAmelCase_ = AutoencoderKL.from_pretrained(model_path + "/vae" ) UpperCAmelCase_ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ = vae_decoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , 25 , 25 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=lowerCAmelCase__ , ) del vae_decoder if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowerCamelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
715
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowercase__ ( SCREAMING_SNAKE_CASE ): UpperCamelCase = '''microsoft/speecht5_tts''' UpperCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) UpperCamelCase = '''text_reader''' UpperCamelCase = SpeechTaProcessor UpperCamelCase = SpeechTaForTextToSpeech UpperCamelCase = SpeechTaHifiGan UpperCamelCase = ['''text'''] UpperCamelCase = ['''audio'''] def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' if self.post_processor is None: UpperCAmelCase_ = "microsoft/speecht5_hifigan" super().setup() def lowercase__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.pre_processor(text=_UpperCAmelCase , return_tensors="pt" , truncation=_UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ = torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' with torch.no_grad(): return self.post_processor(_UpperCAmelCase ).cpu().detach()
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def a__ ( lowerCAmelCase__ ) -> Dict: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( ) -> int: UpperCAmelCase_ = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def a__ ( lowerCAmelCase__ = 2000000 ) -> List[str]: return sum(takewhile(lambda lowerCAmelCase__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowercase__ : '''simple docstring''' def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase_ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) UpperCAmelCase_ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase_ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) UpperCAmelCase_ = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCAmelCase_ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = inputs["prompt"] UpperCAmelCase_ = inputs["generator"] UpperCAmelCase_ = inputs["num_inference_steps"] UpperCAmelCase_ = inputs["output_type"] if "image" in inputs: UpperCAmelCase_ = inputs["image"] else: UpperCAmelCase_ = None if "mask_image" in inputs: UpperCAmelCase_ = inputs["mask_image"] else: UpperCAmelCase_ = None if "original_image" in inputs: UpperCAmelCase_ = inputs["original_image"] else: UpperCAmelCase_ = None UpperCAmelCase_ , UpperCAmelCase_ = pipe.encode_prompt(_UpperCAmelCase ) # inputs with prompt converted to embeddings UpperCAmelCase_ = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: UpperCAmelCase_ = image if mask_image is not None: UpperCAmelCase_ = mask_image if original_image is not None: UpperCAmelCase_ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = inputs["generator"] UpperCAmelCase_ = inputs["num_inference_steps"] UpperCAmelCase_ = inputs["output_type"] # inputs with prompt converted to embeddings UpperCAmelCase_ = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: UpperCAmelCase_ = image if mask_image is not None: UpperCAmelCase_ = mask_image if original_image is not None: UpperCAmelCase_ = original_image UpperCAmelCase_ = pipe_loaded(**_UpperCAmelCase )[0] UpperCAmelCase_ = np.abs(to_np(_UpperCAmelCase ) - to_np(_UpperCAmelCase ) ).max() self.assertLess(_UpperCAmelCase , 1e-4 ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = pipe_loaded(**_UpperCAmelCase )[0] UpperCAmelCase_ = np.abs(to_np(_UpperCAmelCase ) - to_np(_UpperCAmelCase ) ).max() self.assertLess(_UpperCAmelCase , 1e-4 )
718
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase = logging.getLogger(__name__) lowerCamelCase = 50 # max width of layer names lowerCamelCase = 70 # max width of quantizer names def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=lowerCAmelCase__ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=lowerCAmelCase__ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=lowerCAmelCase__ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=lowerCAmelCase__ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=lowerCAmelCase__ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=lowerCAmelCase__ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def a__ ( lowerCAmelCase__ ): if args.calibrator == "max": UpperCAmelCase_ = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase_ = "histogram" elif args.calibrator == "mse": UpperCAmelCase_ = "histogram" else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) UpperCAmelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase__ ) UpperCAmelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=False ): logger.info("Configuring Model for Quantization" ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase__ , ["embeddings"] , which="weight" , _disabled=lowerCAmelCase__ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase__ , [""] , _disabled=lowerCAmelCase__ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase__ , args.quant_disable_keyword , _disabled=lowerCAmelCase__ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase__ , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowerCAmelCase__ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase__ , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowerCAmelCase__ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase__ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase__ , lowerCAmelCase__ ) if args.clip_gelu: clip_gelu(lowerCAmelCase__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): def fusea(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase__ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase_ = qq._amax.detach().item() UpperCAmelCase_ = qk._amax.detach().item() UpperCAmelCase_ = qv._amax.detach().item() UpperCAmelCase_ = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) qq._amax.fill_(lowerCAmelCase__ ) qk._amax.fill_(lowerCAmelCase__ ) qv._amax.fill_(lowerCAmelCase__ ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase__ ) UpperCAmelCase_ = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def a__ ( lowerCAmelCase__ ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase__ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase_ = mod.weight.shape[0] UpperCAmelCase_ = mod._weight_quantizer._amax.detach() UpperCAmelCase_ = torch.ones(lowerCAmelCase__ , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def a__ ( lowerCAmelCase__ ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase__ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase_ = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase__ , keepdims=lowerCAmelCase__ ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) UpperCAmelCase_ = amax def a__ ( lowerCAmelCase__ , lowerCAmelCase__=25 , lowerCAmelCase__=180 , lowerCAmelCase__=None ): if ignore is None: UpperCAmelCase_ = [] elif not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [ignore] UpperCAmelCase_ = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase__ , "weight" ): continue UpperCAmelCase_ = max(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) for name, mod in model.named_modules(): UpperCAmelCase_ = getattr(lowerCAmelCase__ , "_input_quantizer" , lowerCAmelCase__ ) UpperCAmelCase_ = getattr(lowerCAmelCase__ , "_weight_quantizer" , lowerCAmelCase__ ) if not hasattr(lowerCAmelCase__ , "weight" ): continue if type(lowerCAmelCase__ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase__ ) is str and s in name]: continue UpperCAmelCase_ = f"""Act:{input_q.extra_repr()}""" UpperCAmelCase_ = f"""Wgt:{weight_q.extra_repr()}""" UpperCAmelCase_ = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(lowerCAmelCase__ ) <= line_width: logger.info(lowerCAmelCase__ ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{' ':{name_width}} {wgt_str}""" ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase__ , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: logger.warning(f"""{name} has no {quantizer}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="both" , **lowerCAmelCase__ ): UpperCAmelCase_ = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(lowerCAmelCase__ , lowerCAmelCase__ , "_input_quantizer" , lowerCAmelCase__ , lowerCAmelCase__ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase__ , lowerCAmelCase__ , "_weight_quantizer" , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): for name, mod in model.named_modules(): if hasattr(lowerCAmelCase__ , "_input_quantizer" ) or hasattr(lowerCAmelCase__ , "_weight_quantizer" ): for n in names: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ): set_quantizers(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) elif name.endswith("_quantizer" ): for n in names: if re.search(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info(lowerCAmelCase__ )
719
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''visual_bert''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple=30522 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Optional[int]=2 , **_UpperCAmelCase : Optional[int] , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = visual_embedding_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = bypass_transformer UpperCAmelCase_ = special_visual_initialize
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionInpaintPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase = frozenset([] ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any]=0 ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = sd_pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder="scheduler" ) UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
721
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowerCamelCase = TypeVar("""T""") lowerCamelCase = Union[List[T], Tuple[T, ...]] lowerCamelCase = Union[T, List[T], Dict[str, T]] lowerCamelCase = Union[str, bytes, os.PathLike]
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
701
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
0
"""simple docstring""" import math import sys def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = "" try: with open(lowerCAmelCase__ , "rb" ) as binary_file: UpperCAmelCase_ = binary_file.read() for dat in data: UpperCAmelCase_ = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {"0": "0", "1": "1"} UpperCAmelCase_ , UpperCAmelCase_ = "", "" UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ = lexicon[curr_string] result += last_match_id UpperCAmelCase_ = last_match_id + "0" if math.loga(lowerCAmelCase__ ).is_integer(): UpperCAmelCase_ = {} for curr_key in list(lowerCAmelCase__ ): UpperCAmelCase_ = lexicon.pop(lowerCAmelCase__ ) UpperCAmelCase_ = new_lex UpperCAmelCase_ = last_match_id + "1" index += 1 UpperCAmelCase_ = "" return result def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 8 try: with open(lowerCAmelCase__ , "wb" ) as opened_file: UpperCAmelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ = data_bits[counter:] UpperCAmelCase_ = data_bits[counter + 1 :] return data_bits def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = read_file_binary(lowerCAmelCase__ ) UpperCAmelCase_ = remove_prefix(lowerCAmelCase__ ) UpperCAmelCase_ = decompress_data(lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
702
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1024 , lowerCAmelCase__=1024 , lowerCAmelCase__=False , **lowerCAmelCase__ ): UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path="train" , **lowerCAmelCase__ ) UpperCAmelCase_ = tok.pad_token_id def get_lens(lowerCAmelCase__ ): UpperCAmelCase_ = tqdm( DataLoader(lowerCAmelCase__ , batch_size=512 , num_workers=8 , shuffle=lowerCAmelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ = [] for batch in dl: UpperCAmelCase_ = batch["input_ids"].ne(lowerCAmelCase__ ).sum(1 ).tolist() UpperCAmelCase_ = batch["labels"].ne(lowerCAmelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase__ , lowerCAmelCase__ ): max_lens.append(max(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: max_lens.extend(lowerCAmelCase__ ) return max_lens UpperCAmelCase_ = get_lens(lowerCAmelCase__ ) UpperCAmelCase_ = SeqaSeqDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , type_path="val" , **lowerCAmelCase__ ) UpperCAmelCase_ = get_lens(lowerCAmelCase__ ) pickle_save(lowerCAmelCase__ , train_ds.len_file ) pickle_save(lowerCAmelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCamelCase = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ lowerCamelCase = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ lowerCamelCase = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowercase__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Union[str, Any]=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = (UnCLIPScheduler,) def lowercase__ ( self : Any , **_UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_UpperCAmelCase ) return config def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(variance_type="fixed_small_log" ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(variance_type="learned_range" ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.001_0011 < 1e-5 def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: UpperCAmelCase_ = None else: UpperCAmelCase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' pass def lowercase__ ( self : int ) -> Dict: '''simple docstring''' pass
705
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
0
"""simple docstring""" lowerCamelCase = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) lowerCamelCase = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = from_type.lower().strip("s" ) UpperCAmelCase_ = to_type.lower().strip("s" ) UpperCAmelCase_ = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) if from_sanitized not in METRIC_CONVERSION: UpperCAmelCase_ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) if to_sanitized not in METRIC_CONVERSION: UpperCAmelCase_ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) UpperCAmelCase_ = METRIC_CONVERSION[from_sanitized] UpperCAmelCase_ = METRIC_CONVERSION[to_sanitized] UpperCAmelCase_ = 1 if from_exponent > to_exponent: UpperCAmelCase_ = from_exponent - to_exponent else: UpperCAmelCase_ = -(to_exponent - from_exponent) return value * pow(10 , lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
706
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCAmelCase__ , n - 1 , lowerCAmelCase__ ) * a) % mod else: UpperCAmelCase_ = binary_exponentiation(lowerCAmelCase__ , n / 2 , lowerCAmelCase__ ) return (b * b) % mod # a prime number lowerCamelCase = 701 lowerCamelCase = 1_000_000_000 lowerCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
707
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
708
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 384 UpperCAmelCase_ = 7 if "tiny" in model_name: UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 6, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif "small" in model_name: UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif "base" in model_name: UpperCAmelCase_ = 128 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (4, 8, 16, 32) UpperCAmelCase_ = 12 UpperCAmelCase_ = 512 elif "large" in model_name: UpperCAmelCase_ = 192 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (6, 12, 24, 48) UpperCAmelCase_ = 12 UpperCAmelCase_ = 768 # set label information UpperCAmelCase_ = 150 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "ade20k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = SwinConfig( embed_dim=lowerCAmelCase__ , depths=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , window_size=lowerCAmelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) UpperCAmelCase_ = UperNetConfig( backbone_config=lowerCAmelCase__ , auxiliary_in_channels=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = x.shape UpperCAmelCase_ = x.reshape(lowerCAmelCase__ , 4 , in_channel // 4 ) UpperCAmelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) return x def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = x.shape UpperCAmelCase_ = x.reshape(lowerCAmelCase__ , in_channel // 4 , 4 ) UpperCAmelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) return x def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = x.shape[0] UpperCAmelCase_ = x.reshape(4 , in_channel // 4 ) UpperCAmelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCAmelCase__ ) return x def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = x.shape[0] UpperCAmelCase_ = x.reshape(in_channel // 4 , 4 ) UpperCAmelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCAmelCase__ ) return x def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } UpperCAmelCase_ = model_name_to_url[model_name] UpperCAmelCase_ = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="cpu" , file_name=lowerCAmelCase__ )[ "state_dict" ] for name, param in state_dict.items(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ = get_upernet_config(lowerCAmelCase__ ) UpperCAmelCase_ = UperNetForSemanticSegmentation(lowerCAmelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) if "bn" in key: UpperCAmelCase_ = key.replace("bn" , "batch_norm" ) UpperCAmelCase_ = val # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: UpperCAmelCase_ = reverse_correct_unfold_reduction_order(lowerCAmelCase__ ) if "norm" in key: UpperCAmelCase_ = reverse_correct_unfold_norm_order(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) # verify on image UpperCAmelCase_ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) UpperCAmelCase_ = SegformerImageProcessor() UpperCAmelCase_ = processor(lowerCAmelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": UpperCAmelCase_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": UpperCAmelCase_ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": UpperCAmelCase_ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": UpperCAmelCase_ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F"upernet-swin-{size}" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
709
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } UpperCAmelCase_ , UpperCAmelCase_ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase_ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) assert base_extractor.is_extractable(lowerCAmelCase__ ) UpperCAmelCase_ = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase_ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase_ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase_ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } UpperCAmelCase_ = input_paths[compression_format] if input_path is None: UpperCAmelCase_ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_ = Extractor.infer_extractor_format(lowerCAmelCase__ ) assert extractor_format is not None UpperCAmelCase_ = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase_ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase_ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase_ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): import tarfile UpperCAmelCase_ = tmp_path / "data_dot_dot" directory.mkdir() UpperCAmelCase_ = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(lowerCAmelCase__ , "w" ) as f: f.add(lowerCAmelCase__ , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def a__ ( lowerCAmelCase__ ): import tarfile UpperCAmelCase_ = tmp_path / "data_sym_link" directory.mkdir() UpperCAmelCase_ = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=lowerCAmelCase__ ) with tarfile.TarFile(lowerCAmelCase__ , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } UpperCAmelCase_ = insecure_tar_files[insecure_tar_file] UpperCAmelCase_ = tmp_path / "extracted" TarExtractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a__ ( lowerCAmelCase__ ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCAmelCase_ = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase_ = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(lowerCAmelCase__ ) assert zipfile.is_zipfile(str(lowerCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCAmelCase__ ) # but we're right
710
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
712
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
0
"""simple docstring""" from math import pow def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase_ = int(pow(lowerCAmelCase__ , lowerCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase_ , UpperCAmelCase_ = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase_ , UpperCAmelCase_ = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) return current_sum, solutions_count def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(lowerCAmelCase__ , lowerCAmelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MgpstrTokenizer UpperCamelCase = False UpperCamelCase = {} UpperCamelCase = False def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase_ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on UpperCAmelCase_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def lowercase__ ( self : Tuple , **_UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase__ ( self : str , _UpperCAmelCase : str ) -> str: '''simple docstring''' UpperCAmelCase_ = "tester" UpperCAmelCase_ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) UpperCAmelCase_ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ , UpperCAmelCase_ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) UpperCAmelCase_ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(" " , "" ) , _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass
715
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowerCamelCase = """__DUMMY_TRANSFORMERS_USER__""" lowerCamelCase = """Dummy User""" lowerCamelCase = """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""" lowerCamelCase = """https://hub-ci.huggingface.co""" lowerCamelCase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" lowerCamelCase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" lowerCamelCase = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def a__ ( lowerCAmelCase__ ): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ ): monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCAmelCase__ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ ): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): HfFolder.save_token(lowerCAmelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def a__ ( ): return HfApi(endpoint=lowerCAmelCase__ ) @pytest.fixture(scope="session" ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase__ ) @pytest.fixture def a__ ( lowerCAmelCase__ ): def _cleanup_repo(lowerCAmelCase__ ): hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def a__ ( lowerCAmelCase__ ): @contextmanager def _temporary_repo(lowerCAmelCase__ ): try: yield repo_id finally: cleanup_repo(lowerCAmelCase__ ) return _temporary_repo @pytest.fixture(scope="session" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""repo_txt_data-{int(time.time() * 10e3 )}""" UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__ ) hf_api.upload_file( token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo="data/text_data.txt" , repo_id=lowerCAmelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__ ) hf_api.upload_file( token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" UpperCAmelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__ ) hf_api.upload_file( token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__ ) , path_in_repo="data.zip" , repo_id=lowerCAmelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return hf_private_dataset_repo_zipped_img_data_
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
"""simple docstring""" import requests from bsa import BeautifulSoup def a__ ( lowerCAmelCase__ = "https://www.worldometers.info/coronavirus" ) -> Optional[Any]: UpperCAmelCase_ = BeautifulSoup(requests.get(lowerCAmelCase__ ).text , "html.parser" ) UpperCAmelCase_ = soup.findAll("h1" ) UpperCAmelCase_ = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCAmelCase__ , lowerCAmelCase__ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
718
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import os from math import logaa def a__ ( lowerCAmelCase__ = "base_exp.txt" ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = list(map(lowerCAmelCase__ , line.split("," ) ) ) if x * logaa(lowerCAmelCase__ ) > largest: UpperCAmelCase_ = x * logaa(lowerCAmelCase__ ) UpperCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
719
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''xlm-roberta-xl''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=250880 , _UpperCAmelCase : int=2560 , _UpperCAmelCase : Optional[Any]=36 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]=10240 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=514 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Tuple=1e-05 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]="absolute" , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Tuple , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) UpperCAmelCase_ = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )["module"] # Load the entity vocab file UpperCAmelCase_ = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] UpperCAmelCase_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCAmelCase_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase_ = AddedToken("<ent>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase_ = AddedToken("<ent2>" , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json" ) , "r" ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) UpperCAmelCase_ = "MLukeTokenizer" with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(["@"] )[0] UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(["#"] )[0] UpperCAmelCase_ = state_dict["embeddings.word_embeddings.weight"] UpperCAmelCase_ = word_emb[ent_init_index].unsqueeze(0 ) UpperCAmelCase_ = word_emb[enta_init_index].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCAmelCase_ = state_dict[bias_name] UpperCAmelCase_ = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCAmelCase_ = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase_ = f"""encoder.layer.{layer_index}.attention.self.""" UpperCAmelCase_ = state_dict[prefix + matrix_name] UpperCAmelCase_ = state_dict[prefix + matrix_name] UpperCAmelCase_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase_ = state_dict["entity_embeddings.entity_embeddings.weight"] UpperCAmelCase_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCAmelCase_ = state_dict["entity_predictions.bias"] UpperCAmelCase_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) UpperCAmelCase_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCAmelCase_ = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): UpperCAmelCase_ = state_dict[key] else: UpperCAmelCase_ = state_dict[key] UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCAmelCase_ = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task="entity_classification" ) UpperCAmelCase_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." UpperCAmelCase_ = (0, 9) UpperCAmelCase_ = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase_ = torch.Size((1, 33, 768) ) UpperCAmelCase_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase_ = torch.Size((1, 1, 768) ) UpperCAmelCase_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCAmelCase_ = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = "Tokyo is the capital of <mask>." UpperCAmelCase_ = (24, 30) UpperCAmelCase_ = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) UpperCAmelCase_ = encoding["input_ids"][0].tolist() UpperCAmelCase_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) UpperCAmelCase_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.entity_logits[0][0].argmax().item() UpperCAmelCase_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = ["[MASK]", "[PAD]", "[UNK]"] UpperCAmelCase_ = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] UpperCAmelCase_ = {} for entry in data: UpperCAmelCase_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCAmelCase_ = entity_id break UpperCAmelCase_ = f"""{language}:{entity_name}""" UpperCAmelCase_ = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
721
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''funnel''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Optional[int] , _UpperCAmelCase : int=30522 , _UpperCAmelCase : Tuple=[4, 4, 4] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Optional[int]=3072 , _UpperCAmelCase : Dict="gelu_new" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=1e-9 , _UpperCAmelCase : Tuple="mean" , _UpperCAmelCase : Dict="relative_shift" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = block_sizes UpperCAmelCase_ = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." UpperCAmelCase_ = num_decoder_layers UpperCAmelCase_ = d_model UpperCAmelCase_ = n_head UpperCAmelCase_ = d_head UpperCAmelCase_ = d_inner UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_std UpperCAmelCase_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" UpperCAmelCase_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" UpperCAmelCase_ = attention_type UpperCAmelCase_ = separate_cls UpperCAmelCase_ = truncate_seq UpperCAmelCase_ = pool_q_only super().__init__(**_UpperCAmelCase ) @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowercase__ : def __init__( self : Dict , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self : str , _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' return self.key < other.key def __repr__( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.id def lowercase__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' self.neighbors.append(_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = weight def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(lowerCAmelCase__ ) q.remove(lowerCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(lowerCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(lowerCAmelCase__ ) hq.heapify(lowerCAmelCase__ ) while h: UpperCAmelCase_ = hq.heappop(lowerCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(lowerCAmelCase__ ) for i in range(1 , len(lowerCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
0
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = {"text": "string"} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = {"text": "string"} UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = text_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [text_path] UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = {"text": "string"} UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=("train",) ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: UpperCAmelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase_ = {"text": "string"} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = TextDatasetReader({"train": text_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if split: UpperCAmelCase_ = {split: text_path} else: UpperCAmelCase_ = "train" UpperCAmelCase_ = {"train": text_path, "test": text_path} UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = {"text": "string"} UpperCAmelCase_ = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
702
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if height >= 1: move_tower(height - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) move_disk(lowerCAmelCase__ , lowerCAmelCase__ ) move_tower(height - 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): print("moving disk from" , lowerCAmelCase__ , "to" , lowerCAmelCase__ ) def a__ ( ): UpperCAmelCase_ = int(input("Height of hanoi: " ).strip() ) move_tower(lowerCAmelCase__ , "A" , "B" , "C" ) if __name__ == "__main__": main()
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCAmelCase__ ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase_ = 0 print(lowerCAmelCase__ , end="," ) # Consider rest of the activities for j in range(lowerCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase__ , end="," ) UpperCAmelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = [1, 3, 0, 5, 8, 5] lowerCamelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowerCamelCase = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( ): UpperCAmelCase_ = "https://pypi.org/pypi/diffusers/json" UpperCAmelCase_ = json.loads(request.urlopen(lowerCAmelCase__ ).read() )["releases"].keys() return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : version.Version(lowerCAmelCase__ ) ) def a__ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = Path(lowerCAmelCase__ ) / "__init__.py" if not init_path.exists(): init_path.touch() def a__ ( lowerCAmelCase__ ): init_hf_modules() UpperCAmelCase_ = Path(lowerCAmelCase__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def a__ ( lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import .xxx` UpperCAmelCase_ = re.findall("^\s*import\s+\.(\S+)\s*$" , lowerCAmelCase__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , lowerCAmelCase__ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = False UpperCAmelCase_ = [module_file] UpperCAmelCase_ = [] # Let's recurse through all relative imports while not no_change: UpperCAmelCase_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase__ ) ) UpperCAmelCase_ = Path(lowerCAmelCase__ ).parent UpperCAmelCase_ = [str(module_path / m ) for m in new_imports] UpperCAmelCase_ = [f for f in new_import_files if f not in all_relative_imports] UpperCAmelCase_ = [f"""{f}.py""" for f in new_import_files] UpperCAmelCase_ = len(lowerCAmelCase__ ) == 0 all_relative_imports.extend(lowerCAmelCase__ ) return all_relative_imports def a__ ( lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.read() # Imports of the form `import xxx` UpperCAmelCase_ = re.findall("^\s*import\s+(\S+)\s*$" , lowerCAmelCase__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , lowerCAmelCase__ , flags=re.MULTILINE ) # Only keep the top-level module UpperCAmelCase_ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all UpperCAmelCase_ = list(set(lowerCAmelCase__ ) ) UpperCAmelCase_ = [] for imp in imports: try: importlib.import_module(lowerCAmelCase__ ) except ImportError: missing_packages.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"""{', '.join(lowerCAmelCase__ )}. Run `pip install {' '.join(lowerCAmelCase__ )}`""" ) return get_relative_imports(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = module_path.replace(os.path.sep , "." ) UpperCAmelCase_ = importlib.import_module(lowerCAmelCase__ ) if class_name is None: return find_pipeline_class(lowerCAmelCase__ ) return getattr(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): from ..pipelines import DiffusionPipeline UpperCAmelCase_ = dict(inspect.getmembers(lowerCAmelCase__ , inspect.isclass ) ) UpperCAmelCase_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCAmelCase__ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) UpperCAmelCase_ = cls return pipeline_class def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ): UpperCAmelCase_ = str(lowerCAmelCase__ ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if os.path.isfile(lowerCAmelCase__ ): UpperCAmelCase_ = module_file_or_url UpperCAmelCase_ = "local" elif pretrained_model_name_or_path.count("/" ) == 0: UpperCAmelCase_ = get_diffusers_versions() # cut ".dev0" UpperCAmelCase_ = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: UpperCAmelCase_ = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: UpperCAmelCase_ = f"""v{revision}""" elif revision == "main": UpperCAmelCase_ = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub UpperCAmelCase_ = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase__ , pipeline=lowerCAmelCase__ ) try: UpperCAmelCase_ = cached_download( lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , ) UpperCAmelCase_ = "git" UpperCAmelCase_ = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached UpperCAmelCase_ = hf_hub_download( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , ) UpperCAmelCase_ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment UpperCAmelCase_ = check_imports(lowerCAmelCase__ ) # Now we move the module inside our cached dynamic modules. UpperCAmelCase_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase__ ) UpperCAmelCase_ = Path(lowerCAmelCase__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase__ , submodule_path / module_file ) for module_needed in modules_needed: UpperCAmelCase_ = f"""{module_needed}.py""" shutil.copy(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = use_auth_token elif use_auth_token is True: UpperCAmelCase_ = HfFolder.get_token() else: UpperCAmelCase_ = None UpperCAmelCase_ = model_info(lowerCAmelCase__ , revision=lowerCAmelCase__ , token=lowerCAmelCase__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. UpperCAmelCase_ = submodule_path / commit_hash UpperCAmelCase_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase__ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase__ , f"""{module_needed}.py""" , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): UpperCAmelCase_ = get_cached_module_file( lowerCAmelCase__ , lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , resume_download=lowerCAmelCase__ , proxies=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , local_files_only=lowerCAmelCase__ , ) return get_class_in_module(lowerCAmelCase__ , final_module.replace(".py" , "" ) )
705
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase = 16 lowerCamelCase = 32 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 , lowerCAmelCase__ = "bert-base-cased" ): UpperCAmelCase_ = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): model.eval() UpperCAmelCase_ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase_ = metric.compute() return eval_metric["accuracy"] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # Initialize accelerator UpperCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config["num_epochs"] ) UpperCAmelCase_ = int(config["seed"] ) UpperCAmelCase_ = int(config["batch_size"] ) UpperCAmelCase_ = args.model_name_or_path set_seed(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer UpperCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCAmelCase_ = 1 UpperCAmelCase_ = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: UpperCAmelCase_ = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ = 0 UpperCAmelCase_ = evaluate.load("glue" , "mrpc" ) UpperCAmelCase_ = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ = args.resume_from_checkpoint.split("epoch_" )[1] UpperCAmelCase_ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ = int(lowerCAmelCase__ ) + 1 UpperCAmelCase_ = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.print("resumed checkpoint performance:" , lowerCAmelCase__ ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , "r" ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ = model(**lowerCAmelCase__ ) UpperCAmelCase_ = outputs.loss UpperCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ = f"""epoch_{epoch}""" UpperCAmelCase_ = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) UpperCAmelCase_ = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = accuracy UpperCAmelCase_ = lr_scheduler.get_lr()[0] UpperCAmelCase_ = optimizer.param_groups[0]["lr"] UpperCAmelCase_ = epoch UpperCAmelCase_ = overall_step accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=lowerCAmelCase__ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCAmelCase__ , ) parser.add_argument( "--output_dir" , type=lowerCAmelCase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=lowerCAmelCase__ , default=2 , help="Number of train epochs." , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
706
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = (1 - _cos) / 2 UpperCAmelCase_ = 1 - _cos UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = (1 + _cos) / 2 UpperCAmelCase_ = -1 - _cos UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = _sin / 2 UpperCAmelCase_ = 0 UpperCAmelCase_ = -ba UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) , ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 10 ** (gain_db / 40) UpperCAmelCase_ = 1 + alpha * big_a UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha * big_a UpperCAmelCase_ = 1 + alpha / big_a UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha / big_a UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) , ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 10 ** (gain_db / 40) UpperCAmelCase_ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ = 2 * sqrt(lowerCAmelCase__ ) * alpha UpperCAmelCase_ = big_a * (pmc + aaa) UpperCAmelCase_ = 2 * big_a * mpc UpperCAmelCase_ = big_a * (pmc - aaa) UpperCAmelCase_ = ppmc + aaa UpperCAmelCase_ = -2 * pmpc UpperCAmelCase_ = ppmc - aaa UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) , ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 10 ** (gain_db / 40) UpperCAmelCase_ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ = 2 * sqrt(lowerCAmelCase__ ) * alpha UpperCAmelCase_ = big_a * (ppmc + aaa) UpperCAmelCase_ = -2 * big_a * pmpc UpperCAmelCase_ = big_a * (ppmc - aaa) UpperCAmelCase_ = pmc + aaa UpperCAmelCase_ = 2 * mpc UpperCAmelCase_ = pmc - aaa UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
707
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
708
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = '''text''' @property def lowercase__ ( self : Any ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
709
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowercase__ ( self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
710
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCamelCase = """.""" if __name__ == "__main__": lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") lowerCamelCase = [] lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: lowerCamelCase = line.strip() lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
711
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
from manim import * class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ = [mem.copy() for i in range(6 )] UpperCAmelCase_ = [mem.copy() for i in range(6 )] UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) UpperCAmelCase_ = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) UpperCAmelCase_ = Text("CPU" , font_size=24 ) UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) UpperCAmelCase_ = [mem.copy() for i in range(4 )] UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) UpperCAmelCase_ = Text("GPU" , font_size=24 ) UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) UpperCAmelCase_ = [mem.copy() for i in range(6 )] UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) UpperCAmelCase_ = Text("Model" , font_size=24 ) UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) UpperCAmelCase_ = [] for i, rect in enumerate(_UpperCAmelCase ): rect.set_stroke(_UpperCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_UpperCAmelCase , buff=0.0 ) self.add(_UpperCAmelCase ) cpu_targs.append(_UpperCAmelCase ) UpperCAmelCase_ = [mem.copy() for i in range(6 )] UpperCAmelCase_ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) UpperCAmelCase_ = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase_ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , aligned_edge=_UpperCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase_ = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) , Write(_UpperCAmelCase ) ) self.play(Write(_UpperCAmelCase , run_time=1 ) , Create(_UpperCAmelCase , run_time=1 ) ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] for i, rect in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = fill.copy().set_fill(_UpperCAmelCase , opacity=0.7 ) target.move_to(_UpperCAmelCase ) first_animations.append(GrowFromCenter(_UpperCAmelCase , run_time=1 ) ) UpperCAmelCase_ = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_UpperCAmelCase , run_time=1.5 ) ) self.play(*_UpperCAmelCase ) self.play(*_UpperCAmelCase ) self.wait()
712
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "depth_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=13 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=1024 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : int="relu6" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Tuple=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = tf_padding UpperCAmelCase_ = int(last_hidden_size * depth_multiplier ) UpperCAmelCase_ = output_stride UpperCAmelCase_ = hidden_act UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileNetVaModelTester(self ) UpperCAmelCase_ = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def lowercase__ ( self : int ) -> str: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 26 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
713
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
0
"""simple docstring""" lowerCamelCase = """Input must be a string of 8 numbers plus letter""" lowerCamelCase = """TRWAGMYFPDXBNJZSQVHLCKE""" def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""Expected string as input, found {type(lowerCAmelCase__ ).__name__}""" raise TypeError(lowerCAmelCase__ ) UpperCAmelCase_ = spanish_id.replace("-" , "" ).upper() if len(lowerCAmelCase__ ) != 9: raise ValueError(lowerCAmelCase__ ) try: UpperCAmelCase_ = int(spanish_id_clean[0:8] ) UpperCAmelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCAmelCase__ ) from ex if letter.isdigit(): raise ValueError(lowerCAmelCase__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''gpt_neox''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=50432 , _UpperCAmelCase : Any=6144 , _UpperCAmelCase : Tuple=44 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Dict=24576 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Tuple=0.25 , _UpperCAmelCase : Union[str, Any]=10000 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Any=1e-5 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = rotary_pct UpperCAmelCase_ = rotary_emb_base UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = classifier_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = tie_word_embeddings UpperCAmelCase_ = use_parallel_residual UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , _UpperCAmelCase ) UpperCAmelCase_ = self.rope_scaling.get("factor" , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def a__ ( lowerCAmelCase__=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE ) ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = None UpperCamelCase = None def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = dataset_module_factory(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) UpperCAmelCase_ = builder_cls( cache_dir=_UpperCAmelCase , config_name=_UpperCAmelCase , hash=dataset_module.hash , ) UpperCAmelCase_ = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_UpperCAmelCase ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase_ = cached_path(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) self.assertTrue(os.path.exists(_UpperCAmelCase ) ) @pytest.mark.integration def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" UpperCAmelCase_ = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase__ ) UpperCAmelCase_ = import_main_class(dataset_module.module_path ) UpperCAmelCase_ = builder_cls( cache_dir=lowerCAmelCase__ , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ = None builder_instance.download_and_prepare() UpperCAmelCase_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase__ ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase__ ) UpperCAmelCase_ = builder_cls( cache_dir=lowerCAmelCase__ , config_name="20220301.frr" , hash=dataset_module.hash , ) UpperCAmelCase_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert "train" in ds assert isinstance(ds["train"] , lowerCAmelCase__ ) assert next(iter(ds["train"] ) )
718
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if n_term == "": return [] UpperCAmelCase_ = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f"""1/{temp + 1}""" if series else "1" ) return series if __name__ == "__main__": lowerCamelCase = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
719
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = False UpperCamelCase = 3.0 class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase_ = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase = torch.nn.Linear(100, 200) lowerCamelCase = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase = """""" lowerCamelCase = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
721
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A__ ( __A , __A ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _lowerCamelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _lowerCamelCase : List[str] = torch.permute(__A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__A ): # linear layer _lowerCamelCase : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) _lowerCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCamelCase : Dict = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def A__ ( __A , __A , __A ): '''simple docstring''' if "metadata" in layer: _lowerCamelCase : List[str] = layer.split("""metadata""" ) _lowerCamelCase : List[str] = """""".join(split_layer[0] )[:-1] _lowerCamelCase : Tuple = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _lowerCamelCase : Union[str, Any] = layer.split("""kvstore""" ) _lowerCamelCase : Any = """""".join(split_layer[0] )[:-1] _lowerCamelCase : List[Any] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _lowerCamelCase : Any = layer.split("""/""" ) _lowerCamelCase : Dict = """/""".join(split_layer[:-1] ) _lowerCamelCase : List[str] = (split_layer[-1],) if "kvstore/path" in layer: _lowerCamelCase : str = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: _lowerCamelCase : Optional[int] = """file""" else: _lowerCamelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = rename_keys(__A ) _lowerCamelCase : Optional[Any] = {} for k, v in current_block.items(): _lowerCamelCase : Optional[Any] = v _lowerCamelCase : Dict = new_current_block torch.save(__A , __A ) def A__ ( __A , __A , __A , __A , __A = WEIGHTS_NAME ): '''simple docstring''' _lowerCamelCase : List[str] = convert_file_size_to_int(__A ) _lowerCamelCase : List[str] = [] _lowerCamelCase : List[str] = {} _lowerCamelCase : Any = 0 _lowerCamelCase : Tuple = 0 os.makedirs(__A , exist_ok=__A ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _lowerCamelCase : Any = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _lowerCamelCase : Any = flatten_dict(__A , sep="""/""" ) _lowerCamelCase : int = {} for layer in checkpoint_info.keys(): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = get_key_and_tensorstore_dict( __A , __A , __A ) if curr_real_layer_name in all_layers: _lowerCamelCase : Tuple = content else: _lowerCamelCase : Tuple = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _lowerCamelCase : Dict = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _lowerCamelCase : Dict = torch.tensor(__A ) _lowerCamelCase : Optional[Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _lowerCamelCase , _lowerCamelCase : Optional[int] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __A ) _lowerCamelCase : List[Any] = """/""".join(__A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _lowerCamelCase : List[str] = os.path.join( __A , weights_name.replace(""".bin""" , F"""-{len(__A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) del current_block _lowerCamelCase : Union[str, Any] = {} _lowerCamelCase : Dict = 0 _lowerCamelCase : List[Any] = raw_weights.to(getattr(__A , __A ) ) current_block_size += weight_size total_size += weight_size # Add the last block _lowerCamelCase : Any = os.path.join(__A , weights_name.replace(""".bin""" , F"""-{len(__A )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__A , __A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _lowerCamelCase : int = {} _lowerCamelCase : List[str] = {} for idx, shard in enumerate(__A ): _lowerCamelCase : Optional[Any] = weights_name.replace( """.bin""" , F"""-{idx+1:05d}-of-{len(__A ):05d}.bin""" ) # len(sharded_state_dicts):05d} _lowerCamelCase : Tuple = os.path.join(__A , weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__A , os.path.join(__A , __A ) ) _lowerCamelCase : Optional[Any] = shard for key in shard: _lowerCamelCase : List[str] = shard_file # Add the metadata _lowerCamelCase : List[str] = {"""total_size""": total_size} _lowerCamelCase : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__A , __A ) , """w""" , encoding="""utf-8""" ) as f: _lowerCamelCase : Optional[int] = json.dumps(__A , indent=2 , sort_keys=__A ) + """\n""" f.write(__A ) return metadata, index if __name__ == "__main__": lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) lowerCAmelCase : str =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A__ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _lowerCamelCase : Optional[int] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _lowerCamelCase : Union[str, Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _lowerCamelCase : List[str] = TaTokenizer.from_pretrained("""t5-small""" ) _lowerCamelCase : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _lowerCamelCase : Tuple = tokenizer(__A , return_tensors="""pt""" ).input_ids _lowerCamelCase : str = model.generate(__A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
15
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
1