code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
lowerCAmelCase : int =logging.getLogger(__name__)
@dataclass
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = field(
default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} )
_snake_case = field(default=__lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} )
_snake_case = field(
default=__lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
_snake_case = field(default=__lowerCAmelCase , metadata={'help': 'whether to use adafactor'} )
_snake_case = field(
default=__lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} )
_snake_case = field(
default=__lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} )
_snake_case = field(default=__lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} )
_snake_case = field(
default=__lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} )
_snake_case = field(
default='linear' , metadata={'help': F'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 15 | def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
if n == 0:
return 0
_lowerCamelCase : Tuple = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
_lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def A__ ( __A , __A , __A ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowerCamelCase : int = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Optional[Any] = max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
_lowerCamelCase : Optional[Any] = max_revenue
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_lowerCamelCase : Any = 0
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max_rev[i]
for j in range(1 , i + 1 ):
_lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] )
_lowerCamelCase : int = max_revenue_i
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
if n < 0:
_lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__A )
if n > len(__A ):
_lowerCamelCase : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(__A )}"""
)
raise ValueError(__A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : str = [6, 10, 12, 15, 20, 23]
_lowerCamelCase : List[str] = len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowerCamelCase : Tuple = 36
_lowerCamelCase : Any = top_down_cut_rod(__A , __A )
_lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A )
_lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 | 1 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = StableUnCLIPPipeline
_snake_case = TEXT_TO_IMAGE_PARAMS
_snake_case = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS
_snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 32
_lowerCamelCase : Optional[int] = embedder_hidden_size
# prior components
torch.manual_seed(0)
_lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
torch.manual_seed(0)
_lowerCamelCase : str = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCamelCase , projection_dim=_UpperCamelCase , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ))
torch.manual_seed(0)
_lowerCamelCase : Optional[int] = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCamelCase , num_layers=1 , )
torch.manual_seed(0)
_lowerCamelCase : Optional[Any] = DDPMScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=_UpperCamelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , )
# regular denoising components
torch.manual_seed(0)
_lowerCamelCase : Optional[int] = StableUnCLIPImageNormalizer(embedding_dim=_UpperCamelCase)
_lowerCamelCase : Dict = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""")
torch.manual_seed(0)
_lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
torch.manual_seed(0)
_lowerCamelCase : Optional[int] = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ))
torch.manual_seed(0)
_lowerCamelCase : Optional[int] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCamelCase , layers_per_block=1 , upcast_attention=_UpperCamelCase , use_linear_projection=_UpperCamelCase , )
torch.manual_seed(0)
_lowerCamelCase : Tuple = DDIMScheduler(
beta_schedule="""scaled_linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="""v_prediction""" , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , )
torch.manual_seed(0)
_lowerCamelCase : str = AutoencoderKL()
_lowerCamelCase : str = {
# prior components
"""prior_tokenizer""": prior_tokenizer,
"""prior_text_encoder""": prior_text_encoder,
"""prior""": prior,
"""prior_scheduler""": prior_scheduler,
# image noising components
"""image_normalizer""": image_normalizer,
"""image_noising_scheduler""": image_noising_scheduler,
# regular denoising components
"""tokenizer""": tokenizer,
"""text_encoder""": text_encoder,
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
}
return components
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Dict=0) ->Dict:
"""simple docstring"""
if str(_UpperCamelCase).startswith("""mps"""):
_lowerCamelCase : Any = torch.manual_seed(_UpperCamelCase)
else:
_lowerCamelCase : Union[str, Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase)
_lowerCamelCase : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""prior_num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = torch_device == """cpu"""
self._test_attention_slicing_forward_pass(test_max_difference=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
"""simple docstring"""
_lowerCamelCase : List[str] = torch_device in ["""cpu""", """mps"""]
self._test_inference_batch_single_identical(test_max_difference=_UpperCamelCase)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""")
_lowerCamelCase : int = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa)
pipe.to(_UpperCamelCase)
pipe.set_progress_bar_config(disable=_UpperCamelCase)
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_lowerCamelCase : List[str] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Dict = pipe("""anime turle""" , generator=_UpperCamelCase , output_type="""np""")
_lowerCamelCase : Dict = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str) ->int:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_lowerCamelCase : int = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa)
_lowerCamelCase : Optional[Any] = pipe.to(_UpperCamelCase)
pipe.set_progress_bar_config(disable=_UpperCamelCase)
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_lowerCamelCase : int = pipe(
"""anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Optional[int] = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 15 | from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = key
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Any = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Optional[Any] = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 15 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
"""simple docstring"""
torch.manual_seed(0)
_lowerCamelCase : List[str] = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , )
return model
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0)
_lowerCamelCase : Tuple = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , )
return model
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any:
"""simple docstring"""
torch.manual_seed(0)
_lowerCamelCase : Optional[Any] = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , )
_lowerCamelCase : Tuple = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , )
return vqvae, unet
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
_lowerCamelCase : Optional[int] = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
_lowerCamelCase : int = DDPMScheduler()
_lowerCamelCase : str = AudioDiffusionPipeline(vqvae=_UpperCamelCase , unet=self.dummy_unet , mel=_UpperCamelCase , scheduler=_UpperCamelCase)
_lowerCamelCase : Optional[int] = pipe.to(_UpperCamelCase)
pipe.set_progress_bar_config(disable=_UpperCamelCase)
_lowerCamelCase : Any = torch.Generator(device=_UpperCamelCase).manual_seed(42)
_lowerCamelCase : Union[str, Any] = pipe(generator=_UpperCamelCase , steps=4)
_lowerCamelCase : List[str] = output.audios[0]
_lowerCamelCase : Tuple = output.images[0]
_lowerCamelCase : Optional[int] = torch.Generator(device=_UpperCamelCase).manual_seed(42)
_lowerCamelCase : List[str] = pipe(generator=_UpperCamelCase , steps=4 , return_dict=_UpperCamelCase)
_lowerCamelCase : Optional[int] = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
_lowerCamelCase : Any = np.frombuffer(image.tobytes() , dtype="""uint8""")[:10]
_lowerCamelCase : str = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""")[:10]
_lowerCamelCase : int = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0
_lowerCamelCase : List[Any] = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
_lowerCamelCase : str = DDIMScheduler()
_lowerCamelCase : Any = self.dummy_vqvae_and_unet
_lowerCamelCase : Optional[Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_UpperCamelCase , scheduler=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = pipe.to(_UpperCamelCase)
pipe.set_progress_bar_config(disable=_UpperCamelCase)
np.random.seed(0)
_lowerCamelCase : List[str] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,))
_lowerCamelCase : Optional[int] = torch.Generator(device=_UpperCamelCase).manual_seed(42)
_lowerCamelCase : List[str] = pipe(raw_audio=_UpperCamelCase , generator=_UpperCamelCase , start_step=5 , steps=10)
_lowerCamelCase : List[Any] = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
_lowerCamelCase : int = np.frombuffer(image.tobytes() , dtype="""uint8""")[:10]
_lowerCamelCase : Optional[Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
_lowerCamelCase : Any = self.dummy_unet_condition
_lowerCamelCase : int = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=_UpperCamelCase , mel=_UpperCamelCase , scheduler=_UpperCamelCase)
_lowerCamelCase : Optional[int] = pipe.to(_UpperCamelCase)
pipe.set_progress_bar_config(disable=_UpperCamelCase)
np.random.seed(0)
_lowerCamelCase : Dict = torch.rand((1, 1, 10))
_lowerCamelCase : List[Any] = pipe(generator=_UpperCamelCase , encoding=_UpperCamelCase)
_lowerCamelCase : Tuple = output.images[0]
_lowerCamelCase : int = np.frombuffer(image.tobytes() , dtype="""uint8""")[:10]
_lowerCamelCase : List[str] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : str) ->Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Dict = torch_device
_lowerCamelCase : Optional[Any] = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""")
_lowerCamelCase : int = pipe.to(_UpperCamelCase)
pipe.set_progress_bar_config(disable=_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.Generator(device=_UpperCamelCase).manual_seed(42)
_lowerCamelCase : Union[str, Any] = pipe(generator=_UpperCamelCase)
_lowerCamelCase : Tuple = output.audios[0]
_lowerCamelCase : List[str] = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
_lowerCamelCase : Dict = np.frombuffer(image.tobytes() , dtype="""uint8""")[:10]
_lowerCamelCase : int = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26])
assert np.abs(image_slice.flatten() - expected_slice).max() == 0
| 15 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
_UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths}
_lowerCamelCase : Any = Text(
cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
if self.streaming:
_lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Any = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
self.builder.download_and_prepare(
download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , )
_lowerCamelCase : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory)
return dataset
| 15 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase : Optional[Any] =16
lowerCAmelCase : Dict =32
def A__ ( __A , __A = 16 ):
'''simple docstring'''
_lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_lowerCamelCase : Optional[int] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__A ):
# max_length=None => use the model max length (it's actually the default)
_lowerCamelCase : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCamelCase : Tuple = datasets.map(
__A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCamelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCamelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCamelCase : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
_lowerCamelCase : int = 8
else:
_lowerCamelCase : Optional[int] = None
return tokenizer.pad(
__A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , )
# Instantiate dataloaders.
_lowerCamelCase : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
_lowerCamelCase : Any = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase : List[Any] =mocked_dataloaders # noqa: F811
def A__ ( __A , __A ):
'''simple docstring'''
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __A ) == "1":
_lowerCamelCase : Any = 2
# New Code #
_lowerCamelCase : Any = int(args.gradient_accumulation_steps )
# Initialize accelerator
_lowerCamelCase : Union[str, Any] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__A )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
"""Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCamelCase : List[str] = config["""lr"""]
_lowerCamelCase : Tuple = int(config["""num_epochs"""] )
_lowerCamelCase : Tuple = int(config["""seed"""] )
_lowerCamelCase : Union[str, Any] = int(config["""batch_size"""] )
_lowerCamelCase : List[str] = evaluate.load("""glue""" , """mrpc""" )
set_seed(__A )
_lowerCamelCase , _lowerCamelCase : str = get_dataloaders(__A , __A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCamelCase : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCamelCase : str = model.to(accelerator.device )
# Instantiate optimizer
_lowerCamelCase : List[str] = AdamW(params=model.parameters() , lr=__A )
# Instantiate scheduler
_lowerCamelCase : Any = get_linear_schedule_with_warmup(
optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = accelerator.prepare(
__A , __A , __A , __A , __A )
# Now we train the model
for epoch in range(__A ):
model.train()
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__A ):
_lowerCamelCase : Dict = model(**__A )
_lowerCamelCase : str = output.loss
accelerator.backward(__A )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCamelCase : Optional[Any] = model(**__A )
_lowerCamelCase : Optional[int] = outputs.logits.argmax(dim=-1 )
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__A , references=__A , )
_lowerCamelCase : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , __A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
# New Code #
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__A , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_lowerCamelCase : Any = parser.parse_args()
_lowerCamelCase : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 15 | lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
def A__ ( __A , __A=False ):
'''simple docstring'''
_lowerCamelCase : List[str] = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("""head""" ):
_lowerCamelCase : List[str] = """segformer.encoder.""" + key
if key.startswith("""backbone""" ):
_lowerCamelCase : List[str] = key.replace("""backbone""" , """segformer.encoder""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_lowerCamelCase : List[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
_lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(__A )-1}""" )
if "norm" in key:
_lowerCamelCase : int = key.replace("""norm""" , """layer_norm""" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_lowerCamelCase : Any = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )]
_lowerCamelCase : int = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(__A )-1}""" )
if "layer_norm1" in key:
_lowerCamelCase : Dict = key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
_lowerCamelCase : str = key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
_lowerCamelCase : Tuple = key[key.find("""block""" ) + len("""block""" )]
_lowerCamelCase : List[str] = key.replace(F"""block{idx}""" , F"""block.{int(__A )-1}""" )
if "attn.q" in key:
_lowerCamelCase : List[Any] = key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
_lowerCamelCase : Union[str, Any] = key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
_lowerCamelCase : int = key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
_lowerCamelCase : int = key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
_lowerCamelCase : Tuple = key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
_lowerCamelCase : Tuple = key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
_lowerCamelCase : List[str] = key.replace("""linear_fuse.conv""" , """linear_fuse""" )
_lowerCamelCase : List[Any] = key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_lowerCamelCase : Any = key[key.find("""linear_c""" ) + len("""linear_c""" )]
_lowerCamelCase : List[str] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(__A )-1}""" )
if key.startswith("""head""" ):
_lowerCamelCase : str = key.replace("""head""" , """classifier""" )
_lowerCamelCase : Optional[int] = value
return new_state_dict
def A__ ( __A , __A ):
'''simple docstring'''
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_lowerCamelCase : Any = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_lowerCamelCase : Union[str, Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_lowerCamelCase : List[str] = kv_weight[
: config.hidden_sizes[i], :
]
_lowerCamelCase : Tuple = kv_bias[: config.hidden_sizes[i]]
_lowerCamelCase : int = kv_weight[
config.hidden_sizes[i] :, :
]
_lowerCamelCase : Dict = kv_bias[
config.hidden_sizes[i] :
]
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_lowerCamelCase : List[str] = Image.open(requests.get(__A , stream=__A ).raw )
return image
@torch.no_grad()
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : str = SegformerConfig()
_lowerCamelCase : Union[str, Any] = False
# set attributes based on model_name
_lowerCamelCase : int = """huggingface/label-files"""
if "segformer" in model_name:
_lowerCamelCase : Optional[int] = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2]
if "ade" in model_name:
_lowerCamelCase : int = 150
_lowerCamelCase : int = """ade20k-id2label.json"""
_lowerCamelCase : Tuple = (1, 150, 128, 128)
elif "city" in model_name:
_lowerCamelCase : Optional[Any] = 19
_lowerCamelCase : Tuple = """cityscapes-id2label.json"""
_lowerCamelCase : Union[str, Any] = (1, 19, 128, 128)
else:
raise ValueError(F"""Model {model_name} not supported""" )
elif "mit" in model_name:
_lowerCamelCase : Tuple = True
_lowerCamelCase : Optional[Any] = model_name[4:6]
_lowerCamelCase : str = 1_000
_lowerCamelCase : Optional[Any] = """imagenet-1k-id2label.json"""
_lowerCamelCase : str = (1, 1_000)
else:
raise ValueError(F"""Model {model_name} not supported""" )
# set config attributes
_lowerCamelCase : str = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) )
_lowerCamelCase : List[str] = {int(__A ): v for k, v in idalabel.items()}
_lowerCamelCase : int = idalabel
_lowerCamelCase : List[Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_lowerCamelCase : int = [64, 128, 320, 512]
_lowerCamelCase : List[str] = 256
elif size == "b2":
_lowerCamelCase : str = [64, 128, 320, 512]
_lowerCamelCase : Optional[Any] = 768
_lowerCamelCase : str = [3, 4, 6, 3]
elif size == "b3":
_lowerCamelCase : Any = [64, 128, 320, 512]
_lowerCamelCase : Any = 768
_lowerCamelCase : Any = [3, 4, 18, 3]
elif size == "b4":
_lowerCamelCase : Tuple = [64, 128, 320, 512]
_lowerCamelCase : List[Any] = 768
_lowerCamelCase : Union[str, Any] = [3, 8, 27, 3]
elif size == "b5":
_lowerCamelCase : Dict = [64, 128, 320, 512]
_lowerCamelCase : Optional[int] = 768
_lowerCamelCase : Dict = [3, 6, 40, 3]
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_lowerCamelCase : List[Any] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=__A , align=__A , do_random_crop=__A )
# prepare image
_lowerCamelCase : Optional[Any] = prepare_img()
_lowerCamelCase : Optional[Any] = image_processor(images=__A , return_tensors="""pt""" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_lowerCamelCase : Tuple = torch.load(__A , map_location=torch.device("""cpu""" ) )
else:
_lowerCamelCase : List[str] = torch.load(__A , map_location=torch.device("""cpu""" ) )["""state_dict"""]
# rename keys
_lowerCamelCase : Any = rename_keys(__A , encoder_only=__A )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(__A , __A )
# create HuggingFace model and load state dict
if encoder_only:
_lowerCamelCase : str = False
_lowerCamelCase : List[str] = SegformerForImageClassification(__A )
else:
_lowerCamelCase : Union[str, Any] = SegformerForSemanticSegmentation(__A )
model.load_state_dict(__A )
model.eval()
# forward pass
_lowerCamelCase : str = model(__A )
_lowerCamelCase : Optional[Any] = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_lowerCamelCase : List[Any] = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_lowerCamelCase : Any = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_lowerCamelCase : Dict = torch.tensor(
[
[
[-1.13_72E01, -1.27_87E01, -1.34_77E01],
[-1.25_36E01, -1.41_94E01, -1.44_09E01],
[-1.32_17E01, -1.48_88E01, -1.53_27E01],
],
[
[-1.47_91E01, -1.71_22E01, -1.82_77E01],
[-1.71_63E01, -1.91_92E01, -1.95_33E01],
[-1.78_97E01, -1.99_91E01, -2.03_15E01],
],
[
[7.67_23E-01, 4.19_21E-01, -7.78_78E-02],
[4.77_72E-01, 9.55_57E-03, -2.80_82E-01],
[3.60_32E-01, -2.48_26E-01, -5.11_68E-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_lowerCamelCase : Tuple = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_lowerCamelCase : str = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_lowerCamelCase : int = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
_lowerCamelCase : Tuple = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , __A , atol=1E-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(__A ).mkdir(exist_ok=__A )
model.save_pretrained(__A )
image_processor.save_pretrained(__A )
if __name__ == "__main__":
lowerCAmelCase : Tuple =argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
lowerCAmelCase : List[Any] =parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 15 | from __future__ import annotations
lowerCAmelCase : int =[]
def A__ ( __A , __A , __A ):
'''simple docstring'''
for i in range(len(__A ) ):
if board[row][i] == 1:
return False
for i in range(len(__A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( __A , __A ):
'''simple docstring'''
if row >= len(__A ):
solution.append(__A )
printboard(__A )
print()
return True
for i in range(len(__A ) ):
if is_safe(__A , __A , __A ):
_lowerCamelCase : int = 1
solve(__A , row + 1 )
_lowerCamelCase : List[str] = 0
return False
def A__ ( __A ):
'''simple docstring'''
for i in range(len(__A ) ):
for j in range(len(__A ) ):
if board[i][j] == 1:
print("""Q""" , end=""" """ )
else:
print(""".""" , end=""" """ )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase : int =8
lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 15 | 1 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
lowerCAmelCase : Tuple ="\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
lowerCAmelCase : List[Any] ="\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n"
lowerCAmelCase : Any ="\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
"""simple docstring"""
if version.parse(scb.__version__) < version.parse("""1.4.12"""):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""")
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence"""),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""),
}) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : int = CHRF.CHAR_ORDER , _UpperCamelCase : int = CHRF.WORD_ORDER , _UpperCamelCase : int = CHRF.BETA , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , ) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = len(references[0])
if any(len(_UpperCamelCase) != references_per_prediction for refs in references):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""")
_lowerCamelCase : str = [[refs[i] for refs in references] for i in range(_UpperCamelCase)]
_lowerCamelCase : List[Any] = CHRF(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = sb_chrf.corpus_score(_UpperCamelCase , _UpperCamelCase)
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 15 | import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCAmelCase : int ={
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A__ ( __A , __A , __A , __A=None ):
'''simple docstring'''
# Initialise PyTorch model
_lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A )
_lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowerCamelCase : int = finetuning_task
_lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowerCamelCase : int = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
_lowerCamelCase : Dict = finetuning_task
_lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A )
else:
_lowerCamelCase : Any = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : Optional[Any] = os.path.join(__A , __A )
_lowerCamelCase : Any = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 15 | 1 |
lowerCAmelCase : str =[
(1000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : str = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
_lowerCamelCase : Optional[int] = 0
_lowerCamelCase : Union[str, Any] = 0
while place < len(__A ):
if (place + 1 < len(__A )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : List[Any] = []
for arabic, roman in ROMAN:
((_lowerCamelCase) , (_lowerCamelCase)) : List[str] = divmod(__A , __A )
result.append(roman * factor )
if number == 0:
break
return "".join(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 0
for ch in input_str:
_lowerCamelCase : Optional[Any] = ord(__A )
_lowerCamelCase : List[str] = pow(2 , __A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
lowerCAmelCase : Tuple =sys.version_info >= (3, 10)
def A__ ( __A=None , __A=None ):
'''simple docstring'''
return field(default_factory=lambda: default , metadata=__A )
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = 42
_snake_case = 42
_snake_case = 42
_snake_case = 42
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = 42
_snake_case = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = False
_snake_case = True
_snake_case = None
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'titi'
_snake_case = 'toto'
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'titi'
_snake_case = 'toto'
_snake_case = 42
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = "toto"
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = BasicEnum(self.foo)
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = "toto"
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = MixedTypeEnum(self.foo)
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = None
_snake_case = field(default=__lowerCAmelCase , metadata={'help': 'help message'} )
_snake_case = None
_snake_case = list_field(default=[] )
_snake_case = list_field(default=[] )
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = list_field(default=[] )
_snake_case = list_field(default=[1, 2, 3] )
_snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
_snake_case = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = field()
_snake_case = field()
_snake_case = field()
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
"""simple docstring"""
_lowerCamelCase : Dict = BasicEnum(self.required_enum)
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = 42
_snake_case = field()
_snake_case = None
_snake_case = field(default='toto' , metadata={'help': 'help message'} )
_snake_case = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = False
_snake_case = True
_snake_case = None
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = None
_snake_case = field(default=__lowerCAmelCase , metadata={'help': 'help message'} )
_snake_case = None
_snake_case = list_field(default=[] )
_snake_case = list_field(default=[] )
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser) ->Tuple:
"""simple docstring"""
self.assertEqual(len(a._actions) , len(b._actions))
for x, y in zip(a._actions , b._actions):
_lowerCamelCase : Optional[Any] = {k: v for k, v in vars(_UpperCamelCase).items() if k != """container"""}
_lowerCamelCase : Any = {k: v for k, v in vars(_UpperCamelCase).items() if k != """container"""}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("""choices""" , _UpperCamelCase) and yy.get("""choices""" , _UpperCamelCase):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["""type"""](_UpperCamelCase) , yy["""type"""](_UpperCamelCase))
del xx["type"], yy["type"]
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : List[Any] = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Tuple = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=_UpperCamelCase , required=_UpperCamelCase)
expected.add_argument("""--bar""" , type=_UpperCamelCase , required=_UpperCamelCase)
expected.add_argument("""--baz""" , type=_UpperCamelCase , required=_UpperCamelCase)
expected.add_argument("""--flag""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""")
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""]
((_lowerCamelCase) , ) : Tuple = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase)
self.assertFalse(example.flag)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Any = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=42 , type=_UpperCamelCase)
expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCamelCase , help="""help message""")
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Tuple = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""")
expected.add_argument("""--baz""" , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs="""?""")
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("""--no_baz""" , action="""store_false""" , default=_UpperCamelCase , dest="""baz""")
expected.add_argument("""--opt""" , type=_UpperCamelCase , default=_UpperCamelCase)
_lowerCamelCase : List[str] = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase)
for dataclass_type in dataclass_types:
_lowerCamelCase : Optional[Any] = HfArgumentParser(_UpperCamelCase)
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = parser.parse_args([])
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase))
_lowerCamelCase : Any = parser.parse_args(["""--foo""", """--no_baz"""])
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase))
_lowerCamelCase : Union[str, Any] = parser.parse_args(["""--foo""", """--baz"""])
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase))
_lowerCamelCase : int = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""])
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase))
_lowerCamelCase : Optional[Any] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""])
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase))
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
_lowerCamelCase : int = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Dict = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42]) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Dict = parser.parse_args([])
self.assertEqual(args.foo , """toto""")
_lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses([])[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto)
_lowerCamelCase : Tuple = parser.parse_args(["""--foo""", """titi"""])
self.assertEqual(args.foo , """titi""")
_lowerCamelCase : int = parser.parse_args_into_dataclasses(["""--foo""", """titi"""])[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi)
_lowerCamelCase : List[str] = parser.parse_args(["""--foo""", """42"""])
self.assertEqual(args.foo , 42)
_lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""])[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo)
def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]:
"""simple docstring"""
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = "toto"
_lowerCamelCase : List[Any] = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Tuple = argparse.ArgumentParser()
expected.add_argument(
"""--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42]) , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Tuple = parser.parse_args([])
self.assertEqual(args.foo , """toto""")
_lowerCamelCase : Any = parser.parse_args(["""--foo""", """titi"""])
self.assertEqual(args.foo , """titi""")
_lowerCamelCase : str = parser.parse_args(["""--foo""", """42"""])
self.assertEqual(args.foo , 42)
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Any = argparse.ArgumentParser()
expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_UpperCamelCase)
expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_UpperCamelCase)
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCamelCase)
expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase)
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = parser.parse_args([])
self.assertEqual(
_UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3]) , )
_lowerCamelCase : Any = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split())
self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7]))
def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , default=_UpperCamelCase , type=_UpperCamelCase)
expected.add_argument("""--bar""" , default=_UpperCamelCase , type=_UpperCamelCase , help="""help message""")
expected.add_argument("""--baz""" , default=_UpperCamelCase , type=_UpperCamelCase)
expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_UpperCamelCase)
expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_UpperCamelCase)
_lowerCamelCase : str = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(_UpperCamelCase)
for dataclass_type in dataclass_types:
_lowerCamelCase : Tuple = HfArgumentParser(_UpperCamelCase)
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = parser.parse_args([])
self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[]))
_lowerCamelCase : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split())
self.assertEqual(_UpperCamelCase , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3]))
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : str = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : str = argparse.ArgumentParser()
expected.add_argument("""--required_list""" , nargs="""+""" , type=_UpperCamelCase , required=_UpperCamelCase)
expected.add_argument("""--required_str""" , type=_UpperCamelCase , required=_UpperCamelCase)
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""]) , choices=["""titi""", """toto"""] , required=_UpperCamelCase , )
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : str = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
expected.add_argument("""--foo""" , type=_UpperCamelCase , required=_UpperCamelCase)
expected.add_argument(
"""--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""]) , choices=["""titi""", """toto"""] , required=_UpperCamelCase , )
expected.add_argument("""--opt""" , type=_UpperCamelCase , default=_UpperCamelCase)
expected.add_argument("""--baz""" , default="""toto""" , type=_UpperCamelCase , help="""help message""")
expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_UpperCamelCase)
self.argparsersEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : List[str] = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : List[Any] = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
_lowerCamelCase : int = parser.parse_dict(_UpperCamelCase)[0]
_lowerCamelCase : List[Any] = BasicExample(**_UpperCamelCase)
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Dict = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Tuple = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
"""extra""": 42,
}
self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
"""simple docstring"""
_lowerCamelCase : str = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : List[str] = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCamelCase : Union[str, Any] = os.path.join(_UpperCamelCase , """temp_json""")
os.mkdir(_UpperCamelCase)
with open(temp_local_path + """.json""" , """w+""") as f:
json.dump(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.json"""))[0]
_lowerCamelCase : Dict = BasicExample(**_UpperCamelCase)
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Tuple = HfArgumentParser(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = {
"""foo""": 12,
"""bar""": 3.1_4,
"""baz""": """42""",
"""flag""": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCamelCase : int = os.path.join(_UpperCamelCase , """temp_yaml""")
os.mkdir(_UpperCamelCase)
with open(temp_local_path + """.yaml""" , """w+""") as f:
yaml.dump(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + """.yaml"""))[0]
_lowerCamelCase : Any = BasicExample(**_UpperCamelCase)
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[int] = HfArgumentParser(_UpperCamelCase)
self.assertIsNotNone(_UpperCamelCase)
| 15 | import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
_lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""")
_lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : str = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""")
_lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : Union[str, Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
| 15 | 1 |
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase : Optional[int] =16
lowerCAmelCase : int =32
def A__ ( __A , __A , __A , __A , __A = 16 ):
'''simple docstring'''
_lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_lowerCamelCase : List[Any] = DatasetDict(
{
"""train""": dataset["""train"""].select(__A ),
"""validation""": dataset["""train"""].select(__A ),
"""test""": dataset["""validation"""],
} )
def tokenize_function(__A ):
# max_length=None => use the model max length (it's actually the default)
_lowerCamelCase : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCamelCase : List[str] = datasets.map(
__A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCamelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCamelCase : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCamelCase : Union[str, Any] = 16
elif accelerator.mixed_precision != "no":
_lowerCamelCase : List[Any] = 8
else:
_lowerCamelCase : Optional[int] = None
return tokenizer.pad(
__A , padding="""longest""" , max_length=__A , pad_to_multiple_of=__A , return_tensors="""pt""" , )
# Instantiate dataloaders.
_lowerCamelCase : Any = DataLoader(
tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
_lowerCamelCase : Union[str, Any] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
_lowerCamelCase : Union[str, Any] = DataLoader(
tokenized_datasets["""test"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
return train_dataloader, eval_dataloader, test_dataloader
def A__ ( __A , __A ):
'''simple docstring'''
# New Code #
_lowerCamelCase : Optional[int] = []
# Download the dataset
_lowerCamelCase : int = load_dataset("""glue""" , """mrpc""" )
# Create our splits
_lowerCamelCase : List[Any] = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
_lowerCamelCase : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCamelCase : str = config["""lr"""]
_lowerCamelCase : List[Any] = int(config["""num_epochs"""] )
_lowerCamelCase : List[str] = int(config["""seed"""] )
_lowerCamelCase : Tuple = int(config["""batch_size"""] )
_lowerCamelCase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
_lowerCamelCase : List[str] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_lowerCamelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE
_lowerCamelCase : str = MAX_GPU_BATCH_SIZE
set_seed(__A )
# New Code #
# Create our folds:
_lowerCamelCase : str = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] )
_lowerCamelCase : Dict = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(__A ):
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = get_fold_dataloaders(
__A , __A , __A , __A , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__A )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCamelCase : List[str] = model.to(accelerator.device )
# Instantiate optimizer
_lowerCamelCase : Any = AdamW(params=model.parameters() , lr=__A )
# Instantiate scheduler
_lowerCamelCase : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__A , num_warmup_steps=100 , num_training_steps=(len(__A ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = accelerator.prepare(
__A , __A , __A , __A , __A )
# Now we train the model
for epoch in range(__A ):
model.train()
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_lowerCamelCase : Optional[int] = model(**__A )
_lowerCamelCase : Tuple = outputs.loss
_lowerCamelCase : int = loss / gradient_accumulation_steps
accelerator.backward(__A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCamelCase : List[str] = model(**__A )
_lowerCamelCase : Tuple = outputs.logits.argmax(dim=-1 )
_lowerCamelCase , _lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__A , references=__A , )
_lowerCamelCase : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , __A )
# New Code #
# We also run predictions on the test set at the very end
_lowerCamelCase : Optional[Any] = []
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCamelCase : Union[str, Any] = model(**__A )
_lowerCamelCase : Tuple = outputs.logits
_lowerCamelCase , _lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(__A , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
_lowerCamelCase : Any = torch.cat(__A , dim=0 )
_lowerCamelCase : Dict = torch.stack(__A , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
_lowerCamelCase : List[Any] = metric.compute(predictions=__A , references=__A )
accelerator.print("""Average test metrics from all folds:""" , __A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Any = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__A , default=__A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
# New Code #
parser.add_argument("""--num_folds""" , type=__A , default=3 , help="""The number of splits to perform across the dataset""" )
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 15 | from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['pixel_values']
def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = do_resize
_lowerCamelCase : int = size
_lowerCamelCase : Optional[int] = resample
_lowerCamelCase : int = do_center_crop
_lowerCamelCase : Optional[Any] = crop_size
_lowerCamelCase : Union[str, Any] = do_rescale
_lowerCamelCase : List[str] = rescale_factor
_lowerCamelCase : List[Any] = do_normalize
_lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return resize(
_UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image:
"""simple docstring"""
_lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCamelCase : List[str] = resample if resample is not None else self.resample
_lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
_lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean
_lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
_lowerCamelCase : Optional[Any] = size if size is not None else self.size
_lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = make_list_of_images(_UpperCamelCase)
if not valid_images(_UpperCamelCase):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
_lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images]
if do_resize:
_lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images]
if do_center_crop:
_lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images]
if do_rescale:
_lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images]
if do_normalize:
_lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images]
_lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images]
_lowerCamelCase : int = {"""pixel_values""": images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
| 15 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : List[Any] =logging.get_logger(__name__)
lowerCAmelCase : Optional[int] ="▁"
lowerCAmelCase : Dict ={"vocab_file": "spiece.model"}
lowerCAmelCase : Optional[int] ={
"vocab_file": {
"google/reformer-crime-and-punishment": (
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
)
}
}
lowerCAmelCase : Union[str, Any] ={
"google/reformer-crime-and-punishment": 524288,
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['input_ids', 'attention_mask']
def __init__( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]="</s>" , _UpperCamelCase : int="<unk>" , _UpperCamelCase : List[Any]=[] , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Any , ) ->None:
"""simple docstring"""
_lowerCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , )
_lowerCamelCase : Union[str, Any] = vocab_file
_lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(_UpperCamelCase)
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any:
"""simple docstring"""
return self.sp_model.get_piece_size()
def _SCREAMING_SNAKE_CASE ( self : str) ->Dict[str, int]:
"""simple docstring"""
_lowerCamelCase : List[str] = {self.convert_ids_to_tokens(_UpperCamelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : int) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Dict = self.__dict__.copy()
_lowerCamelCase : Optional[int] = None
return state
def __setstate__( self : List[Any] , _UpperCamelCase : Dict) ->List[str]:
"""simple docstring"""
_lowerCamelCase : List[Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs"""):
_lowerCamelCase : Dict = {}
_lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str) ->List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Optional[int]) ->Optional[int]:
"""simple docstring"""
return self.sp_model.piece_to_id(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
if index < self.sp_model.get_piece_size():
_lowerCamelCase : Union[str, Any] = self.sp_model.IdToPiece(_UpperCamelCase)
return token
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Optional[int]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = []
_lowerCamelCase : Optional[Any] = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_UpperCamelCase) + token
_lowerCamelCase : str = []
else:
current_sub_tokens.append(_UpperCamelCase)
out_string += self.sp_model.decode(_UpperCamelCase)
return out_string.strip()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
_lowerCamelCase : Optional[int] = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCamelCase) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , _UpperCamelCase)
elif not os.path.isfile(self.vocab_file):
with open(_UpperCamelCase , """wb""") as fi:
_lowerCamelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase)
return (out_vocab_file,)
| 15 | from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float:
"""simple docstring"""
return 0.0
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Tuple = [1] + [0] * (size - 1)
_lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) )
_lowerCamelCase : List[Any] = 20 * np.logaa(__A )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCamelCase : Any = get_bounds(__A , __A )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__A )
plt.show()
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
_lowerCamelCase : int = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Any = np.angle(np.fft.fft(__A ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__A , -2 * pi ) )
plt.show()
| 15 | 1 |
from __future__ import annotations
import os
from typing import Any
import requests
lowerCAmelCase : Any ="https://api.github.com"
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
lowerCAmelCase : Union[str, Any] =BASE_URL + "/user"
# https://github.com/settings/tokens
lowerCAmelCase : Optional[int] =os.environ.get("USER_TOKEN", "")
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Dict = {
"""Authorization""": F"""token {auth_token}""",
"""Accept""": """application/vnd.github.v3+json""",
}
return requests.get(__A , headers=__A ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(F"""{key}: {value}""")
else:
raise ValueError("'USER_TOKEN' field cannot be empty.")
| 15 | import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=__A , exist_ok=__A )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , )
else:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , )
@torch.no_grad()
def A__ ( __A , __A , __A , __A = False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCamelCase : str = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCamelCase : List[str] = """cpu"""
_lowerCamelCase : Dict = Path(__A )
# VAE DECODER
_lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCamelCase : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCamelCase : Tuple = vae_decoder.decode
onnx_export(
__A , model_args=(
torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__A , )
del vae_decoder
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowerCAmelCase : Optional[Any] =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 15 | 1 |
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = word.split()
def justify(__A , __A , __A ) -> str:
_lowerCamelCase : List[str] = max_width - width
_lowerCamelCase : Any = len(__A )
if len(__A ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowerCamelCase : Optional[Any] = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowerCamelCase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowerCamelCase : Union[str, Any] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(__A ):
num_spaces_between_words_list[i] += 1
_lowerCamelCase : Any = []
for i in range(__A ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * """ """ )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(__A )
_lowerCamelCase : Optional[Any] = []
_lowerCamelCase : list[str] = []
_lowerCamelCase : Any = 0
for word in words:
if width + len(__A ) + len(__A ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(__A )
width += len(__A )
else:
# justify the line and add it to result
answer.append(justify(__A , __A , __A ) )
# reset new line and new width
_lowerCamelCase , _lowerCamelCase : List[str] = [word], len(__A )
_lowerCamelCase : List[Any] = max_width - width - len(__A )
answer.append(""" """.join(__A ) + (remaining_spaces + 1) * """ """ )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 15 | from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __snake_case ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = LxmertTokenizer
_snake_case = LxmertTokenizerFast
_snake_case = True
_snake_case = True
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
"""simple docstring"""
super().setUp()
_lowerCamelCase : Any = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
_lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : List[str]) ->int:
"""simple docstring"""
_lowerCamelCase : Any = """UNwant\u00E9d,running"""
_lowerCamelCase : Optional[int] = """unwanted, running"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : List[str] = self.tokenizer_class(self.vocab_file)
_lowerCamelCase : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""")
self.assertListEqual(_UpperCamelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase) , [7, 4, 5, 10, 8, 9])
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_lowerCamelCase : Tuple = self.get_tokenizer()
_lowerCamelCase : int = self.get_rust_tokenizer()
_lowerCamelCase : List[Any] = """I was born in 92000, and this is falsé."""
_lowerCamelCase : Tuple = tokenizer.tokenize(_UpperCamelCase)
_lowerCamelCase : int = rust_tokenizer.tokenize(_UpperCamelCase)
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase)
_lowerCamelCase : Optional[int] = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase)
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[Any] = self.get_rust_tokenizer()
_lowerCamelCase : Optional[Any] = tokenizer.encode(_UpperCamelCase)
_lowerCamelCase : Any = rust_tokenizer.encode(_UpperCamelCase)
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
| 15 | import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = {}
_lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""]
_lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] )
return output
lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments)
lowerCAmelCase : int =parser.parse_args()
if args.num_workers is None:
lowerCAmelCase : Any =multiprocessing.cpu_count()
lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCAmelCase : str =time.time()
lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train")
print(F"""Dataset loaded in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Dict =time.time()
lowerCAmelCase : Dict =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Tuple =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
| 15 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Tuple =logging.get_logger(__name__)
lowerCAmelCase : int ="▁"
lowerCAmelCase : Tuple ={"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
lowerCAmelCase : str ={
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
}
lowerCAmelCase : Any ={"vinai/bartpho-syllable": 1024}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['input_ids', 'attention_mask']
def __init__( self : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any="<s>" , _UpperCamelCase : List[str]="</s>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : Tuple="<s>" , _UpperCamelCase : List[str]="<unk>" , _UpperCamelCase : Tuple="<pad>" , _UpperCamelCase : Any="<mask>" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Optional[int] , ) ->None:
"""simple docstring"""
_lowerCamelCase : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else mask_token
_lowerCamelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , )
_lowerCamelCase : Union[str, Any] = vocab_file
_lowerCamelCase : Optional[int] = monolingual_vocab_file
_lowerCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(_UpperCamelCase))
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_lowerCamelCase : str = {}
_lowerCamelCase : str = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(_UpperCamelCase) not in self.fairseq_tokens_to_ids:
_lowerCamelCase : Union[str, Any] = cnt
cnt += 1
with open(_UpperCamelCase , """r""" , encoding="""utf-8""") as f:
for line in f.readlines():
_lowerCamelCase : Union[str, Any] = line.strip().split()[0]
_lowerCamelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids)
if str(_UpperCamelCase) not in self.fairseq_tokens_to_ids:
_lowerCamelCase : List[str] = len(self.fairseq_tokens_to_ids)
_lowerCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Union[str, Any]) ->Tuple:
"""simple docstring"""
_lowerCamelCase : int = self.__dict__.copy()
_lowerCamelCase : Any = None
_lowerCamelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Union[str, Any] , _UpperCamelCase : Dict) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs"""):
_lowerCamelCase : Optional[Any] = {}
_lowerCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCamelCase : Dict = [self.cls_token_id]
_lowerCamelCase : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase)
if token_ids_a is None:
return [1] + ([0] * len(_UpperCamelCase)) + [1]
return [1] + ([0] * len(_UpperCamelCase)) + [1, 1] + ([0] * len(_UpperCamelCase)) + [1]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None) ->List[int]:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = [self.sep_token_id]
_lowerCamelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple:
"""simple docstring"""
return len(self.fairseq_ids_to_tokens)
def _SCREAMING_SNAKE_CASE ( self : str) ->int:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = {self.convert_ids_to_tokens(_UpperCamelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str) ->List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Tuple) ->List[Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Union[str, Any]) ->List[str]:
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[Any]) ->Dict:
"""simple docstring"""
_lowerCamelCase : Dict = """""".join(_UpperCamelCase).replace(_UpperCamelCase , """ """).strip()
return out_string
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
_lowerCamelCase : Dict = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
_lowerCamelCase : str = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCamelCase) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , _UpperCamelCase)
elif not os.path.isfile(self.vocab_file):
with open(_UpperCamelCase , """wb""") as fi:
_lowerCamelCase : int = self.sp_model.serialized_model_proto()
fi.write(_UpperCamelCase)
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(
_UpperCamelCase) and os.path.isfile(self.monolingual_vocab_file):
copyfile(self.monolingual_vocab_file , _UpperCamelCase)
elif not os.path.isfile(self.monolingual_vocab_file):
with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F"""{str(_UpperCamelCase)} \n""")
return out_vocab_file, out_monolingual_vocab_file
| 15 | import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = IFPipeline
_snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_snake_case = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case = PipelineTesterMixin.required_optional_params - {'latents'}
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
"""simple docstring"""
return self._get_dummy_components()
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]:
"""simple docstring"""
if str(_UpperCamelCase).startswith("""mps"""):
_lowerCamelCase : int = torch.manual_seed(_UpperCamelCase)
else:
_lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase)
_lowerCamelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1)
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_local()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa)
_lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""")
_lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""")
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_lowerCamelCase : str = None
_lowerCamelCase : str = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components)
_lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components)
_lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_lowerCamelCase : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : str = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Dict = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Any = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : List[str] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Optional[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def A__ ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 15 | 1 |
lowerCAmelCase : Dict =[sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)]
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : List[Any] = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100_000]
number //= 100_000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
lowerCAmelCase : list[bool | None] =[None] * 10000000
lowerCAmelCase : Tuple =True
lowerCAmelCase : List[str] =False
def A__ ( __A ):
'''simple docstring'''
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
_lowerCamelCase : Optional[int] = chain(next_number(__A ) )
_lowerCamelCase : int = number_chain
while number < 10_000_000:
_lowerCamelCase : Dict = number_chain
number *= 10
return number_chain
def A__ ( __A = 10_000_000 ):
'''simple docstring'''
for i in range(1 , __A ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{solution() = }""")
| 15 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : Any =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
"microsoft/swin-tiny-patch4-window7-224": (
"https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'swin'
_snake_case = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : List[str] = image_size
_lowerCamelCase : Tuple = patch_size
_lowerCamelCase : Dict = num_channels
_lowerCamelCase : Union[str, Any] = embed_dim
_lowerCamelCase : str = depths
_lowerCamelCase : str = len(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = num_heads
_lowerCamelCase : Tuple = window_size
_lowerCamelCase : int = mlp_ratio
_lowerCamelCase : Optional[int] = qkv_bias
_lowerCamelCase : List[str] = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : Tuple = drop_path_rate
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Dict = use_absolute_embeddings
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : str = initializer_range
_lowerCamelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1))
_lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)]
_lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices(
out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = version.parse('1.11' )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float:
"""simple docstring"""
return 1E-4
| 15 | 1 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['image_processor', 'tokenizer']
_snake_case = 'AutoImageProcessor'
_snake_case = 'AutoTokenizer'
def __init__( self : Any , _UpperCamelCase : List[str]=None , _UpperCamelCase : int=None , **_UpperCamelCase : str) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Tuple = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _UpperCamelCase , )
_lowerCamelCase : Optional[int] = kwargs.pop("""feature_extractor""")
_lowerCamelCase : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""")
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""")
super().__init__(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Dict = self.image_processor
_lowerCamelCase : int = False
def __call__( self : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[int]) ->List[Any]:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*_UpperCamelCase , **_UpperCamelCase)
_lowerCamelCase : Optional[int] = kwargs.pop("""images""" , _UpperCamelCase)
_lowerCamelCase : Any = kwargs.pop("""text""" , _UpperCamelCase)
if len(_UpperCamelCase) > 0:
_lowerCamelCase : Tuple = args[0]
_lowerCamelCase : List[Any] = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""")
if images is not None:
_lowerCamelCase : Union[str, Any] = self.image_processor(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase)
if text is not None:
_lowerCamelCase : Optional[int] = self.tokenizer(_UpperCamelCase , **_UpperCamelCase)
if text is None:
return inputs
elif images is None:
return encodings
else:
_lowerCamelCase : int = encodings["""input_ids"""]
return inputs
def _SCREAMING_SNAKE_CASE ( self : int , *_UpperCamelCase : List[str] , **_UpperCamelCase : Optional[Any]) ->Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : int) ->Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase)
@contextmanager
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
"""simple docstring"""
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""")
_lowerCamelCase : Tuple = True
_lowerCamelCase : Optional[Any] = self.tokenizer
yield
_lowerCamelCase : List[Any] = self.image_processor
_lowerCamelCase : int = False
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=None) ->Tuple:
"""simple docstring"""
if added_vocab is None:
_lowerCamelCase : int = self.tokenizer.get_added_vocab()
_lowerCamelCase : List[str] = {}
while tokens:
_lowerCamelCase : Union[str, Any] = re.search(R"""<s_(.*?)>""" , _UpperCamelCase , re.IGNORECASE)
if start_token is None:
break
_lowerCamelCase : Union[str, Any] = start_token.group(1)
_lowerCamelCase : Tuple = re.search(RF"""</s_{key}>""" , _UpperCamelCase , re.IGNORECASE)
_lowerCamelCase : Tuple = start_token.group()
if end_token is None:
_lowerCamelCase : int = tokens.replace(_UpperCamelCase , """""")
else:
_lowerCamelCase : int = end_token.group()
_lowerCamelCase : str = re.escape(_UpperCamelCase)
_lowerCamelCase : int = re.escape(_UpperCamelCase)
_lowerCamelCase : Optional[int] = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _UpperCamelCase , re.IGNORECASE)
if content is not None:
_lowerCamelCase : Tuple = content.group(1).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_lowerCamelCase : Optional[Any] = self.tokenajson(_UpperCamelCase , is_inner_value=_UpperCamelCase , added_vocab=_UpperCamelCase)
if value:
if len(_UpperCamelCase) == 1:
_lowerCamelCase : Tuple = value[0]
_lowerCamelCase : Tuple = value
else: # leaf nodes
_lowerCamelCase : Optional[Any] = []
for leaf in content.split(R"""<sep/>"""):
_lowerCamelCase : Tuple = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_lowerCamelCase : Optional[Any] = leaf[1:-2] # for categorical special tokens
output[key].append(_UpperCamelCase)
if len(output[key]) == 1:
_lowerCamelCase : List[str] = output[key][0]
_lowerCamelCase : Optional[int] = tokens[tokens.find(_UpperCamelCase) + len(_UpperCamelCase) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_UpperCamelCase , added_vocab=_UpperCamelCase)
if len(_UpperCamelCase):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCamelCase , )
return self.image_processor_class
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->Dict:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCamelCase , )
return self.image_processor
| 15 | import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = (EulerDiscreteScheduler,)
_snake_case = 10
def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCamelCase)
return config
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Any = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : str = torch.manual_seed(0)
_lowerCamelCase : str = self.dummy_model()
_lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : int = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Dict = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : int = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""")
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : Any = torch.manual_seed(0)
_lowerCamelCase : int = self.dummy_model()
_lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : Dict = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Tuple = output.prev_sample
_lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : int = self.get_scheduler_config()
_lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Tuple = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : List[Any] = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config()
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : int = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : int = output.prev_sample
_lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
| 15 | 1 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def A__ ( __A , __A , __A ):
'''simple docstring'''
# Construct model
if gpta_config_file == "":
_lowerCamelCase : Tuple = GPTaConfig()
else:
_lowerCamelCase : str = GPTaConfig.from_json_file(__A )
_lowerCamelCase : int = GPTaModel(__A )
# Load weights from numpy
load_tf_weights_in_gpta(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_lowerCamelCase : Tuple = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
lowerCAmelCase : Dict =parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 15 | import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Dict =logging.get_logger(__name__)
lowerCAmelCase : Dict ={"vocab_file": "vocab.json"}
lowerCAmelCase : List[str] ={
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
lowerCAmelCase : int ={"mgp-str": 27}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , )
with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle:
_lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
return len(self.vocab)
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = []
for s in text:
char_tokens.extend(_UpperCamelCase)
return char_tokens
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]:
"""simple docstring"""
return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict:
"""simple docstring"""
return self.decoder.get(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase):
logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase))
return
_lowerCamelCase : Tuple = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""")
return (vocab_file,)
| 15 | 1 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = (EulerDiscreteScheduler,)
_snake_case = 10
def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCamelCase)
return config
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Any = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : str = torch.manual_seed(0)
_lowerCamelCase : str = self.dummy_model()
_lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : int = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Dict = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : int = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""")
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : Any = torch.manual_seed(0)
_lowerCamelCase : int = self.dummy_model()
_lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : Dict = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Tuple = output.prev_sample
_lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : int = self.get_scheduler_config()
_lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Tuple = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : List[Any] = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config()
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : int = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : int = output.prev_sample
_lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
| 15 | import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""c"""])
self.assertEqual(_UpperCamelCase , [2])
# Out indices set to match out features
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features set to match out indices
_lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features selected from negative indices
_lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [-3, -1])
def _SCREAMING_SNAKE_CASE ( self : int) ->int:
"""simple docstring"""
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase)
# Out features must be a list
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""])
# Out features must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""])
# Out indices must be a list or tuple
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""])
# Out indices must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""])
# Out features and out indices must be the same length
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""])
# Out features should match out indices
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""])
# Out features and out indices should be in order
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""])
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""])
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : int = BackboneMixin()
_lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""]
_lowerCamelCase : Tuple = ["""a""", """c"""]
_lowerCamelCase : List[Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
_lowerCamelCase : str = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""])
self.assertEqual(backbone.out_indices , [0, 1])
_lowerCamelCase : Optional[int] = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [-3, -1])
| 15 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCAmelCase : int ="platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def A__ ( __A , __A , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , ):
'''simple docstring'''
if attention_mask is None:
_lowerCamelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_lowerCamelCase : Optional[int] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_lowerCamelCase : str = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowerCamelCase : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowerCamelCase : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class __snake_case :
'''simple docstring'''
def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict=13 , _UpperCamelCase : int=7 , _UpperCamelCase : str=True , _UpperCamelCase : List[str]=False , _UpperCamelCase : int=99 , _UpperCamelCase : Union[str, Any]=16 , _UpperCamelCase : Any=2 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any=32 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : str=1 , _UpperCamelCase : Any=0 , _UpperCamelCase : int=0.0_2 , ) ->List[str]:
"""simple docstring"""
_lowerCamelCase : int = parent
_lowerCamelCase : Optional[Any] = batch_size
_lowerCamelCase : Union[str, Any] = seq_length
_lowerCamelCase : Union[str, Any] = is_training
_lowerCamelCase : List[str] = use_labels
_lowerCamelCase : Tuple = vocab_size
_lowerCamelCase : List[str] = hidden_size
_lowerCamelCase : List[Any] = num_hidden_layers
_lowerCamelCase : Union[str, Any] = num_attention_heads
_lowerCamelCase : Tuple = intermediate_size
_lowerCamelCase : Any = hidden_act
_lowerCamelCase : List[Any] = hidden_dropout_prob
_lowerCamelCase : List[Any] = attention_probs_dropout_prob
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : List[Any] = eos_token_id
_lowerCamelCase : List[Any] = pad_token_id
_lowerCamelCase : List[Any] = bos_token_id
_lowerCamelCase : Tuple = initializer_range
def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
_lowerCamelCase : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
_lowerCamelCase : List[Any] = shift_tokens_right(_UpperCamelCase , 1 , 2)
_lowerCamelCase : Optional[int] = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCamelCase , )
_lowerCamelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : List[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[int] = 20
_lowerCamelCase : Tuple = model_class_name(_UpperCamelCase)
_lowerCamelCase : Any = model.encode(inputs_dict["""input_ids"""])
_lowerCamelCase , _lowerCamelCase : int = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_lowerCamelCase : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
_lowerCamelCase : Any = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCamelCase : Optional[Any] = model.decode(
decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , )
_lowerCamelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
_lowerCamelCase : int = model.decode(
decoder_input_ids[:, -1:] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCamelCase , )
_lowerCamelCase : Dict = model.decode(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = 20
_lowerCamelCase : Tuple = model_class_name(_UpperCamelCase)
_lowerCamelCase : Any = model.encode(inputs_dict["""input_ids"""])
_lowerCamelCase , _lowerCamelCase : List[Any] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_lowerCamelCase : List[Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
_lowerCamelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Dict = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_lowerCamelCase : Dict = model.decode(
decoder_input_ids[:, :-1] , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , )
_lowerCamelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
_lowerCamelCase : int = model.decode(
decoder_input_ids[:, -1:] , _UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCamelCase , decoder_position_ids=_UpperCamelCase , )
_lowerCamelCase : Tuple = model.decode(_UpperCamelCase , _UpperCamelCase , decoder_attention_mask=_UpperCamelCase)
_lowerCamelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = 99
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : int = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_lowerCamelCase : List[Any] = input_ids.shape[0]
_lowerCamelCase : Tuple = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self._get_config_and_data()
_lowerCamelCase : Any = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase)
_lowerCamelCase : List[Any] = lm_model(input_ids=_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_lowerCamelCase : Optional[int] = FlaxBlenderbotForConditionalGeneration(_UpperCamelCase)
_lowerCamelCase : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
_lowerCamelCase : Tuple = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
_lowerCamelCase : Dict = lm_model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase)
_lowerCamelCase : Any = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
_lowerCamelCase : int = shift_tokens_right(_UpperCamelCase , 1 , 2)
_lowerCamelCase : Tuple = np.equal(_UpperCamelCase , 1).astype(np.floataa).sum()
_lowerCamelCase : Dict = np.equal(_UpperCamelCase , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(_UpperCamelCase , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class __snake_case ( __lowerCAmelCase , unittest.TestCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = True
_snake_case = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
_snake_case = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def _SCREAMING_SNAKE_CASE ( self : Any) ->Any:
"""simple docstring"""
_lowerCamelCase : Any = FlaxBlenderbotModelTester(self)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
_lowerCamelCase : Tuple = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model_class(_UpperCamelCase)
@jax.jit
def encode_jitted(_UpperCamelCase : str , _UpperCamelCase : Any=None , **_UpperCamelCase : Dict):
return model.encode(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase)
with self.subTest("""JIT Enabled"""):
_lowerCamelCase : Dict = encode_jitted(**_UpperCamelCase).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
_lowerCamelCase : str = encode_jitted(**_UpperCamelCase).to_tuple()
self.assertEqual(len(_UpperCamelCase) , len(_UpperCamelCase))
for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase):
self.assertEqual(jitted_output.shape , output.shape)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
_lowerCamelCase : Any = model_class(_UpperCamelCase)
_lowerCamelCase : int = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
_lowerCamelCase : Union[str, Any] = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(_UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any]):
return model.decode(
decoder_input_ids=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , encoder_outputs=_UpperCamelCase , )
with self.subTest("""JIT Enabled"""):
_lowerCamelCase : Dict = decode_jitted(**_UpperCamelCase).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
_lowerCamelCase : Optional[int] = decode_jitted(**_UpperCamelCase).to_tuple()
self.assertEqual(len(_UpperCamelCase) , len(_UpperCamelCase))
for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
_lowerCamelCase : Any = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_lowerCamelCase : Dict = np.ones((1, 1)) * model.config.eos_token_id
_lowerCamelCase : int = model(_UpperCamelCase)
self.assertIsNotNone(_UpperCamelCase)
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""")
@slow
def _SCREAMING_SNAKE_CASE ( self : int) ->str:
"""simple docstring"""
_lowerCamelCase : Any = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_lowerCamelCase : Dict = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_lowerCamelCase : Dict = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""")
_lowerCamelCase : List[Any] = ["""Sam"""]
_lowerCamelCase : Dict = tokenizer(_UpperCamelCase , return_tensors="""jax""")
_lowerCamelCase : Optional[int] = model.generate(**_UpperCamelCase , **_UpperCamelCase)
_lowerCamelCase : Dict = """Sam is a great name. It means \"sun\" in Gaelic."""
_lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCamelCase , **_UpperCamelCase)
assert generated_txt[0].strip() == tgt_text
| 15 | import math
def A__ ( __A ):
'''simple docstring'''
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def A__ ( __A , __A=1 , **__A ):
'''simple docstring'''
_lowerCamelCase : Dict = factor * value
_lowerCamelCase : str = value
while not is_prime(__A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **__A )
return value
| 15 | 1 |
def A__ ( __A , __A ):
'''simple docstring'''
return int((input_a, input_a).count(1 ) != 0 )
def A__ ( ):
'''simple docstring'''
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 15 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple:
"""simple docstring"""
super().__init__(*_UpperCamelCase , **_UpperCamelCase)
requires_backends(self , """vision""")
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING)
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {}
if top_k is not None:
_lowerCamelCase : str = top_k
return {}, {}, postprocess_params
def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict:
"""simple docstring"""
return super().__call__(_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Tuple = load_image(_UpperCamelCase)
_lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework)
return model_inputs
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Any = self.model(**_UpperCamelCase)
return model_outputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str:
"""simple docstring"""
if top_k > self.model.config.num_labels:
_lowerCamelCase : Union[str, Any] = self.model.config.num_labels
if self.framework == "pt":
_lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0]
_lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase)
elif self.framework == "tf":
_lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0]
_lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase)
_lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
_lowerCamelCase : str = scores.tolist()
_lowerCamelCase : str = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
| 15 | 1 |
import requests
lowerCAmelCase : Optional[Any] ="https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="
def A__ ( __A ):
'''simple docstring'''
# fetching a list of articles in json format
_lowerCamelCase : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["""articles"""] , 1 ):
print(F"""{i}.) {article['title']}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
| 15 | import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = ViTImageProcessor if is_vision_available() else None
@property
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (3, 32, 128)
_lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase))))
_lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(_UpperCamelCase) + """\n""")
_lowerCamelCase : Any = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)
_lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1))
return image_input
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = self.get_image_processor()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
_lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0)
_lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
_lowerCamelCase : int = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""")
_lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Optional[int] = """test"""
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase)
_lowerCamelCase : Dict = tokenizer(_UpperCamelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = """test"""
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""])
# test if it raises when no input is passed
with pytest.raises(_UpperCamelCase):
processor()
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Any = processor.char_decode(_UpperCamelCase)
_lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase)
_lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = None
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = torch.randn(1 , 27 , 38)
_lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257)
_lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522)
_lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input])
self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
| 15 | 1 |
lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__A , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__A )
return parser.parse_args()
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[str] = parse_args()
# Import training_script as a module.
_lowerCamelCase : List[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowerCamelCase : Optional[Any] = script_fpath.stem
_lowerCamelCase : Dict = importlib.import_module(__A )
# Patch sys.argv
_lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 15 | 1 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def A__ ( __A , __A , __A , __A , __A ):
'''simple docstring'''
# load base model
_lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
_lowerCamelCase : str = load_file(__A )
_lowerCamelCase : int = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
_lowerCamelCase : Union[str, Any] = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
_lowerCamelCase : Any = pipeline.text_encoder
else:
_lowerCamelCase : Union[str, Any] = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
_lowerCamelCase : Any = pipeline.unet
# find the target layer
_lowerCamelCase : Any = layer_infos.pop(0 )
while len(__A ) > -1:
try:
_lowerCamelCase : List[Any] = curr_layer.__getattr__(__A )
if len(__A ) > 0:
_lowerCamelCase : List[Any] = layer_infos.pop(0 )
elif len(__A ) == 0:
break
except Exception:
if len(__A ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
_lowerCamelCase : Union[str, Any] = layer_infos.pop(0 )
_lowerCamelCase : Optional[Any] = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(__A )
else:
pair_keys.append(__A )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
_lowerCamelCase : int = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
_lowerCamelCase : Optional[Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__A , __A ).unsqueeze(2 ).unsqueeze(3 )
else:
_lowerCamelCase : Tuple = state_dict[pair_keys[0]].to(torch.floataa )
_lowerCamelCase : Optional[Any] = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__A , __A )
# update visited list
for item in pair_keys:
visited.append(__A )
return pipeline
if __name__ == "__main__":
lowerCAmelCase : Any =argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
lowerCAmelCase : List[Any] =parser.parse_args()
lowerCAmelCase : Tuple =args.base_model_path
lowerCAmelCase : Dict =args.checkpoint_path
lowerCAmelCase : Tuple =args.dump_path
lowerCAmelCase : Dict =args.lora_prefix_unet
lowerCAmelCase : List[Any] =args.lora_prefix_text_encoder
lowerCAmelCase : Optional[Any] =args.alpha
lowerCAmelCase : Optional[int] =convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
lowerCAmelCase : Optional[int] =pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 15 | def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
if n == 0:
return 0
_lowerCamelCase : Tuple = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
_lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def A__ ( __A , __A , __A ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowerCamelCase : int = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Optional[Any] = max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
_lowerCamelCase : Optional[Any] = max_revenue
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_lowerCamelCase : Any = 0
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max_rev[i]
for j in range(1 , i + 1 ):
_lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] )
_lowerCamelCase : int = max_revenue_i
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
if n < 0:
_lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__A )
if n > len(__A ):
_lowerCamelCase : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(__A )}"""
)
raise ValueError(__A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : str = [6, 10, 12, 15, 20, 23]
_lowerCamelCase : List[str] = len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowerCamelCase : Tuple = 36
_lowerCamelCase : Any = top_down_cut_rod(__A , __A )
_lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A )
_lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 | 1 |
from math import factorial, radians
def A__ ( __A , __A = 18 , __A = 10 ):
'''simple docstring'''
_lowerCamelCase : List[Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_lowerCamelCase : List[Any] = radians(__A )
_lowerCamelCase : Tuple = angle_in_radians
_lowerCamelCase : Any = 3
_lowerCamelCase : Any = -1
for _ in range(__A ):
result += (b * (angle_in_radians**a)) / factorial(__A )
_lowerCamelCase : List[Any] = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(__A , __A )
if __name__ == "__main__":
__import__("doctest").testmod()
| 15 | from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = key
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Any = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Optional[Any] = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 15 | 1 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
lowerCAmelCase : List[Any] ={
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def A__ ( __A ):
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def A__ ( __A , __A ):
'''simple docstring'''
if args.student_type == "roberta":
_lowerCamelCase : Tuple = False
elif args.student_type == "gpt2":
_lowerCamelCase : Union[str, Any] = False
def A__ ( __A , __A ):
'''simple docstring'''
if args.student_type == "roberta":
_lowerCamelCase : Dict = False
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Any = argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=__A , required=__A , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=__A , required=__A , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=__A , choices=["""distilbert""", """roberta""", """gpt2"""] , required=__A , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=__A , required=__A , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=__A , type=__A , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=__A , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=__A , required=__A , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=__A , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=__A , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=__A , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=__A , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=__A , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=__A , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.15 , type=__A , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=__A , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=__A , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=__A , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=__A , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=__A , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=__A , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=__A , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=__A , default=50 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.05 , type=__A , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=__A , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5E-4 , type=__A , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1E-6 , type=__A , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=__A , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.02 , type=__A , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=__A , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=__A , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=__A , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=__A , default=56 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=__A , default=500 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=__A , default=4_000 , help="""Checkpoint interval.""" )
_lowerCamelCase : Dict = parser.parse_args()
sanity_checks(__A )
# ARGS #
init_gpu_params(__A )
set_seed(__A )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"""
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" )
# SAVE PARAMS #
logger.info(F"""Param: {args}""" )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(__A ) , __A , indent=4 )
git_log(args.dump_path )
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = MODEL_CLASSES[args.student_type]
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_lowerCamelCase : Dict = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_lowerCamelCase : str = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_lowerCamelCase : Union[str, Any] = tokenizer.all_special_tokens.index(__A )
_lowerCamelCase : Optional[int] = tokenizer.all_special_ids[idx]
logger.info(F"""Special tokens {special_tok_ids}""" )
_lowerCamelCase : List[str] = special_tok_ids
_lowerCamelCase : int = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F"""Loading data from {args.data_file}""" )
with open(args.data_file , """rb""" ) as fp:
_lowerCamelCase : Dict = pickle.load(__A )
if args.mlm:
logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" )
with open(args.token_counts , """rb""" ) as fp:
_lowerCamelCase : int = pickle.load(__A )
_lowerCamelCase : List[str] = np.maximum(__A , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_lowerCamelCase : Tuple = 0.0 # do not predict special tokens
_lowerCamelCase : Optional[Any] = torch.from_numpy(__A )
else:
_lowerCamelCase : int = None
_lowerCamelCase : Tuple = LmSeqsDataset(params=__A , data=__A )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(F"""Loading student config from {args.student_config}""" )
_lowerCamelCase : Dict = student_config_class.from_pretrained(args.student_config )
_lowerCamelCase : Optional[int] = True
if args.student_pretrained_weights is not None:
logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" )
_lowerCamelCase : Any = student_model_class.from_pretrained(args.student_pretrained_weights , config=__A )
else:
_lowerCamelCase : Dict = student_model_class(__A )
if args.n_gpu > 0:
student.to(F"""cuda:{args.local_rank}""" )
logger.info("""Student loaded.""" )
# TEACHER #
_lowerCamelCase : Optional[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__A )
if args.n_gpu > 0:
teacher.to(F"""cuda:{args.local_rank}""" )
logger.info(F"""Teacher loaded from {args.teacher_name}.""" )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__A , __A )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__A , __A )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_lowerCamelCase : Optional[Any] = Distiller(
params=__A , dataset=__A , token_probs=__A , student=__A , teacher=__A )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main()
| 15 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
_UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths}
_lowerCamelCase : Any = Text(
cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
if self.streaming:
_lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Any = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
self.builder.download_and_prepare(
download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , )
_lowerCamelCase : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory)
return dataset
| 15 | 1 |
from __future__ import annotations
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Dict = sorted(numsa + numsa )
_lowerCamelCase , _lowerCamelCase : Optional[int] = divmod(len(__A ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : Dict =[float(x) for x in input("Enter the elements of first array: ").split()]
lowerCAmelCase : Any =[float(x) for x in input("Enter the elements of second array: ").split()]
print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 15 | lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | 1 |
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
lowerCAmelCase : List[Any] ="base_with_context"
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) )
_lowerCamelCase : Tuple = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__A )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCamelCase : List[str] = weights[F"""layers_{lyr_num}"""]
_lowerCamelCase : Any = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : List[str] = ly_weight["""attention"""]
_lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
_lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__A )
for lyr_num, lyr in enumerate(model.encoders ):
_lowerCamelCase : Optional[Any] = weights[F"""layers_{lyr_num}"""]
_lowerCamelCase : Tuple = ly_weight["""attention"""]
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
_lowerCamelCase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
_lowerCamelCase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
_lowerCamelCase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) )
return model
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) )
_lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) )
_lowerCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__A )
_lowerCamelCase : Union[str, Any] = nn.Parameter(
torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
_lowerCamelCase : int = weights[F"""layers_{lyr_num}"""]
_lowerCamelCase : Tuple = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : List[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
_lowerCamelCase : Union[str, Any] = ly_weight["""self_attention"""]
_lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCamelCase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCamelCase : List[str] = ly_weight["""MultiHeadDotProductAttention_0"""]
_lowerCamelCase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) )
_lowerCamelCase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) )
_lowerCamelCase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) )
_lowerCamelCase : List[str] = nn.Parameter(
torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) )
_lowerCamelCase : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) )
_lowerCamelCase : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) )
_lowerCamelCase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) )
_lowerCamelCase : Dict = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) )
return model
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : List[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
_lowerCamelCase : Tuple = jnp.tree_util.tree_map(onp.array , __A )
_lowerCamelCase : int = [
"""from __gin__ import dynamic_registration""",
"""from music_spectrogram_diffusion.models.diffusion import diffusion_utils""",
"""diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""",
"""diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""",
]
_lowerCamelCase : Tuple = os.path.join(args.checkpoint_path , """..""" , """config.gin""" )
_lowerCamelCase : Any = inference.parse_training_gin_file(__A , __A )
_lowerCamelCase : List[Any] = inference.InferenceModel(args.checkpoint_path , __A )
_lowerCamelCase : Optional[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" )
_lowerCamelCase : List[str] = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , )
_lowerCamelCase : int = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , )
_lowerCamelCase : Any = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
_lowerCamelCase : str = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __A )
_lowerCamelCase : Any = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __A )
_lowerCamelCase : str = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __A )
_lowerCamelCase : Optional[int] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" )
_lowerCamelCase : Union[str, Any] = SpectrogramDiffusionPipeline(
notes_encoder=__A , continuous_encoder=__A , decoder=__A , scheduler=__A , melgan=__A , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
lowerCAmelCase : str =argparse.ArgumentParser()
parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument(
"--checkpoint_path",
default=F"""{MODEL}/checkpoint_500000""",
type=str,
required=False,
help="Path to the original jax model checkpoint.",
)
lowerCAmelCase : Tuple =parser.parse_args()
main(args)
| 15 | from __future__ import annotations
lowerCAmelCase : int =[]
def A__ ( __A , __A , __A ):
'''simple docstring'''
for i in range(len(__A ) ):
if board[row][i] == 1:
return False
for i in range(len(__A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( __A , __A ):
'''simple docstring'''
if row >= len(__A ):
solution.append(__A )
printboard(__A )
print()
return True
for i in range(len(__A ) ):
if is_safe(__A , __A , __A ):
_lowerCamelCase : int = 1
solve(__A , row + 1 )
_lowerCamelCase : List[str] = 0
return False
def A__ ( __A ):
'''simple docstring'''
for i in range(len(__A ) ):
for j in range(len(__A ) ):
if board[i][j] == 1:
print("""Q""" , end=""" """ )
else:
print(""".""" , end=""" """ )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase : int =8
lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 15 | 1 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = None
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = None
_snake_case = None
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = True
_snake_case = None
_snake_case = 1
_snake_case = None
_snake_case = False
_snake_case = None
_snake_case = None
def _SCREAMING_SNAKE_CASE ( self : Dict) ->"DownloadConfig":
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(_UpperCamelCase) for k, v in self.__dict__.items()})
| 15 | import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCAmelCase : int ={
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A__ ( __A , __A , __A , __A=None ):
'''simple docstring'''
# Initialise PyTorch model
_lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A )
_lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowerCamelCase : int = finetuning_task
_lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowerCamelCase : int = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
_lowerCamelCase : Dict = finetuning_task
_lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A )
else:
_lowerCamelCase : Any = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : Optional[Any] = os.path.join(__A , __A )
_lowerCamelCase : Any = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 15 | 1 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowerCAmelCase : Tuple =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
lowerCAmelCase : Dict =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/"""))
_lowerCamelCase : Tuple = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCamelCase , """src/diffusers/schedulers/scheduling_ddpm.py""") , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""") , )
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->str:
"""simple docstring"""
_lowerCamelCase : str = """src/diffusers"""
shutil.rmtree(self.diffusers_dir)
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any]=None) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Dict = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
_lowerCamelCase : int = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
_lowerCamelCase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119)
_lowerCamelCase : Optional[int] = black.format_str(_UpperCamelCase , mode=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = os.path.join(self.diffusers_dir , """new_code.py""")
with open(_UpperCamelCase , """w""" , newline="""\n""") as f:
f.write(_UpperCamelCase)
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase)) == 0)
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase)
with open(_UpperCamelCase , """r""") as f:
self.assertTrue(f.read() , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : int = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""")
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , _UpperCamelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , _UpperCamelCase) , )
# Copy consistency with a really long name
_lowerCamelCase : Union[str, Any] = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub("""Bert""" , _UpperCamelCase , _UpperCamelCase) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , _UpperCamelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , _UpperCamelCase) , )
| 15 | def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 0
for ch in input_str:
_lowerCamelCase : Optional[Any] = ord(__A )
_lowerCamelCase : List[str] = pow(2 , __A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import os
import string
import sys
lowerCAmelCase : Optional[int] =1 << 8
lowerCAmelCase : int ={
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
lowerCAmelCase : str =KEYMAP["up"]
lowerCAmelCase : str =KEYMAP["left"]
if sys.platform == "win32":
lowerCAmelCase : str =[]
lowerCAmelCase : Tuple ={
B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
lowerCAmelCase : str =ord(str(i))
def A__ ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
_lowerCamelCase : Union[str, Any] = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__A ) == 0:
# Read the keystroke
_lowerCamelCase : Any = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
_lowerCamelCase : List[str] = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
_lowerCamelCase : Dict = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(__A )
if ord(__A ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
_lowerCamelCase : Any = chr(KEYMAP["""esc"""] )
except KeyError:
_lowerCamelCase : List[Any] = cha[1]
else:
_lowerCamelCase : List[Any] = ch.decode(__A )
else:
_lowerCamelCase : Tuple = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
_lowerCamelCase : List[str] = sys.stdin.fileno()
_lowerCamelCase : Union[str, Any] = termios.tcgetattr(__A )
try:
tty.setraw(__A )
_lowerCamelCase : str = sys.stdin.read(1 )
finally:
termios.tcsetattr(__A , termios.TCSADRAIN , __A )
return ch
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[Any] = get_raw_chars()
if ord(__A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__A ) == KEYMAP["esc"]:
_lowerCamelCase : int = get_raw_chars()
if ord(__A ) == KEYMAP["mod_int"]:
_lowerCamelCase : Optional[Any] = get_raw_chars()
if ord(__A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__A ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 15 | import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
_lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""")
_lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : str = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""")
_lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : Union[str, Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
| 15 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
lowerCAmelCase : int =["bert-base-uncased", "bert-base-cased"]
lowerCAmelCase : List[str] ="hf-internal-testing/tiny-bert-tf-only"
if is_tf_available():
class __snake_case ( tf.keras.Model ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : Union[str, Any]) ->List[str]:
"""simple docstring"""
super().__init__()
_lowerCamelCase : Tuple = tokenizer
_lowerCamelCase : str = AutoConfig.from_pretrained(_UpperCamelCase)
_lowerCamelCase : List[str] = TFAutoModel.from_config(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[int] = self.tokenizer(_UpperCamelCase)
_lowerCamelCase : Dict = self.bert(**_UpperCamelCase)
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]:
"""simple docstring"""
super().setUp()
_lowerCamelCase : int = [
BertTokenizer.from_pretrained(_UpperCamelCase) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
_lowerCamelCase : Tuple = [TFBertTokenizer.from_pretrained(_UpperCamelCase) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(_UpperCamelCase , use_fast_bert_tokenizer=_UpperCamelCase)
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers) == len(self.tf_tokenizers)
_lowerCamelCase : List[Any] = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
_lowerCamelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1]))
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple:
"""simple docstring"""
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers):
for test_inputs in (self.test_sentences, self.paired_sentences):
_lowerCamelCase : Optional[Any] = tokenizer(_UpperCamelCase , return_tensors="""tf""" , padding="""longest""")
_lowerCamelCase : Tuple = tf_tokenizer(_UpperCamelCase)
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape))
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa) == tf_outputs[key]))
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
_lowerCamelCase : Any = tf_tokenizer(self.paired_sentences)
_lowerCamelCase : Optional[int] = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa) == separated_outputs[key]))
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
_lowerCamelCase : List[Any] = tf.function(_UpperCamelCase)
for test_inputs in (self.test_sentences, self.paired_sentences):
_lowerCamelCase : List[Any] = tf.constant(_UpperCamelCase)
_lowerCamelCase : Optional[int] = compiled_tokenizer(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = tf_tokenizer(_UpperCamelCase)
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key]))
@slow
def _SCREAMING_SNAKE_CASE ( self : str) ->Dict:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
_lowerCamelCase : Dict = ModelToSave(tokenizer=_UpperCamelCase)
_lowerCamelCase : int = tf.convert_to_tensor(self.test_sentences)
_lowerCamelCase : List[str] = model(_UpperCamelCase) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
_lowerCamelCase : Any = Path(_UpperCamelCase) / """saved.model"""
model.save(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = tf.keras.models.load_model(_UpperCamelCase)
_lowerCamelCase : Tuple = loaded_model(_UpperCamelCase)
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)) , 1E-5)
| 15 | from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['pixel_values']
def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = do_resize
_lowerCamelCase : int = size
_lowerCamelCase : Optional[int] = resample
_lowerCamelCase : int = do_center_crop
_lowerCamelCase : Optional[Any] = crop_size
_lowerCamelCase : Union[str, Any] = do_rescale
_lowerCamelCase : List[str] = rescale_factor
_lowerCamelCase : List[Any] = do_normalize
_lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return resize(
_UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image:
"""simple docstring"""
_lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCamelCase : List[str] = resample if resample is not None else self.resample
_lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
_lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean
_lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
_lowerCamelCase : Optional[Any] = size if size is not None else self.size
_lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = make_list_of_images(_UpperCamelCase)
if not valid_images(_UpperCamelCase):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
_lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images]
if do_resize:
_lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images]
if do_center_crop:
_lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images]
if do_rescale:
_lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images]
if do_normalize:
_lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images]
_lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images]
_lowerCamelCase : int = {"""pixel_values""": images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
| 15 | 1 |
from math import factorial
def A__ ( __A , __A ):
'''simple docstring'''
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("""Please enter positive integers for n and k where n >= k""" )
return factorial(__A ) // (factorial(__A ) * factorial(n - k ))
if __name__ == "__main__":
print(
"The number of five-card hands possible from a standard",
F"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
"If a class of 40 students must be arranged into groups of",
F"""4 for group projects, there are {combinations(40, 4)} ways""",
"to arrange them.\n",
)
print(
"If 10 teams are competing in a Formula One race, there",
F"""are {combinations(10, 3)} ways that first, second and""",
"third place can be awarded.",
)
| 15 | from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float:
"""simple docstring"""
return 0.0
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Tuple = [1] + [0] * (size - 1)
_lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) )
_lowerCamelCase : List[Any] = 20 * np.logaa(__A )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCamelCase : Any = get_bounds(__A , __A )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__A )
plt.show()
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
_lowerCamelCase : int = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Any = np.angle(np.fft.fft(__A ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__A , -2 * pi ) )
plt.show()
| 15 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
@register_to_config
def __init__( self : Union[str, Any] , _UpperCamelCase : int = 768 , ) ->List[Any]:
"""simple docstring"""
super().__init__()
_lowerCamelCase : Optional[int] = nn.Parameter(torch.zeros(1 , _UpperCamelCase))
_lowerCamelCase : int = nn.Parameter(torch.ones(1 , _UpperCamelCase))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Union[str, torch.device]] = None , _UpperCamelCase : Optional[torch.dtype] = None , ) ->str:
"""simple docstring"""
_lowerCamelCase : int = nn.Parameter(self.mean.to(_UpperCamelCase).to(_UpperCamelCase))
_lowerCamelCase : Optional[Any] = nn.Parameter(self.std.to(_UpperCamelCase).to(_UpperCamelCase))
return self
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Tuple) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = (embeds - self.mean) * 1.0 / self.std
return embeds
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Tuple) ->Any:
"""simple docstring"""
_lowerCamelCase : Any = (embeds * self.std) + self.mean
return embeds
| 15 | import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=__A , exist_ok=__A )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , )
else:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , )
@torch.no_grad()
def A__ ( __A , __A , __A , __A = False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCamelCase : str = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCamelCase : List[str] = """cpu"""
_lowerCamelCase : Dict = Path(__A )
# VAE DECODER
_lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCamelCase : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCamelCase : Tuple = vae_decoder.decode
onnx_export(
__A , model_args=(
torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__A , )
del vae_decoder
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowerCAmelCase : Optional[Any] =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase : int ={
"configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"],
"tokenization_m2m_100": ["M2M100Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any =[
"M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
"M2M100ForConditionalGeneration",
"M2M100Model",
"M2M100PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 15 | from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
def A__ ( __A , __A ):
'''simple docstring'''
# save results
if os.path.exists(__A ):
if os.path.exists(os.path.join(__A , """config.json""" ) ) and os.path.isfile(
os.path.join(__A , """config.json""" ) ):
os.remove(os.path.join(__A , """config.json""" ) )
if os.path.exists(os.path.join(__A , """pytorch_model.bin""" ) ) and os.path.isfile(
os.path.join(__A , """pytorch_model.bin""" ) ):
os.remove(os.path.join(__A , """pytorch_model.bin""" ) )
else:
os.makedirs(__A )
model.save_pretrained(__A )
def A__ ( __A , __A=False ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = 2
if unlogit:
_lowerCamelCase : Union[str, Any] = torch.pow(__A , __A )
_lowerCamelCase : Tuple = p * torch.log(__A )
_lowerCamelCase : Union[str, Any] = 0
return -plogp.sum(dim=-1 )
def A__ ( __A ):
'''simple docstring'''
logger.info("""lv, h >\t""" + """\t""".join(F"""{x + 1}""" for x in range(len(__A ) ) ) )
for row in range(len(__A ) ):
if tensor.dtype != torch.long:
logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) )
else:
logger.info(F"""layer {row + 1}:\t""" + """\t""".join(F"""{x:d}""" for x in tensor[row].cpu().data ) )
def A__ ( __A , __A , __A , __A=True , __A=True , __A=None , __A=False ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase : Optional[int] = model.config.num_hidden_layers, model.config.num_attention_heads
_lowerCamelCase : int = torch.zeros(__A , __A ).to(args.device )
_lowerCamelCase : Optional[Any] = torch.zeros(__A , __A ).to(args.device )
if head_mask is None:
_lowerCamelCase : List[Any] = torch.ones(__A , __A ).to(args.device )
head_mask.requires_grad_(requires_grad=__A )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_lowerCamelCase : str = None
_lowerCamelCase : List[Any] = 0.0
_lowerCamelCase : Tuple = 0.0
for step, inputs in enumerate(tqdm(__A , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ):
_lowerCamelCase : List[Any] = tuple(t.to(args.device ) for t in inputs )
((_lowerCamelCase) , ) : Union[str, Any] = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_lowerCamelCase : str = model(__A , labels=__A , head_mask=__A )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(__A ):
_lowerCamelCase : Dict = entropy(attn.detach() , __A )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(__A ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_lowerCamelCase : Union[str, Any] = 2
_lowerCamelCase : int = torch.pow(torch.pow(__A , __A ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
_lowerCamelCase : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("""Attention entropies""" )
print_ad_tensor(__A )
if compute_importance:
logger.info("""Head importance scores""" )
print_ad_tensor(__A )
logger.info("""Head ranked by importance scores""" )
_lowerCamelCase : Dict = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_lowerCamelCase : int = torch.arange(
head_importance.numel() , device=args.device )
_lowerCamelCase : Dict = head_ranks.view_as(__A )
print_ad_tensor(__A )
return attn_entropy, head_importance, total_loss
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = compute_heads_importance(__A , __A , __A , compute_entropy=__A )
_lowerCamelCase : Optional[int] = 1 / loss # instead of downsteam score use the LM loss
logger.info("""Pruning: original score: %f, threshold: %f""" , __A , original_score * args.masking_threshold )
_lowerCamelCase : int = torch.ones_like(__A )
_lowerCamelCase : Any = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_lowerCamelCase : Optional[Any] = original_score
while current_score >= original_score * args.masking_threshold:
_lowerCamelCase : List[Any] = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_lowerCamelCase : int = float("""Inf""" )
_lowerCamelCase : Optional[int] = head_importance.view(-1 ).sort()[1]
if len(__A ) <= num_to_mask:
print("""BREAK BY num_to_mask""" )
break
# mask heads
_lowerCamelCase : str = current_heads_to_mask[:num_to_mask]
logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) )
_lowerCamelCase : Union[str, Any] = new_head_mask.view(-1 )
_lowerCamelCase : Optional[Any] = 0.0
_lowerCamelCase : Tuple = new_head_mask.view_as(__A )
_lowerCamelCase : Optional[Any] = new_head_mask.clone().detach()
print_ad_tensor(__A )
# Compute metric and head importance again
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = compute_heads_importance(
__A , __A , __A , compute_entropy=__A , head_mask=__A )
_lowerCamelCase : str = 1 / loss
logger.info(
"""Masking: current score: %f, remaining heads %d (%.1f percents)""" , __A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info("""Final head mask""" )
print_ad_tensor(__A )
np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() )
return head_mask
def A__ ( __A , __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = datetime.now()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = compute_heads_importance(
__A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A )
_lowerCamelCase : Optional[Any] = 1 / loss
_lowerCamelCase : Tuple = datetime.now() - before_time
_lowerCamelCase : Optional[Any] = sum(p.numel() for p in model.parameters() )
_lowerCamelCase : Any = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__A ) )
}
for k, v in heads_to_prune.items():
if isinstance(__A , __A ):
_lowerCamelCase : Any = [
v,
]
assert sum(len(__A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(__A )
_lowerCamelCase : Union[str, Any] = sum(p.numel() for p in model.parameters() )
_lowerCamelCase : Any = datetime.now()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = compute_heads_importance(
__A , __A , __A , compute_entropy=__A , compute_importance=__A , head_mask=__A , actually_pruned=__A , )
_lowerCamelCase : Dict = 1 / loss
_lowerCamelCase : Tuple = datetime.now() - before_time
logger.info(
"""Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __A , __A , pruned_num_params / original_num_params * 100 , )
logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __A , __A )
logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 )
save_model(__A , args.output_dir )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--data_dir""" , default=__A , type=__A , required=__A , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=__A , type=__A , required=__A , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--output_dir""" , default=__A , type=__A , required=__A , help="""The output directory where the model predictions and checkpoints will be written.""" , )
# Other parameters
parser.add_argument(
"""--config_name""" , default="""""" , type=__A , help="""Pretrained config name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--tokenizer_name""" , default="""""" , type=__A , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , )
parser.add_argument(
"""--cache_dir""" , default=__A , type=__A , help="""Where do you want to store the pre-trained models downloaded from s3""" , )
parser.add_argument(
"""--data_subset""" , type=__A , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" )
parser.add_argument(
"""--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
parser.add_argument(
"""--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" )
parser.add_argument(
"""--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , )
parser.add_argument(
"""--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" )
parser.add_argument(
"""--masking_threshold""" , default=0.9 , type=__A , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , )
parser.add_argument(
"""--masking_amount""" , default=0.1 , type=__A , help="""Amount to heads to masking at each masking step.""" )
parser.add_argument("""--metric_name""" , default="""acc""" , type=__A , help="""Metric to use for head masking.""" )
parser.add_argument(
"""--max_seq_length""" , default=128 , type=__A , help=(
"""The maximum total input sequence length after WordPiece tokenization. \n"""
"""Sequences longer than this will be truncated, sequences shorter padded."""
) , )
parser.add_argument("""--batch_size""" , default=1 , type=__A , help="""Batch size.""" )
parser.add_argument("""--seed""" , type=__A , default=42 )
parser.add_argument("""--local_rank""" , type=__A , default=-1 , help="""local_rank for distributed training on gpus""" )
parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" )
parser.add_argument("""--server_ip""" , type=__A , default="""""" , help="""Can be used for distant debugging.""" )
parser.add_argument("""--server_port""" , type=__A , default="""""" , help="""Can be used for distant debugging.""" )
_lowerCamelCase : Tuple = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("""Waiting for debugger attach""" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__A )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_lowerCamelCase : Tuple = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" )
_lowerCamelCase : Union[str, Any] = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_lowerCamelCase : Union[str, Any] = torch.device("""cuda""" , args.local_rank )
_lowerCamelCase : Optional[int] = 1
torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_lowerCamelCase : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_lowerCamelCase : Optional[Any] = nn.parallel.DistributedDataParallel(
__A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__A )
elif args.n_gpu > 1:
_lowerCamelCase : List[str] = nn.DataParallel(__A )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=__A )
torch.save(__A , os.path.join(args.output_dir , """run_args.bin""" ) )
logger.info("""Training/evaluation parameters %s""" , __A )
# Prepare dataset
_lowerCamelCase : Union[str, Any] = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_lowerCamelCase : Optional[int] = (torch.from_numpy(__A ),)
_lowerCamelCase : int = TensorDataset(*__A )
_lowerCamelCase : str = RandomSampler(__A )
_lowerCamelCase : Dict = DataLoader(__A , sampler=__A , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(__A , __A , __A )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_lowerCamelCase : str = mask_heads(__A , __A , __A )
prune_heads(__A , __A , __A , __A )
if __name__ == "__main__":
main()
| 15 | import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = {}
_lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""]
_lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] )
return output
lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments)
lowerCAmelCase : int =parser.parse_args()
if args.num_workers is None:
lowerCAmelCase : Any =multiprocessing.cpu_count()
lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCAmelCase : str =time.time()
lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train")
print(F"""Dataset loaded in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Dict =time.time()
lowerCAmelCase : Dict =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Tuple =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCAmelCase : str ={
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] =[
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int =[
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 15 | import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = IFPipeline
_snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_snake_case = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case = PipelineTesterMixin.required_optional_params - {'latents'}
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
"""simple docstring"""
return self._get_dummy_components()
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]:
"""simple docstring"""
if str(_UpperCamelCase).startswith("""mps"""):
_lowerCamelCase : int = torch.manual_seed(_UpperCamelCase)
else:
_lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase)
_lowerCamelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1)
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_local()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa)
_lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""")
_lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""")
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_lowerCamelCase : str = None
_lowerCamelCase : str = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components)
_lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components)
_lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_lowerCamelCase : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : str = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Dict = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Any = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : List[str] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Optional[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def A__ ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 15 | 1 |
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Any = 0
while number > 0:
_lowerCamelCase : List[Any] = number % 10
sum_of_digits += last_digit
_lowerCamelCase : str = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def A__ ( __A = 100 ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = factorial(__A )
_lowerCamelCase : List[Any] = split_and_add(__A )
return result
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 15 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : Any =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
"microsoft/swin-tiny-patch4-window7-224": (
"https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'swin'
_snake_case = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : List[str] = image_size
_lowerCamelCase : Tuple = patch_size
_lowerCamelCase : Dict = num_channels
_lowerCamelCase : Union[str, Any] = embed_dim
_lowerCamelCase : str = depths
_lowerCamelCase : str = len(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = num_heads
_lowerCamelCase : Tuple = window_size
_lowerCamelCase : int = mlp_ratio
_lowerCamelCase : Optional[int] = qkv_bias
_lowerCamelCase : List[str] = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : Tuple = drop_path_rate
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Dict = use_absolute_embeddings
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : str = initializer_range
_lowerCamelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1))
_lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)]
_lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices(
out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = version.parse('1.11' )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float:
"""simple docstring"""
return 1E-4
| 15 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
lowerCAmelCase : Any =None
lowerCAmelCase : Tuple =logging.get_logger(__name__)
lowerCAmelCase : Tuple ="▁"
lowerCAmelCase : str ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase : int ={
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"},
"tokenizer_file": {
"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json"
},
}
lowerCAmelCase : Tuple ={
"google/pegasus-xsum": 512,
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = PegasusTokenizer
_snake_case = ['input_ids', 'attention_mask']
def __init__( self : Tuple , _UpperCamelCase : int=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : List[str]="<pad>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : int="<unk>" , _UpperCamelCase : Any="<mask_2>" , _UpperCamelCase : Optional[int]="<mask_1>" , _UpperCamelCase : int=None , _UpperCamelCase : Union[str, Any]=103 , **_UpperCamelCase : Tuple , ) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : List[str] = offset
if additional_special_tokens is not None:
if not isinstance(_UpperCamelCase , _UpperCamelCase):
raise TypeError(
F"""additional_special_tokens should be of type {type(_UpperCamelCase)}, but is"""
F""" {type(_UpperCamelCase)}""")
_lowerCamelCase : Any = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_UpperCamelCase) , self.offset - 1)
]
if len(set(_UpperCamelCase)) != len(_UpperCamelCase):
raise ValueError(
"""Please make sure that the provided additional_special_tokens do not contain an incorrectly"""
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""")
_lowerCamelCase : str = additional_special_tokens_extended
else:
_lowerCamelCase : List[str] = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset)]
super().__init__(
_UpperCamelCase , tokenizer_file=_UpperCamelCase , pad_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , mask_token=_UpperCamelCase , mask_token_sent=_UpperCamelCase , offset=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : str = vocab_file
_lowerCamelCase : Any = False if not self.vocab_file else True
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Any) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Dict = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens) + 3)):
raise ValueError(
"""There should be 3 special tokens: mask_token, pad_token, and eos_token +"""
F""" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}""")
return [1 if x in all_special_ids else 0 for x in seq]
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List , _UpperCamelCase : Optional[List] = None , _UpperCamelCase : bool = False) ->List[int]:
"""simple docstring"""
if already_has_special_tokens:
return self._special_token_mask(_UpperCamelCase)
elif token_ids_a is None:
return self._special_token_mask(_UpperCamelCase) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a) + [1]
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple=None) ->List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""")
if not os.path.isdir(_UpperCamelCase):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
_lowerCamelCase : List[str] = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCamelCase):
copyfile(self.vocab_file , _UpperCamelCase)
return (out_vocab_file,)
| 15 | import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = (EulerDiscreteScheduler,)
_snake_case = 10
def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCamelCase)
return config
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Any = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : str = torch.manual_seed(0)
_lowerCamelCase : str = self.dummy_model()
_lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : int = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Dict = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : int = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""")
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : Any = torch.manual_seed(0)
_lowerCamelCase : int = self.dummy_model()
_lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : Dict = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Tuple = output.prev_sample
_lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : int = self.get_scheduler_config()
_lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Tuple = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : List[Any] = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config()
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : int = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : int = output.prev_sample
_lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
| 15 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = ViTImageProcessor if is_vision_available() else None
@property
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (3, 32, 128)
_lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase))))
_lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(_UpperCamelCase) + """\n""")
_lowerCamelCase : Any = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)
_lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1))
return image_input
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = self.get_image_processor()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
_lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0)
_lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
_lowerCamelCase : int = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""")
_lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Optional[int] = """test"""
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase)
_lowerCamelCase : Dict = tokenizer(_UpperCamelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = """test"""
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""])
# test if it raises when no input is passed
with pytest.raises(_UpperCamelCase):
processor()
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Any = processor.char_decode(_UpperCamelCase)
_lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase)
_lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = None
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = torch.randn(1 , 27 , 38)
_lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257)
_lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522)
_lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input])
self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
| 15 | import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Dict =logging.get_logger(__name__)
lowerCAmelCase : Dict ={"vocab_file": "vocab.json"}
lowerCAmelCase : List[str] ={
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
lowerCAmelCase : int ={"mgp-str": 27}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , )
with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle:
_lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
return len(self.vocab)
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = []
for s in text:
char_tokens.extend(_UpperCamelCase)
return char_tokens
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]:
"""simple docstring"""
return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict:
"""simple docstring"""
return self.decoder.get(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase):
logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase))
return
_lowerCamelCase : Tuple = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""")
return (vocab_file,)
| 15 | 1 |
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=__A , exist_ok=__A )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , )
else:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , )
@torch.no_grad()
def A__ ( __A , __A , __A , __A = False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCamelCase : str = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCamelCase : List[str] = """cpu"""
_lowerCamelCase : Dict = Path(__A )
# VAE DECODER
_lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCamelCase : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCamelCase : Tuple = vae_decoder.decode
onnx_export(
__A , model_args=(
torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__A , )
del vae_decoder
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowerCAmelCase : Optional[Any] =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 15 | import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""c"""])
self.assertEqual(_UpperCamelCase , [2])
# Out indices set to match out features
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features set to match out indices
_lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features selected from negative indices
_lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [-3, -1])
def _SCREAMING_SNAKE_CASE ( self : int) ->int:
"""simple docstring"""
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase)
# Out features must be a list
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""])
# Out features must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""])
# Out indices must be a list or tuple
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""])
# Out indices must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""])
# Out features and out indices must be the same length
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""])
# Out features should match out indices
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""])
# Out features and out indices should be in order
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""])
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""])
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : int = BackboneMixin()
_lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""]
_lowerCamelCase : Tuple = ["""a""", """c"""]
_lowerCamelCase : List[Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
_lowerCamelCase : str = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""])
self.assertEqual(backbone.out_indices , [0, 1])
_lowerCamelCase : Optional[int] = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [-3, -1])
| 15 | 1 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCamelCase : int , **_UpperCamelCase : List[Any]) ->None:
"""simple docstring"""
warnings.warn(
"""The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use DeformableDetrImageProcessor instead.""" , _UpperCamelCase , )
super().__init__(*_UpperCamelCase , **_UpperCamelCase)
| 15 | import math
def A__ ( __A ):
'''simple docstring'''
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def A__ ( __A , __A=1 , **__A ):
'''simple docstring'''
_lowerCamelCase : Dict = factor * value
_lowerCamelCase : str = value
while not is_prime(__A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **__A )
return value
| 15 | 1 |
from scipy.stats import pearsonr
import datasets
lowerCAmelCase : Any ="\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n"
lowerCAmelCase : List[str] ="\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n"
lowerCAmelCase : Union[str, Any] ="\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float"""),
"""references""": datasets.Value("""float"""),
}) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]=False) ->Optional[Any]:
"""simple docstring"""
if return_pvalue:
_lowerCamelCase : Union[str, Any] = pearsonr(_UpperCamelCase , _UpperCamelCase)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(_UpperCamelCase , _UpperCamelCase)[0])}
| 15 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple:
"""simple docstring"""
super().__init__(*_UpperCamelCase , **_UpperCamelCase)
requires_backends(self , """vision""")
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING)
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {}
if top_k is not None:
_lowerCamelCase : str = top_k
return {}, {}, postprocess_params
def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict:
"""simple docstring"""
return super().__call__(_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Tuple = load_image(_UpperCamelCase)
_lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework)
return model_inputs
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Any = self.model(**_UpperCamelCase)
return model_outputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str:
"""simple docstring"""
if top_k > self.model.config.num_labels:
_lowerCamelCase : Union[str, Any] = self.model.config.num_labels
if self.framework == "pt":
_lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0]
_lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase)
elif self.framework == "tf":
_lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0]
_lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase)
_lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
_lowerCamelCase : str = scores.tolist()
_lowerCamelCase : str = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
| 15 | 1 |
import math
from collections.abc import Callable
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : float = xa
_lowerCamelCase : float = xa
while True:
if x_n == x_na or function(__A ) == function(__A ):
raise ZeroDivisionError("""float division by zero, could not find root""" )
_lowerCamelCase : float = x_na - (
function(__A ) / ((function(__A ) - function(__A )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
_lowerCamelCase : Tuple = x_na
_lowerCamelCase : Dict = x_na
def A__ ( __A ):
'''simple docstring'''
return math.pow(__A , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 15 | import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = ViTImageProcessor if is_vision_available() else None
@property
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (3, 32, 128)
_lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase))))
_lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(_UpperCamelCase) + """\n""")
_lowerCamelCase : Any = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)
_lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1))
return image_input
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = self.get_image_processor()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
_lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0)
_lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
_lowerCamelCase : int = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""")
_lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Optional[int] = """test"""
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase)
_lowerCamelCase : Dict = tokenizer(_UpperCamelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = """test"""
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""])
# test if it raises when no input is passed
with pytest.raises(_UpperCamelCase):
processor()
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Any = processor.char_decode(_UpperCamelCase)
_lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase)
_lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = None
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = torch.randn(1 , 27 , 38)
_lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257)
_lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522)
_lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input])
self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
| 15 | 1 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
lowerCAmelCase : str ="\nimport os\n"
lowerCAmelCase : int ="\ndef foo():\n import os\n return False\n"
lowerCAmelCase : Optional[int] ="\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n"
lowerCAmelCase : List[Any] ="\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n"
lowerCAmelCase : Dict ="\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n"
lowerCAmelCase : Union[str, Any] ="\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n"
lowerCAmelCase : Any ="\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n"
lowerCAmelCase : Tuple ="\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n"
lowerCAmelCase : Optional[Any] ="\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n"
lowerCAmelCase : Optional[Any] ="\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n"
lowerCAmelCase : Optional[Any] =[
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , __A )
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = os.path.join(__A , """test_file.py""" )
with open(__A , """w""" ) as _tmp_file:
_tmp_file.write(__A )
_lowerCamelCase : Optional[int] = get_imports(__A )
assert parsed_imports == ["os"]
| 15 | import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__A , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__A )
return parser.parse_args()
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[str] = parse_args()
# Import training_script as a module.
_lowerCamelCase : List[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowerCamelCase : Optional[Any] = script_fpath.stem
_lowerCamelCase : Dict = importlib.import_module(__A )
# Patch sys.argv
_lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 15 | 1 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float:
"""simple docstring"""
return 0.0
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Tuple = [1] + [0] * (size - 1)
_lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) )
_lowerCamelCase : List[Any] = 20 * np.logaa(__A )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCamelCase : Any = get_bounds(__A , __A )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__A )
plt.show()
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
_lowerCamelCase : int = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Any = np.angle(np.fft.fft(__A ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__A , -2 * pi ) )
plt.show()
| 15 | def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
if n == 0:
return 0
_lowerCamelCase : Tuple = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
_lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def A__ ( __A , __A , __A ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowerCamelCase : int = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Optional[Any] = max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
_lowerCamelCase : Optional[Any] = max_revenue
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_lowerCamelCase : Any = 0
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max_rev[i]
for j in range(1 , i + 1 ):
_lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] )
_lowerCamelCase : int = max_revenue_i
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
if n < 0:
_lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__A )
if n > len(__A ):
_lowerCamelCase : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(__A )}"""
)
raise ValueError(__A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : str = [6, 10, 12, 15, 20, 23]
_lowerCamelCase : List[str] = len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowerCamelCase : Tuple = 36
_lowerCamelCase : Any = top_down_cut_rod(__A , __A )
_lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A )
_lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 | 1 |
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
_lowerCamelCase : str = n - k
# Calculate C(n,k)
for i in range(__A ):
result *= n - i
result //= i + 1
return result
def A__ ( __A ):
'''simple docstring'''
return binomial_coefficient(2 * node_count , __A ) // (node_count + 1)
def A__ ( __A ):
'''simple docstring'''
if n < 0:
raise ValueError("""factorial() not defined for negative values""" )
_lowerCamelCase : Union[str, Any] = 1
for i in range(1 , n + 1 ):
result *= i
return result
def A__ ( __A ):
'''simple docstring'''
return catalan_number(__A ) * factorial(__A )
if __name__ == "__main__":
lowerCAmelCase : List[Any] =int(input("Enter the number of nodes: ").strip() or 0)
if node_count <= 0:
raise ValueError("We need some nodes to work with.")
print(
F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """
F"""binary trees and {catalan_number(node_count)} binary search trees."""
)
| 15 | from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = key
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Any = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Optional[Any] = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 15 | 1 |
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : str = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
"""decoder.output_projection.weight""",
]
for k in ignore_keys:
state_dict.pop(__A , __A )
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase : Dict = emb.weight.shape
_lowerCamelCase : List[str] = nn.Linear(__A , __A , bias=__A )
_lowerCamelCase : Optional[Any] = emb.weight.data
return lin_layer
def A__ ( __A , __A="facebook/mbart-large-en-ro" , __A=False , __A=False ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = torch.load(__A , map_location="""cpu""" )["""model"""]
remove_ignore_keys_(__A )
_lowerCamelCase : Optional[Any] = state_dict["""encoder.embed_tokens.weight"""].shape[0]
_lowerCamelCase : str = MBartConfig.from_pretrained(__A , vocab_size=__A )
if mbart_aa and finetuned:
_lowerCamelCase : Union[str, Any] = """relu"""
_lowerCamelCase : List[Any] = state_dict["""decoder.embed_tokens.weight"""]
_lowerCamelCase : Any = MBartForConditionalGeneration(__A )
model.model.load_state_dict(__A )
if finetuned:
_lowerCamelCase : Dict = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem."
)
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--hf_config",
default="facebook/mbart-large-cc25",
type=str,
help="Which huggingface architecture to use: mbart-large",
)
parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint")
parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint")
lowerCAmelCase : Dict =parser.parse_args()
lowerCAmelCase : Any =convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path)
| 15 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
_UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths}
_lowerCamelCase : Any = Text(
cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
if self.streaming:
_lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Any = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
self.builder.download_and_prepare(
download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , )
_lowerCamelCase : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory)
return dataset
| 15 | 1 |
import socket
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Tuple = socket.socket(socket.AF_INET , socket.SOCK_STREAM )
_lowerCamelCase : List[str] = socket.gethostname()
_lowerCamelCase : Tuple = 12_312
sock.connect((host, port) )
sock.send(B"""Hello server!""" )
with open("""Received_file""" , """wb""" ) as out_file:
print("""File opened""" )
print("""Receiving data...""" )
while True:
_lowerCamelCase : Union[str, Any] = sock.recv(1_024 )
if not data:
break
out_file.write(__A )
print("""Successfully received the file""" )
sock.close()
print("""Connection closed""" )
if __name__ == "__main__":
main()
| 15 | lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | 1 |
from __future__ import annotations
lowerCAmelCase : Optional[int] ="Muhammad Umer Farooq"
lowerCAmelCase : Optional[Any] ="MIT"
lowerCAmelCase : Any ="1.0.0"
lowerCAmelCase : Tuple ="Muhammad Umer Farooq"
lowerCAmelCase : Union[str, Any] ="contact@muhammadumerfarooq.me"
lowerCAmelCase : Union[str, Any] ="Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCamelCase : str) ->None:
"""simple docstring"""
super().__init__()
_lowerCamelCase : list[str] = []
_lowerCamelCase : Any = domain
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : list[tuple[str, str | None]]) ->None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
_lowerCamelCase : List[Any] = parse.urljoin(self.domain , _UpperCamelCase)
self.urls.append(_UpperCamelCase)
def A__ ( __A ):
'''simple docstring'''
return ".".join(get_sub_domain_name(__A ).split(""".""" )[-2:] )
def A__ ( __A ):
'''simple docstring'''
return parse.urlparse(__A ).netloc
def A__ ( __A = "https://github.com" ):
'''simple docstring'''
_lowerCamelCase : int = get_domain_name(__A )
# Initialize the parser
_lowerCamelCase : Union[str, Any] = Parser(__A )
try:
# Open URL
_lowerCamelCase : Optional[int] = requests.get(__A )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
_lowerCamelCase : Union[str, Any] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
_lowerCamelCase : Any = requests.get(__A )
# Get the valid email.
_lowerCamelCase : Optional[int] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__A )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__A )
if __name__ == "__main__":
lowerCAmelCase : Dict =emails_from_url("https://github.com")
print(F"""{len(emails)} emails found:""")
print("\n".join(sorted(emails)))
| 15 | from __future__ import annotations
lowerCAmelCase : int =[]
def A__ ( __A , __A , __A ):
'''simple docstring'''
for i in range(len(__A ) ):
if board[row][i] == 1:
return False
for i in range(len(__A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( __A , __A ):
'''simple docstring'''
if row >= len(__A ):
solution.append(__A )
printboard(__A )
print()
return True
for i in range(len(__A ) ):
if is_safe(__A , __A , __A ):
_lowerCamelCase : int = 1
solve(__A , row + 1 )
_lowerCamelCase : List[str] = 0
return False
def A__ ( __A ):
'''simple docstring'''
for i in range(len(__A ) ):
for j in range(len(__A ) ):
if board[i][j] == 1:
print("""Q""" , end=""" """ )
else:
print(""".""" , end=""" """ )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase : int =8
lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 15 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowerCAmelCase : int =logging.get_logger(__name__)
lowerCAmelCase : Any ={
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'deberta-v2'
def __init__( self : int , _UpperCamelCase : Tuple=12_8100 , _UpperCamelCase : int=1536 , _UpperCamelCase : Union[str, Any]=24 , _UpperCamelCase : Union[str, Any]=24 , _UpperCamelCase : Optional[Any]=6144 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : Optional[int]=1E-7 , _UpperCamelCase : str=False , _UpperCamelCase : Tuple=-1 , _UpperCamelCase : Tuple=0 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : int="gelu" , **_UpperCamelCase : int , ) ->Any:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Dict = hidden_size
_lowerCamelCase : str = num_hidden_layers
_lowerCamelCase : Dict = num_attention_heads
_lowerCamelCase : List[str] = intermediate_size
_lowerCamelCase : Tuple = hidden_act
_lowerCamelCase : List[str] = hidden_dropout_prob
_lowerCamelCase : int = attention_probs_dropout_prob
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : Any = type_vocab_size
_lowerCamelCase : Optional[Any] = initializer_range
_lowerCamelCase : Union[str, Any] = relative_attention
_lowerCamelCase : int = max_relative_positions
_lowerCamelCase : str = pad_token_id
_lowerCamelCase : int = position_biased_input
# Backwards compatibility
if type(_UpperCamelCase) == str:
_lowerCamelCase : List[str] = [x.strip() for x in pos_att_type.lower().split("""|""")]
_lowerCamelCase : List[Any] = pos_att_type
_lowerCamelCase : Dict = vocab_size
_lowerCamelCase : Optional[int] = layer_norm_eps
_lowerCamelCase : int = kwargs.get("""pooler_hidden_size""" , _UpperCamelCase)
_lowerCamelCase : str = pooler_dropout
_lowerCamelCase : Optional[Any] = pooler_hidden_act
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_lowerCamelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCamelCase : int = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)])
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)])
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->int:
"""simple docstring"""
return 12
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _UpperCamelCase : int = -1 , _UpperCamelCase : int = -1 , _UpperCamelCase : int = -1 , _UpperCamelCase : bool = False , _UpperCamelCase : Optional["TensorType"] = None , _UpperCamelCase : int = 3 , _UpperCamelCase : int = 40 , _UpperCamelCase : int = 40 , _UpperCamelCase : "PreTrainedTokenizerBase" = None , ) ->Mapping[str, Any]:
"""simple docstring"""
_lowerCamelCase : Any = super().generate_dummy_inputs(preprocessor=_UpperCamelCase , framework=_UpperCamelCase)
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 15 | import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCAmelCase : int ={
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A__ ( __A , __A , __A , __A=None ):
'''simple docstring'''
# Initialise PyTorch model
_lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A )
_lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowerCamelCase : int = finetuning_task
_lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowerCamelCase : int = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
_lowerCamelCase : Dict = finetuning_task
_lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A )
else:
_lowerCamelCase : Any = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : Optional[Any] = os.path.join(__A , __A )
_lowerCamelCase : Any = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 15 | 1 |
import qiskit
def A__ ( __A = 2 ):
'''simple docstring'''
_lowerCamelCase : str = qubits
# Using Aer's simulator
_lowerCamelCase : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" )
# Creating a Quantum Circuit acting on the q register
_lowerCamelCase : Dict = qiskit.QuantumCircuit(__A , __A )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , __A ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , __A )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(__A ) ) , list(range(__A ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
_lowerCamelCase : Dict = qiskit.execute(__A , __A , shots=1_000 )
return job.result().get_counts(__A )
if __name__ == "__main__":
print(F"""Total count for various states are: {quantum_entanglement(3)}""")
| 15 | def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 0
for ch in input_str:
_lowerCamelCase : Optional[Any] = ord(__A )
_lowerCamelCase : List[str] = pow(2 , __A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def A__ ( __A , __A=False ):
'''simple docstring'''
try:
_lowerCamelCase : List[str] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_lowerCamelCase : Optional[int] = default
else:
# KEY is set, convert it to True or False.
try:
_lowerCamelCase : List[str] = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
lowerCAmelCase : str =parse_flag_from_env("RUN_SLOW", default=False)
def A__ ( __A ):
'''simple docstring'''
return unittest.skip("""Test was skipped""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(_run_slow_tests , """test is slow""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(__A )
def A__ ( __A=None , __A=None ):
'''simple docstring'''
if test_case is None:
return partial(__A , version=__A )
return unittest.skipUnless(is_torch_version(""">=""" , __A ) , F"""test requires torch version >= {version}""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(__A )
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(__A )
lowerCAmelCase : Union[str, Any] =(
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def A__ ( __A ):
'''simple docstring'''
return unittest.skipUnless(
_atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(__A )
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = True
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = tempfile.mkdtemp()
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int) ->List[Any]:
"""simple docstring"""
if os.path.exists(cls.tmpdir):
shutil.rmtree(cls.tmpdir)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
if self.clear_on_setup:
for path in Path(self.tmpdir).glob("""**/*"""):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(_UpperCamelCase)
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Union[mock.Mock, List[mock.Mock]]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = mocks if isinstance(_UpperCamelCase , (tuple, list)) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop)
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = AcceleratorState()
_lowerCamelCase : Tuple = tensor[None].clone().to(state.device )
_lowerCamelCase : int = gather(__A ).cpu()
_lowerCamelCase : Optional[int] = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , __A ):
return False
return True
class __snake_case :
'''simple docstring'''
def __init__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->List[str]:
"""simple docstring"""
_lowerCamelCase : List[str] = returncode
_lowerCamelCase : Union[str, Any] = stdout
_lowerCamelCase : List[Any] = stderr
async def A__ ( __A , __A ):
'''simple docstring'''
while True:
_lowerCamelCase : List[str] = await stream.readline()
if line:
callback(__A )
else:
break
async def A__ ( __A , __A=None , __A=None , __A=None , __A=False , __A=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ , """ """.join(__A ) )
_lowerCamelCase : Dict = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_lowerCamelCase : int = []
_lowerCamelCase : int = []
def tee(__A , __A , __A , __A="" ):
_lowerCamelCase : Dict = line.decode("""utf-8""" ).rstrip()
sink.append(__A )
if not quiet:
print(__A , __A , file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label="""stdout:""" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label="""stderr:""" ) ) ),
] , timeout=__A , )
return _RunOutput(await p.wait() , __A , __A )
def A__ ( __A , __A=None , __A=None , __A=180 , __A=False , __A=True ):
'''simple docstring'''
_lowerCamelCase : List[Any] = asyncio.get_event_loop()
_lowerCamelCase : Any = loop.run_until_complete(
_stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) )
_lowerCamelCase : Optional[int] = """ """.join(__A )
if result.returncode > 0:
_lowerCamelCase : Optional[Any] = """\n""".join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
return result
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
pass
def A__ ( __A , __A=False ):
'''simple docstring'''
try:
_lowerCamelCase : Optional[Any] = subprocess.check_output(__A , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__A , """decode""" ):
_lowerCamelCase : List[str] = output.decode("""utf-8""" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F"""Command `{' '.join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
| 15 | import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
_lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""")
_lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : str = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""")
_lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : Union[str, Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
| 15 | 1 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def A__ ( __A ): # picklable for multiprocessing
'''simple docstring'''
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def A__ ( ):
'''simple docstring'''
with parallel_backend("""spark""" ):
assert ParallelBackendConfig.backend_name == "spark"
_lowerCamelCase : List[str] = [1, 2, 3]
with pytest.raises(__A ):
with parallel_backend("""unsupported backend""" ):
map_nested(__A , __A , num_proc=2 )
with pytest.raises(__A ):
with parallel_backend("""unsupported backend""" ):
map_nested(__A , __A , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("""num_proc""" , [2, -1] )
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = [1, 2]
_lowerCamelCase : str = {"""a""": 1, """b""": 2}
_lowerCamelCase : Dict = {"""a""": [1, 2], """b""": [3, 4]}
_lowerCamelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2}
_lowerCamelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4}
_lowerCamelCase : Dict = [2, 3]
_lowerCamelCase : str = {"""a""": 2, """b""": 3}
_lowerCamelCase : Tuple = {"""a""": [2, 3], """b""": [4, 5]}
_lowerCamelCase : Union[str, Any] = {"""a""": {"""1""": 2}, """b""": 3}
_lowerCamelCase : List[Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5}
with parallel_backend("""spark""" ):
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
assert map_nested(__A , __A , num_proc=__A ) == expected_map_nested_sa
| 15 | from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['pixel_values']
def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = do_resize
_lowerCamelCase : int = size
_lowerCamelCase : Optional[int] = resample
_lowerCamelCase : int = do_center_crop
_lowerCamelCase : Optional[Any] = crop_size
_lowerCamelCase : Union[str, Any] = do_rescale
_lowerCamelCase : List[str] = rescale_factor
_lowerCamelCase : List[Any] = do_normalize
_lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return resize(
_UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image:
"""simple docstring"""
_lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCamelCase : List[str] = resample if resample is not None else self.resample
_lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
_lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean
_lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
_lowerCamelCase : Optional[Any] = size if size is not None else self.size
_lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = make_list_of_images(_UpperCamelCase)
if not valid_images(_UpperCamelCase):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
_lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images]
if do_resize:
_lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images]
if do_center_crop:
_lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images]
if do_rescale:
_lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images]
if do_normalize:
_lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images]
_lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images]
_lowerCamelCase : int = {"""pixel_values""": images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
| 15 | 1 |
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
def A__ ( __A , __A ):
'''simple docstring'''
def run_func(__A ):
@wraps(__A )
def run_in_eager_mode(*__A , **__A ):
return func(*__A , **__A )
@wraps(__A )
@tf.function(experimental_compile=__A )
def run_in_graph_mode(*__A , **__A ):
return func(*__A , **__A )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = random.Random()
_lowerCamelCase : Any = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(__A , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 42
_snake_case = 42
_snake_case = "TensorFlow"
@property
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
"""simple docstring"""
return tf.__version__
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int) ->float:
"""simple docstring"""
_lowerCamelCase : List[str] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""")
_lowerCamelCase : Optional[Any] = self._prepare_inference_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
return self._measure_speed(_inference)
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int) ->float:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""")
_lowerCamelCase : str = self._prepare_train_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
return self._measure_speed(_train)
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int) ->[Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCamelCase)
_lowerCamelCase : Optional[Any] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""")
_lowerCamelCase : List[Any] = self._prepare_inference_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
return self._measure_memory(_inference)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int) ->[Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCamelCase)
_lowerCamelCase : Optional[int] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""")
_lowerCamelCase : Optional[int] = self._prepare_train_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
return self._measure_memory(_train)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int) ->Callable[[], None]:
"""simple docstring"""
_lowerCamelCase : Tuple = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""")
_lowerCamelCase : Dict = (
hasattr(_UpperCamelCase , """architectures""")
and isinstance(config.architectures , _UpperCamelCase)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_lowerCamelCase : Dict = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_lowerCamelCase : List[Any] = __import__("""transformers""" , fromlist=[model_class])
_lowerCamelCase : int = getattr(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = model_cls(_UpperCamelCase)
except ImportError:
raise ImportError(
F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""")
else:
_lowerCamelCase : List[Any] = TF_MODEL_MAPPING[config.__class__](_UpperCamelCase)
# encoder-decoder has vocab size saved differently
_lowerCamelCase : int = config.vocab_size if hasattr(_UpperCamelCase , """vocab_size""") else config.encoder.vocab_size
_lowerCamelCase : List[Any] = random_input_ids(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla)
def encoder_decoder_forward():
return model(_UpperCamelCase , decoder_input_ids=_UpperCamelCase , training=_UpperCamelCase)
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla)
def encoder_forward():
return model(_UpperCamelCase , training=_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : int) ->Callable[[], None]:
"""simple docstring"""
_lowerCamelCase : Any = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""")
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""")
_lowerCamelCase : List[str] = (
hasattr(_UpperCamelCase , """architectures""")
and isinstance(config.architectures , _UpperCamelCase)
and len(config.architectures) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_lowerCamelCase : Union[str, Any] = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
_lowerCamelCase : str = __import__("""transformers""" , fromlist=[model_class])
_lowerCamelCase : int = getattr(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = model_cls(_UpperCamelCase)
except ImportError:
raise ImportError(
F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""")
else:
_lowerCamelCase : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCamelCase)
# encoder-decoder has vocab size saved differently
_lowerCamelCase : int = config.vocab_size if hasattr(_UpperCamelCase , """vocab_size""") else config.encoder.vocab_size
_lowerCamelCase : Union[str, Any] = random_input_ids(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla)
def encoder_decoder_train():
_lowerCamelCase : Dict = model(_UpperCamelCase , decoder_input_ids=_UpperCamelCase , labels=_UpperCamelCase , training=_UpperCamelCase)[0]
_lowerCamelCase : int = tf.gradients(_UpperCamelCase , model.trainable_variables)
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla)
def encoder_train():
_lowerCamelCase : Dict = model(_UpperCamelCase , labels=_UpperCamelCase , training=_UpperCamelCase)[0]
_lowerCamelCase : Any = tf.gradients(_UpperCamelCase , model.trainable_variables)
return gradients
_lowerCamelCase : List[str] = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int) ->float:
"""simple docstring"""
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""")
timeit.repeat(_UpperCamelCase , repeat=1 , number=5)
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_lowerCamelCase : Tuple = timeit.repeat(
_UpperCamelCase , repeat=self.args.repeat , number=10 , )
return min(_UpperCamelCase) / 1_0.0
except ResourceExhaustedError as e:
self.print_fn(F"""Doesn't fit on GPU. {e}""")
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Callable[[], None]) ->[Memory, MemorySummary]:
"""simple docstring"""
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""")
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""")
_lowerCamelCase : List[str] = start_memory_tracing("""transformers""")
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""")
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""")
_lowerCamelCase : Optional[Any] = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""")
# init nvml
nvml.nvmlInit()
func()
_lowerCamelCase : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
_lowerCamelCase : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(_UpperCamelCase)
_lowerCamelCase : int = meminfo.used
_lowerCamelCase : List[Any] = Memory(_UpperCamelCase)
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""")
_lowerCamelCase : str = None
else:
_lowerCamelCase : Union[str, Any] = measure_peak_memory_cpu(_UpperCamelCase)
_lowerCamelCase : List[Any] = Memory(_UpperCamelCase) if isinstance(_UpperCamelCase , _UpperCamelCase) else memory_bytes
if self.args.trace_memory_line_by_line:
_lowerCamelCase : Any = stop_memory_tracing(_UpperCamelCase)
if memory is None:
_lowerCamelCase : Union[str, Any] = summary.total
else:
_lowerCamelCase : List[str] = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(F"""Doesn't fit on GPU. {e}""")
return "N/A", None
| 15 | from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float:
"""simple docstring"""
return 0.0
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Tuple = [1] + [0] * (size - 1)
_lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) )
_lowerCamelCase : List[Any] = 20 * np.logaa(__A )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCamelCase : Any = get_bounds(__A , __A )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__A )
plt.show()
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
_lowerCamelCase : int = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Any = np.angle(np.fft.fft(__A ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__A , -2 * pi ) )
plt.show()
| 15 | 1 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class __snake_case :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple=13 , _UpperCamelCase : List[Any]=7 , _UpperCamelCase : Dict=True , _UpperCamelCase : str=True , _UpperCamelCase : Any=True , _UpperCamelCase : Any=True , _UpperCamelCase : str=99 , _UpperCamelCase : Any=32 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : str=4 , _UpperCamelCase : Tuple=37 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Tuple=512 , _UpperCamelCase : Union[str, Any]=16 , _UpperCamelCase : List[str]=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[Any]="None" , _UpperCamelCase : int=3 , _UpperCamelCase : Any=4 , _UpperCamelCase : Tuple=None , ) ->Any:
"""simple docstring"""
_lowerCamelCase : Any = parent
_lowerCamelCase : Tuple = batch_size
_lowerCamelCase : Tuple = seq_length
_lowerCamelCase : Tuple = is_training
_lowerCamelCase : Optional[Any] = use_input_mask
_lowerCamelCase : Dict = use_token_type_ids
_lowerCamelCase : Optional[int] = use_labels
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Optional[int] = hidden_size
_lowerCamelCase : List[str] = num_hidden_layers
_lowerCamelCase : Any = num_attention_heads
_lowerCamelCase : int = intermediate_size
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : Optional[int] = type_vocab_size
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : List[Any] = initializer_range
_lowerCamelCase : Tuple = num_labels
_lowerCamelCase : Tuple = num_choices
_lowerCamelCase : List[str] = relative_attention
_lowerCamelCase : List[Any] = position_biased_input
_lowerCamelCase : str = pos_att_type
_lowerCamelCase : int = scope
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
"""simple docstring"""
_lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_lowerCamelCase : List[str] = None
if self.use_input_mask:
_lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length])
_lowerCamelCase : List[Any] = None
if self.use_token_type_ids:
_lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
_lowerCamelCase : List[Any] = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : str = None
if self.use_labels:
_lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
_lowerCamelCase : int = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_UpperCamelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Tuple) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Tuple = TFDebertaVaModel(config=_UpperCamelCase)
_lowerCamelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_lowerCamelCase : Dict = [input_ids, input_mask]
_lowerCamelCase : Optional[int] = model(_UpperCamelCase)
_lowerCamelCase : Dict = model(_UpperCamelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str]) ->Dict:
"""simple docstring"""
_lowerCamelCase : List[Any] = TFDebertaVaForMaskedLM(config=_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCamelCase : Any = model(_UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Optional[int] = self.num_labels
_lowerCamelCase : List[str] = TFDebertaVaForSequenceClassification(config=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCamelCase : Optional[int] = model(_UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : int) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : str = self.num_labels
_lowerCamelCase : Optional[int] = TFDebertaVaForTokenClassification(config=_UpperCamelCase)
_lowerCamelCase : List[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCamelCase : Any = model(_UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict) ->int:
"""simple docstring"""
_lowerCamelCase : str = TFDebertaVaForQuestionAnswering(config=_UpperCamelCase)
_lowerCamelCase : List[str] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
_lowerCamelCase : int = model(_UpperCamelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) ,
) : Optional[int] = config_and_inputs
_lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
_snake_case = (
{
'feature-extraction': TFDebertaVaModel,
'fill-mask': TFDebertaVaForMaskedLM,
'question-answering': TFDebertaVaForQuestionAnswering,
'text-classification': TFDebertaVaForSequenceClassification,
'token-classification': TFDebertaVaForTokenClassification,
'zero-shot': TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
_snake_case = False
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = TFDebertaVaModelTester(self)
_lowerCamelCase : Dict = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : int) ->str:
"""simple docstring"""
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
"""simple docstring"""
_lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
_lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
"""simple docstring"""
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
"""simple docstring"""
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase)
@slow
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Any = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""")
self.assertIsNotNone(_UpperCamelCase)
@require_tf
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason="""Model not available yet""")
def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
"""simple docstring"""
pass
@slow
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""")
_lowerCamelCase : Optional[Any] = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]])
_lowerCamelCase : Optional[int] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
_lowerCamelCase : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase)[0]
_lowerCamelCase : Dict = tf.constant(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]])
tf.debugging.assert_near(output[:, 1:4, 1:4] , _UpperCamelCase , atol=1E-4)
| 15 | import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=__A , exist_ok=__A )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , )
else:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , )
@torch.no_grad()
def A__ ( __A , __A , __A , __A = False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCamelCase : str = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCamelCase : List[str] = """cpu"""
_lowerCamelCase : Dict = Path(__A )
# VAE DECODER
_lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCamelCase : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCamelCase : Tuple = vae_decoder.decode
onnx_export(
__A , model_args=(
torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__A , )
del vae_decoder
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowerCAmelCase : Optional[Any] =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 15 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : str =logging.get_logger(__name__)
lowerCAmelCase : Dict ={
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'cvt'
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=3 , _UpperCamelCase : List[str]=[7, 3, 3] , _UpperCamelCase : Dict=[4, 2, 2] , _UpperCamelCase : List[Any]=[2, 1, 1] , _UpperCamelCase : Union[str, Any]=[64, 192, 384] , _UpperCamelCase : Optional[int]=[1, 3, 6] , _UpperCamelCase : Dict=[1, 2, 10] , _UpperCamelCase : List[Any]=[4.0, 4.0, 4.0] , _UpperCamelCase : str=[0.0, 0.0, 0.0] , _UpperCamelCase : Any=[0.0, 0.0, 0.0] , _UpperCamelCase : List[str]=[0.0, 0.0, 0.1] , _UpperCamelCase : int=[True, True, True] , _UpperCamelCase : Tuple=[False, False, True] , _UpperCamelCase : str=["dw_bn", "dw_bn", "dw_bn"] , _UpperCamelCase : List[Any]=[3, 3, 3] , _UpperCamelCase : Tuple=[1, 1, 1] , _UpperCamelCase : List[str]=[2, 2, 2] , _UpperCamelCase : List[str]=[1, 1, 1] , _UpperCamelCase : int=[1, 1, 1] , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=1E-1_2 , **_UpperCamelCase : List[str] , ) ->List[Any]:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : int = num_channels
_lowerCamelCase : Tuple = patch_sizes
_lowerCamelCase : List[Any] = patch_stride
_lowerCamelCase : List[Any] = patch_padding
_lowerCamelCase : int = embed_dim
_lowerCamelCase : Dict = num_heads
_lowerCamelCase : Tuple = depth
_lowerCamelCase : Any = mlp_ratio
_lowerCamelCase : Tuple = attention_drop_rate
_lowerCamelCase : Dict = drop_rate
_lowerCamelCase : Any = drop_path_rate
_lowerCamelCase : Dict = qkv_bias
_lowerCamelCase : int = cls_token
_lowerCamelCase : int = qkv_projection_method
_lowerCamelCase : List[Any] = kernel_qkv
_lowerCamelCase : List[str] = padding_kv
_lowerCamelCase : Dict = stride_kv
_lowerCamelCase : Any = padding_q
_lowerCamelCase : int = stride_q
_lowerCamelCase : Tuple = initializer_range
_lowerCamelCase : Union[str, Any] = layer_norm_eps
| 15 | from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['pixel_values']
def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = do_resize
_lowerCamelCase : int = size
_lowerCamelCase : Optional[int] = resample
_lowerCamelCase : int = do_center_crop
_lowerCamelCase : Optional[Any] = crop_size
_lowerCamelCase : Union[str, Any] = do_rescale
_lowerCamelCase : List[str] = rescale_factor
_lowerCamelCase : List[Any] = do_normalize
_lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return resize(
_UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image:
"""simple docstring"""
_lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCamelCase : List[str] = resample if resample is not None else self.resample
_lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
_lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean
_lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
_lowerCamelCase : Optional[Any] = size if size is not None else self.size
_lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = make_list_of_images(_UpperCamelCase)
if not valid_images(_UpperCamelCase):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
_lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images]
if do_resize:
_lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images]
if do_center_crop:
_lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images]
if do_rescale:
_lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images]
if do_normalize:
_lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images]
_lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images]
_lowerCamelCase : int = {"""pixel_values""": images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
| 15 | import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = {}
_lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""]
_lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] )
return output
lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments)
lowerCAmelCase : int =parser.parse_args()
if args.num_workers is None:
lowerCAmelCase : Any =multiprocessing.cpu_count()
lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCAmelCase : str =time.time()
lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train")
print(F"""Dataset loaded in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Dict =time.time()
lowerCAmelCase : Dict =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Tuple =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
| 15 | 1 |
import os
import sys
lowerCAmelCase : List[Any] =os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase : Union[str, Any] =[
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModel.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoModel.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*__A , **__A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def A__ ( *__A , **__A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
| 15 | import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = IFPipeline
_snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_snake_case = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case = PipelineTesterMixin.required_optional_params - {'latents'}
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
"""simple docstring"""
return self._get_dummy_components()
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]:
"""simple docstring"""
if str(_UpperCamelCase).startswith("""mps"""):
_lowerCamelCase : int = torch.manual_seed(_UpperCamelCase)
else:
_lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase)
_lowerCamelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1)
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_local()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa)
_lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""")
_lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""")
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_lowerCamelCase : str = None
_lowerCamelCase : str = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components)
_lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components)
_lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_lowerCamelCase : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : str = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Dict = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Any = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : List[str] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Optional[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def A__ ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 15 | 1 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
lowerCAmelCase : Optional[int] =logging.getLogger(__name__)
torch.set_grad_enabled(False)
lowerCAmelCase : Dict ="cuda" if torch.cuda.is_available() else "cpu"
def A__ ( __A , __A=100 , __A=" " ):
'''simple docstring'''
_lowerCamelCase : Any = text.split(__A )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )]
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase : Optional[Any] = [], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(__A ):
titles.append(title if title is not None else """""" )
texts.append(__A )
return {"title": titles, "text": texts}
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : Any = ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=__A , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""]
_lowerCamelCase : Optional[Any] = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def A__ ( __A , __A , __A , ):
'''simple docstring'''
######################################
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
_lowerCamelCase : str = load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
_lowerCamelCase : Dict = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc )
# And compute the embeddings
_lowerCamelCase : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A )
_lowerCamelCase : List[str] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
_lowerCamelCase : List[str] = Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
_lowerCamelCase : Dict = dataset.map(
partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , )
# And finally save your dataset
_lowerCamelCase : Optional[int] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(__A )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
_lowerCamelCase : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=__A )
# And save the index
_lowerCamelCase : Dict = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(__A )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = field(
default=str(Path(__lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , )
_snake_case = field(
default=__lowerCAmelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , )
_snake_case = field(
default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , )
_snake_case = field(
default='facebook/dpr-ctx_encoder-multiset-base' , metadata={
'help': (
'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'
' \'facebook/dpr-ctx_encoder-multiset-base\''
)
} , )
_snake_case = field(
default=str(Path(__lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , )
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = field(
default=__lowerCAmelCase , metadata={
'help': 'The number of processes to use to split the documents into passages. Default is single process.'
} , )
_snake_case = field(
default=16 , metadata={
'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.'
} , )
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = field(
default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , )
_snake_case = field(
default=128 , metadata={
'help': (
'The number of bi-directional links created for every new element during the HNSW index construction.'
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
lowerCAmelCase : List[Any] =HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict =parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
lowerCAmelCase : List[str] =rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 15 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : Any =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
"microsoft/swin-tiny-patch4-window7-224": (
"https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'swin'
_snake_case = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : List[str] = image_size
_lowerCamelCase : Tuple = patch_size
_lowerCamelCase : Dict = num_channels
_lowerCamelCase : Union[str, Any] = embed_dim
_lowerCamelCase : str = depths
_lowerCamelCase : str = len(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = num_heads
_lowerCamelCase : Tuple = window_size
_lowerCamelCase : int = mlp_ratio
_lowerCamelCase : Optional[int] = qkv_bias
_lowerCamelCase : List[str] = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : Tuple = drop_path_rate
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Dict = use_absolute_embeddings
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : str = initializer_range
_lowerCamelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1))
_lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)]
_lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices(
out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = version.parse('1.11' )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float:
"""simple docstring"""
return 1E-4
| 15 | 1 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : List[Any] =get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class __snake_case ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = PegasusTokenizer
_snake_case = PegasusTokenizerFast
_snake_case = True
_snake_case = True
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : List[Any] = PegasusTokenizer(_UpperCamelCase)
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""")
def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Tuple) ->PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : List[Any]) ->Dict:
"""simple docstring"""
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[int] = """</s>"""
_lowerCamelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase) , _UpperCamelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase) , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
_lowerCamelCase : Dict = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<pad>""")
self.assertEqual(vocab_keys[1] , """</s>""")
self.assertEqual(vocab_keys[-1] , """v""")
self.assertEqual(len(_UpperCamelCase) , 1103)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
_lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
_lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname)
_lowerCamelCase : Optional[int] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
_lowerCamelCase : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0]
_lowerCamelCase : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_lowerCamelCase : str = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
_lowerCamelCase : Optional[int] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
_lowerCamelCase : List[Any] = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any:
"""simple docstring"""
_lowerCamelCase : int = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
_lowerCamelCase : Any = """To ensure a smooth flow of bank resolutions."""
_lowerCamelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
_lowerCamelCase : Any = tokenizer([raw_input_str] , return_tensors=_UpperCamelCase).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Dict) ->int:
"""simple docstring"""
_lowerCamelCase : Optional[int] = ["""This is going to be way too long.""" * 150, """short example"""]
_lowerCamelCase : Dict = ["""not super long but more than 5 tokens""", """tiny"""]
_lowerCamelCase : List[Any] = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""")
_lowerCamelCase : int = self._large_tokenizer(
text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""")
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCamelCase) == 2 # input_ids, attention_mask.
@slow
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : List[str] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCamelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class __snake_case ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = PegasusTokenizer
_snake_case = PegasusTokenizerFast
_snake_case = True
_snake_case = True
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCamelCase : Union[str, Any] = PegasusTokenizer(_UpperCamelCase , offset=0 , mask_token_sent=_UpperCamelCase , mask_token="""[MASK]""")
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""")
def _SCREAMING_SNAKE_CASE ( self : List[str] , **_UpperCamelCase : List[Any]) ->PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Dict) ->List[Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
_lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname)
_lowerCamelCase : int = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
_lowerCamelCase : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0]
_lowerCamelCase : str = py_tokenizer([raw_input_str] , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids[0]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
@require_torch
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int:
"""simple docstring"""
_lowerCamelCase : List[Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
_lowerCamelCase : Tuple = ["""not super long but more than 5 tokens""", """tiny"""]
_lowerCamelCase : Optional[int] = self._large_tokenizer(_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""")
_lowerCamelCase : List[str] = self._large_tokenizer(
text_target=_UpperCamelCase , max_length=5 , padding=_UpperCamelCase , truncation=_UpperCamelCase , return_tensors="""pt""")
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_UpperCamelCase) == 2 # input_ids, attention_mask.
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->str:
"""simple docstring"""
_lowerCamelCase : Tuple = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
_lowerCamelCase : int = self._large_tokenizer(_UpperCamelCase).input_ids
self.assertListEqual(
_UpperCamelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 15 | import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = (EulerDiscreteScheduler,)
_snake_case = 10
def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCamelCase)
return config
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Any = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : str = torch.manual_seed(0)
_lowerCamelCase : str = self.dummy_model()
_lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : int = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Dict = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : int = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""")
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : Any = torch.manual_seed(0)
_lowerCamelCase : int = self.dummy_model()
_lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : Dict = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Tuple = output.prev_sample
_lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : int = self.get_scheduler_config()
_lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Tuple = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : List[Any] = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config()
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : int = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : int = output.prev_sample
_lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
| 15 | 1 |
from __future__ import annotations
def A__ ( __A , __A , __A ):
'''simple docstring'''
if days_between_payments <= 0:
raise ValueError("""days_between_payments must be > 0""" )
if daily_interest_rate < 0:
raise ValueError("""daily_interest_rate must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return principal * daily_interest_rate * days_between_payments
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if number_of_compounding_periods <= 0:
raise ValueError("""number_of_compounding_periods must be > 0""" )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if number_of_years <= 0:
raise ValueError("""number_of_years must be > 0""" )
if nominal_annual_percentage_rate < 0:
raise ValueError("""nominal_annual_percentage_rate must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return compound_interest(
__A , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Dict =logging.get_logger(__name__)
lowerCAmelCase : Dict ={"vocab_file": "vocab.json"}
lowerCAmelCase : List[str] ={
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
lowerCAmelCase : int ={"mgp-str": 27}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , )
with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle:
_lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
return len(self.vocab)
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = []
for s in text:
char_tokens.extend(_UpperCamelCase)
return char_tokens
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]:
"""simple docstring"""
return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict:
"""simple docstring"""
return self.decoder.get(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase):
logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase))
return
_lowerCamelCase : Tuple = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""")
return (vocab_file,)
| 15 | 1 |
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""c"""])
self.assertEqual(_UpperCamelCase , [2])
# Out indices set to match out features
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features set to match out indices
_lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features selected from negative indices
_lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [-3, -1])
def _SCREAMING_SNAKE_CASE ( self : int) ->int:
"""simple docstring"""
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase)
# Out features must be a list
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""])
# Out features must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""])
# Out indices must be a list or tuple
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""])
# Out indices must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""])
# Out features and out indices must be the same length
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""])
# Out features should match out indices
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""])
# Out features and out indices should be in order
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""])
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""])
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : int = BackboneMixin()
_lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""]
_lowerCamelCase : Tuple = ["""a""", """c"""]
_lowerCamelCase : List[Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
_lowerCamelCase : str = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""])
self.assertEqual(backbone.out_indices , [0, 1])
_lowerCamelCase : Optional[int] = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [-3, -1])
| 15 | 1 |
from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = key
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Any = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Optional[Any] = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 15 | import math
def A__ ( __A ):
'''simple docstring'''
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def A__ ( __A , __A=1 , **__A ):
'''simple docstring'''
_lowerCamelCase : Dict = factor * value
_lowerCamelCase : str = value
while not is_prime(__A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **__A )
return value
| 15 | 1 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase : Dict =logging.get_logger(__name__)
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
_lowerCamelCase : Dict = 128
elif "12-12" in model_name:
_lowerCamelCase : Optional[int] = 12
_lowerCamelCase : Optional[int] = 12
elif "14-14" in model_name:
_lowerCamelCase : Any = 14
_lowerCamelCase : Dict = 14
elif "16-16" in model_name:
_lowerCamelCase : List[str] = 16
_lowerCamelCase : List[Any] = 16
else:
raise ValueError("""Model not supported""" )
_lowerCamelCase : Dict = """huggingface/label-files"""
if "speech-commands" in model_name:
_lowerCamelCase : str = 35
_lowerCamelCase : Union[str, Any] = """speech-commands-v2-id2label.json"""
else:
_lowerCamelCase : List[Any] = 527
_lowerCamelCase : Union[str, Any] = """audioset-id2label.json"""
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) )
_lowerCamelCase : int = {int(__A ): v for k, v in idalabel.items()}
_lowerCamelCase : Any = idalabel
_lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def A__ ( __A ):
'''simple docstring'''
if "module.v" in name:
_lowerCamelCase : Dict = name.replace("""module.v""" , """audio_spectrogram_transformer""" )
if "cls_token" in name:
_lowerCamelCase : List[str] = name.replace("""cls_token""" , """embeddings.cls_token""" )
if "dist_token" in name:
_lowerCamelCase : int = name.replace("""dist_token""" , """embeddings.distillation_token""" )
if "pos_embed" in name:
_lowerCamelCase : str = name.replace("""pos_embed""" , """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
_lowerCamelCase : int = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
_lowerCamelCase : Any = name.replace("""blocks""" , """encoder.layer""" )
if "attn.proj" in name:
_lowerCamelCase : Union[str, Any] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
_lowerCamelCase : List[str] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
_lowerCamelCase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
_lowerCamelCase : Any = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
_lowerCamelCase : int = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
_lowerCamelCase : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
_lowerCamelCase : str = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
_lowerCamelCase : List[str] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" )
if "module.mlp_head.1" in name:
_lowerCamelCase : Optional[Any] = name.replace("""module.mlp_head.1""" , """classifier.dense""" )
return name
def A__ ( __A , __A ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
_lowerCamelCase : Dict = orig_state_dict.pop(__A )
if "qkv" in key:
_lowerCamelCase : Tuple = key.split(""".""" )
_lowerCamelCase : int = int(key_split[3] )
_lowerCamelCase : Any = config.hidden_size
if "weight" in key:
_lowerCamelCase : Union[str, Any] = val[:dim, :]
_lowerCamelCase : Union[str, Any] = val[dim : dim * 2, :]
_lowerCamelCase : List[Any] = val[-dim:, :]
else:
_lowerCamelCase : Any = val[:dim]
_lowerCamelCase : List[Any] = val[dim : dim * 2]
_lowerCamelCase : Optional[Any] = val[-dim:]
else:
_lowerCamelCase : Dict = val
return orig_state_dict
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(__A , __A )
@torch.no_grad()
def A__ ( __A , __A , __A=False ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = get_audio_spectrogram_transformer_config(__A )
_lowerCamelCase : List[str] = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
_lowerCamelCase : List[Any] = model_name_to_url[model_name]
_lowerCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" )
# remove some keys
remove_keys(__A )
# rename some keys
_lowerCamelCase : str = convert_state_dict(__A , __A )
# load 🤗 model
_lowerCamelCase : Tuple = ASTForAudioClassification(__A )
model.eval()
model.load_state_dict(__A )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
_lowerCamelCase : Optional[int] = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978
_lowerCamelCase : Dict = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526
_lowerCamelCase : int = 1_024 if """speech-commands""" not in model_name else 128
_lowerCamelCase : List[Any] = ASTFeatureExtractor(mean=__A , std=__A , max_length=__A )
if "speech-commands" in model_name:
_lowerCamelCase : str = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" )
_lowerCamelCase : List[str] = dataset[0]["""audio"""]["""array"""]
else:
_lowerCamelCase : Tuple = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , )
_lowerCamelCase , _lowerCamelCase : Optional[Any] = torchaudio.load(__A )
_lowerCamelCase : int = waveform.squeeze().numpy()
_lowerCamelCase : Optional[Any] = feature_extractor(__A , sampling_rate=16_000 , return_tensors="""pt""" )
# forward pass
_lowerCamelCase : Optional[int] = model(**__A )
_lowerCamelCase : Union[str, Any] = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
_lowerCamelCase : Optional[Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
_lowerCamelCase : Any = torch.tensor([-1.1_986, -7.0_903, -8.2_718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
_lowerCamelCase : Tuple = torch.tensor([-2.6_128, -8.0_080, -9.4_344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
_lowerCamelCase : Any = torch.tensor([-1.5_080, -7.4_534, -8.8_917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
_lowerCamelCase : Optional[Any] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
_lowerCamelCase : Any = torch.tensor([-0.3_826, -7.0_336, -8.2_413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
_lowerCamelCase : int = torch.tensor([-1.2_113, -6.9_101, -8.3_470] )
elif model_name == "ast-finetuned-speech-commands-v2":
_lowerCamelCase : Optional[Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3] , __A , atol=1E-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__A ).mkdir(exist_ok=__A )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" )
feature_extractor.save_pretrained(__A )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(F"""MIT/{model_name}""" )
feature_extractor.push_to_hub(F"""MIT/{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase : int =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase : Tuple =parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple:
"""simple docstring"""
super().__init__(*_UpperCamelCase , **_UpperCamelCase)
requires_backends(self , """vision""")
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING)
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {}
if top_k is not None:
_lowerCamelCase : str = top_k
return {}, {}, postprocess_params
def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict:
"""simple docstring"""
return super().__call__(_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Tuple = load_image(_UpperCamelCase)
_lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework)
return model_inputs
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Any = self.model(**_UpperCamelCase)
return model_outputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str:
"""simple docstring"""
if top_k > self.model.config.num_labels:
_lowerCamelCase : Union[str, Any] = self.model.config.num_labels
if self.framework == "pt":
_lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0]
_lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase)
elif self.framework == "tf":
_lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0]
_lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase)
_lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
_lowerCamelCase : str = scores.tolist()
_lowerCamelCase : str = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
| 15 | 1 |
import math
def A__ ( __A ):
'''simple docstring'''
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def A__ ( __A , __A=1 , **__A ):
'''simple docstring'''
_lowerCamelCase : Dict = factor * value
_lowerCamelCase : str = value
while not is_prime(__A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **__A )
return value
| 15 | import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = ViTImageProcessor if is_vision_available() else None
@property
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (3, 32, 128)
_lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase))))
_lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(_UpperCamelCase) + """\n""")
_lowerCamelCase : Any = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)
_lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1))
return image_input
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = self.get_image_processor()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
_lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0)
_lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
_lowerCamelCase : int = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""")
_lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Optional[int] = """test"""
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase)
_lowerCamelCase : Dict = tokenizer(_UpperCamelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = """test"""
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""])
# test if it raises when no input is passed
with pytest.raises(_UpperCamelCase):
processor()
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Any = processor.char_decode(_UpperCamelCase)
_lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase)
_lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = None
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = torch.randn(1 , 27 , 38)
_lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257)
_lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522)
_lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input])
self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
| 15 | 1 |
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCAmelCase : Any ="src/transformers"
lowerCAmelCase : Tuple ="docs/source/en"
lowerCAmelCase : Any ="."
def A__ ( __A , __A , __A ):
'''simple docstring'''
with open(__A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_lowerCamelCase : Any = f.readlines()
# Find the start prompt.
_lowerCamelCase : Dict = 0
while not lines[start_index].startswith(__A ):
start_index += 1
start_index += 1
_lowerCamelCase : Union[str, Any] = start_index
while not lines[end_index].startswith(__A ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCAmelCase : Optional[Any] ="Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
lowerCAmelCase : int =re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
lowerCAmelCase : List[str] =re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCAmelCase : int =re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase : int =direct_transformers_import(TRANSFORMERS_PATH)
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , __A )
return [m.group(0 ) for m in matches]
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 2 if text == """✅""" or text == """❌""" else len(__A )
_lowerCamelCase : List[Any] = (width - text_length) // 2
_lowerCamelCase : List[str] = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_lowerCamelCase : Dict = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_lowerCamelCase : Tuple = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_lowerCamelCase : int = collections.defaultdict(__A )
_lowerCamelCase : int = collections.defaultdict(__A )
_lowerCamelCase : Union[str, Any] = collections.defaultdict(__A )
_lowerCamelCase : Optional[Any] = collections.defaultdict(__A )
_lowerCamelCase : Any = collections.defaultdict(__A )
# Let's lookup through all transformers object (once).
for attr_name in dir(__A ):
_lowerCamelCase : Tuple = None
if attr_name.endswith("""Tokenizer""" ):
_lowerCamelCase : int = slow_tokenizers
_lowerCamelCase : str = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
_lowerCamelCase : List[Any] = fast_tokenizers
_lowerCamelCase : Union[str, Any] = attr_name[:-13]
elif _re_tf_models.match(__A ) is not None:
_lowerCamelCase : List[str] = tf_models
_lowerCamelCase : int = _re_tf_models.match(__A ).groups()[0]
elif _re_flax_models.match(__A ) is not None:
_lowerCamelCase : Union[str, Any] = flax_models
_lowerCamelCase : Optional[Any] = _re_flax_models.match(__A ).groups()[0]
elif _re_pt_models.match(__A ) is not None:
_lowerCamelCase : Optional[int] = pt_models
_lowerCamelCase : Any = _re_pt_models.match(__A ).groups()[0]
if lookup_dict is not None:
while len(__A ) > 0:
if attr_name in model_name_to_prefix.values():
_lowerCamelCase : Tuple = True
break
# Try again after removing the last word in the name
_lowerCamelCase : Optional[int] = """""".join(camel_case_split(__A )[:-1] )
# Let's build that table!
_lowerCamelCase : str = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_lowerCamelCase : Any = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_lowerCamelCase : Tuple = [len(__A ) + 2 for c in columns]
_lowerCamelCase : Optional[int] = max([len(__A ) for name in model_names] ) + 2
# Build the table per se
_lowerCamelCase : str = """|""" + """|""".join([_center_text(__A , __A ) for c, w in zip(__A , __A )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
_lowerCamelCase : Any = {True: """✅""", False: """❌"""}
for name in model_names:
_lowerCamelCase : Any = model_name_to_prefix[name]
_lowerCamelCase : int = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(__A , __A ) for l, w in zip(__A , __A )] ) + "|\n"
return table
def A__ ( __A=False ):
'''simple docstring'''
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = _find_text_in_file(
filename=os.path.join(__A , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
_lowerCamelCase : Any = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(__A , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowerCAmelCase : Optional[int] =parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 15 | import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__A , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__A )
return parser.parse_args()
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[str] = parse_args()
# Import training_script as a module.
_lowerCamelCase : List[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowerCamelCase : Optional[Any] = script_fpath.stem
_lowerCamelCase : Dict = importlib.import_module(__A )
# Patch sys.argv
_lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 15 | 1 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase : int =logging.get_logger(__name__)
# General docstring
lowerCAmelCase : List[Any] ="RegNetConfig"
# Base docstring
lowerCAmelCase : Union[str, Any] ="facebook/regnet-y-040"
lowerCAmelCase : Optional[int] =[1, 1088, 7, 7]
# Image classification docstring
lowerCAmelCase : Dict ="facebook/regnet-y-040"
lowerCAmelCase : List[Any] ="tabby, tabby cat"
lowerCAmelCase : List[Any] =[
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int = 3 , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1 , _UpperCamelCase : Optional[str] = "relu" , **_UpperCamelCase : str , ) ->Optional[Any]:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
_lowerCamelCase : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2)
_lowerCamelCase : Optional[int] = tf.keras.layers.ConvaD(
filters=_UpperCamelCase , kernel_size=_UpperCamelCase , strides=_UpperCamelCase , padding="""VALID""" , groups=_UpperCamelCase , use_bias=_UpperCamelCase , name="""convolution""" , )
_lowerCamelCase : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""")
_lowerCamelCase : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : int) ->int:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.convolution(self.padding(_UpperCamelCase))
_lowerCamelCase : List[Any] = self.normalization(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = self.activation(_UpperCamelCase)
return hidden_state
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCamelCase : RegNetConfig , **_UpperCamelCase : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : List[str] = config.num_channels
_lowerCamelCase : Any = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Dict) ->Any:
"""simple docstring"""
_lowerCamelCase : Optional[int] = shape_list(_UpperCamelCase)[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""")
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
_lowerCamelCase : Union[str, Any] = tf.transpose(_UpperCamelCase , perm=(0, 2, 3, 1))
_lowerCamelCase : Optional[int] = self.embedder(_UpperCamelCase)
return hidden_state
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , _UpperCamelCase : int , _UpperCamelCase : int = 2 , **_UpperCamelCase : List[Any]) ->Dict:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Any = tf.keras.layers.ConvaD(
filters=_UpperCamelCase , kernel_size=1 , strides=_UpperCamelCase , use_bias=_UpperCamelCase , name="""convolution""")
_lowerCamelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""")
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : tf.Tensor , _UpperCamelCase : bool = False) ->tf.Tensor:
"""simple docstring"""
return self.normalization(self.convolution(_UpperCamelCase) , training=_UpperCamelCase)
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : int , **_UpperCamelCase : List[Any]) ->Dict:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCamelCase , name="""pooler""")
_lowerCamelCase : Optional[Any] = [
tf.keras.layers.ConvaD(filters=_UpperCamelCase , kernel_size=1 , activation="""relu""" , name="""attention.0"""),
tf.keras.layers.ConvaD(filters=_UpperCamelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2"""),
]
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : int) ->Dict:
"""simple docstring"""
_lowerCamelCase : str = self.pooler(_UpperCamelCase)
for layer_module in self.attention:
_lowerCamelCase : str = layer_module(_UpperCamelCase)
_lowerCamelCase : Dict = hidden_state * pooled
return hidden_state
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : int , _UpperCamelCase : RegNetConfig , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 1 , **_UpperCamelCase : List[str]) ->List[Any]:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : List[Any] = in_channels != out_channels or stride != 1
_lowerCamelCase : Optional[int] = max(1 , out_channels // config.groups_width)
_lowerCamelCase : Dict = (
TFRegNetShortCut(_UpperCamelCase , stride=_UpperCamelCase , name="""shortcut""")
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""")
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
_lowerCamelCase : Optional[Any] = [
TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0"""),
TFRegNetConvLayer(
_UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act , name="""layer.1"""),
TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase , name="""layer.2"""),
]
_lowerCamelCase : Dict = ACTaFN[config.hidden_act]
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Any) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = hidden_state
for layer_module in self.layers:
_lowerCamelCase : Optional[Any] = layer_module(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = self.shortcut(_UpperCamelCase)
hidden_state += residual
_lowerCamelCase : Optional[Any] = self.activation(_UpperCamelCase)
return hidden_state
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Dict , _UpperCamelCase : RegNetConfig , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 1 , **_UpperCamelCase : str) ->Any:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Optional[Any] = in_channels != out_channels or stride != 1
_lowerCamelCase : Optional[Any] = max(1 , out_channels // config.groups_width)
_lowerCamelCase : Any = (
TFRegNetShortCut(_UpperCamelCase , stride=_UpperCamelCase , name="""shortcut""")
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""")
)
_lowerCamelCase : Any = [
TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0"""),
TFRegNetConvLayer(
_UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act , name="""layer.1"""),
TFRegNetSELayer(_UpperCamelCase , reduced_channels=int(round(in_channels / 4)) , name="""layer.2"""),
TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase , name="""layer.3"""),
]
_lowerCamelCase : List[str] = ACTaFN[config.hidden_act]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Optional[Any]) ->Dict:
"""simple docstring"""
_lowerCamelCase : str = hidden_state
for layer_module in self.layers:
_lowerCamelCase : Tuple = layer_module(_UpperCamelCase)
_lowerCamelCase : Optional[int] = self.shortcut(_UpperCamelCase)
hidden_state += residual
_lowerCamelCase : Any = self.activation(_UpperCamelCase)
return hidden_state
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : Any , _UpperCamelCase : RegNetConfig , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , **_UpperCamelCase : int) ->Optional[Any]:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Any = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer
_lowerCamelCase : List[Any] = [
# downsampling is done in the first layer with stride of 2
layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , name="""layers.0"""),
*[layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , name=F"""layers.{i+1}""") for i in range(depth - 1)],
]
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : str) ->int:
"""simple docstring"""
for layer_module in self.layers:
_lowerCamelCase : Union[str, Any] = layer_module(_UpperCamelCase)
return hidden_state
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
def __init__( self : int , _UpperCamelCase : RegNetConfig , **_UpperCamelCase : Any) ->Any:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Any = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
_UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ))
_lowerCamelCase : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:])
for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCamelCase , config.depths[1:])):
self.stages.append(TFRegNetStage(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , depth=_UpperCamelCase , name=F"""stages.{i+1}"""))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : tf.Tensor , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True) ->TFBaseModelOutputWithNoAttention:
"""simple docstring"""
_lowerCamelCase : Any = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_lowerCamelCase : Union[str, Any] = hidden_states + (hidden_state,)
_lowerCamelCase : Tuple = stage_module(_UpperCamelCase)
if output_hidden_states:
_lowerCamelCase : List[Any] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase)
@keras_serializable
class __snake_case ( tf.keras.layers.Layer ):
'''simple docstring'''
_snake_case = RegNetConfig
def __init__( self : Optional[Any] , _UpperCamelCase : List[str] , **_UpperCamelCase : Any) ->Tuple:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Optional[Any] = config
_lowerCamelCase : Dict = TFRegNetEmbeddings(_UpperCamelCase , name="""embedder""")
_lowerCamelCase : Optional[int] = TFRegNetEncoder(_UpperCamelCase , name="""encoder""")
_lowerCamelCase : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCamelCase , name="""pooler""")
@unpack_inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : tf.Tensor , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
_lowerCamelCase : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCamelCase : Optional[int] = self.embedder(_UpperCamelCase , training=_UpperCamelCase)
_lowerCamelCase : int = self.encoder(
_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , training=_UpperCamelCase)
_lowerCamelCase : Dict = encoder_outputs[0]
_lowerCamelCase : Any = self.pooler(_UpperCamelCase)
# Change to NCHW output format have uniformity in the modules
_lowerCamelCase : Optional[int] = tf.transpose(_UpperCamelCase , perm=(0, 3, 1, 2))
_lowerCamelCase : Any = tf.transpose(_UpperCamelCase , perm=(0, 3, 1, 2))
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
_lowerCamelCase : int = tuple([tf.transpose(_UpperCamelCase , perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCamelCase , pooler_output=_UpperCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = RegNetConfig
_snake_case = 'regnet'
_snake_case = 'pixel_values'
@property
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa)}
lowerCAmelCase : Optional[int] =r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
lowerCAmelCase : int =r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCAmelCase , )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCamelCase : RegNetConfig , *_UpperCamelCase : int , **_UpperCamelCase : List[Any]) ->List[str]:
"""simple docstring"""
super().__init__(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase)
_lowerCamelCase : int = TFRegNetMainLayer(_UpperCamelCase , name="""regnet""")
@unpack_inputs
@add_start_docstrings_to_model_forward(_UpperCamelCase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : tf.Tensor , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Tuple=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
"""simple docstring"""
_lowerCamelCase : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCamelCase : List[str] = self.regnet(
pixel_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , training=_UpperCamelCase , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCAmelCase , )
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : str , _UpperCamelCase : RegNetConfig , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : List[Any]) ->Dict:
"""simple docstring"""
super().__init__(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase)
_lowerCamelCase : Any = config.num_labels
_lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(_UpperCamelCase , name="""regnet""")
# classification head
_lowerCamelCase : Union[str, Any] = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="""classifier.1""") if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(_UpperCamelCase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : tf.Tensor = None , _UpperCamelCase : tf.Tensor = None , _UpperCamelCase : bool = None , _UpperCamelCase : bool = None , _UpperCamelCase : List[Any]=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
"""simple docstring"""
_lowerCamelCase : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_lowerCamelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_lowerCamelCase : List[str] = self.regnet(
_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , training=_UpperCamelCase)
_lowerCamelCase : Dict = outputs.pooler_output if return_dict else outputs[1]
_lowerCamelCase : Any = self.classifier[0](_UpperCamelCase)
_lowerCamelCase : List[Any] = self.classifier[1](_UpperCamelCase)
_lowerCamelCase : List[Any] = None if labels is None else self.hf_compute_loss(labels=_UpperCamelCase , logits=_UpperCamelCase)
if not return_dict:
_lowerCamelCase : Any = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states)
| 15 | def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
if n == 0:
return 0
_lowerCamelCase : Tuple = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
_lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def A__ ( __A , __A , __A ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowerCamelCase : int = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Optional[Any] = max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
_lowerCamelCase : Optional[Any] = max_revenue
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_lowerCamelCase : Any = 0
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max_rev[i]
for j in range(1 , i + 1 ):
_lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] )
_lowerCamelCase : int = max_revenue_i
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
if n < 0:
_lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__A )
if n > len(__A ):
_lowerCamelCase : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(__A )}"""
)
raise ValueError(__A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : str = [6, 10, 12, 15, 20, 23]
_lowerCamelCase : List[str] = len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowerCamelCase : Tuple = 36
_lowerCamelCase : Any = top_down_cut_rod(__A , __A )
_lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A )
_lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 | 1 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = IFPipeline
_snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_snake_case = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case = PipelineTesterMixin.required_optional_params - {'latents'}
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
"""simple docstring"""
return self._get_dummy_components()
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]:
"""simple docstring"""
if str(_UpperCamelCase).startswith("""mps"""):
_lowerCamelCase : int = torch.manual_seed(_UpperCamelCase)
else:
_lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase)
_lowerCamelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1)
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_local()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa)
_lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""")
_lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""")
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_lowerCamelCase : str = None
_lowerCamelCase : str = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components)
_lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components)
_lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_lowerCamelCase : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : str = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Dict = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Any = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : List[str] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Optional[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def A__ ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 15 | from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = key
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Any = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Optional[Any] = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 15 | 1 |
import math
class __snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCamelCase : Any=0) ->str: # a graph with Node 0,1,...,N-1
"""simple docstring"""
_lowerCamelCase : Optional[Any] = n
_lowerCamelCase : Tuple = [
[math.inf for j in range(0 , _UpperCamelCase)] for i in range(0 , _UpperCamelCase)
] # adjacency matrix for weight
_lowerCamelCase : List[Any] = [
[math.inf for j in range(0 , _UpperCamelCase)] for i in range(0 , _UpperCamelCase)
] # dp[i][j] stores minimum distance from i to j
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : List[Any] = w
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
"""simple docstring"""
for k in range(0 , self.n):
for i in range(0 , self.n):
for j in range(0 , self.n):
_lowerCamelCase : Tuple = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j])
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any]) ->Optional[int]:
"""simple docstring"""
return self.dp[u][v]
if __name__ == "__main__":
lowerCAmelCase : Dict =Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 15 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
_UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths}
_lowerCamelCase : Any = Text(
cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
if self.streaming:
_lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Any = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
self.builder.download_and_prepare(
download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , )
_lowerCamelCase : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory)
return dataset
| 15 | 1 |
import itertools
import math
def A__ ( __A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Tuple = 2
while True:
if is_prime(__A ):
yield num
num += 1
def A__ ( __A = 10_001 ):
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , __A ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 15 | lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 42
_snake_case = 42
def __init__( self : Dict , _UpperCamelCase : UNetaDModel , _UpperCamelCase : ScoreSdeVeScheduler) ->Tuple:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase)
@torch.no_grad()
def __call__( self : Dict , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 2000 , _UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase : Optional[str] = "pil" , _UpperCamelCase : bool = True , **_UpperCamelCase : Optional[Any] , ) ->Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.unet.config.sample_size
_lowerCamelCase : Optional[int] = (batch_size, 3, img_size, img_size)
_lowerCamelCase : int = self.unet
_lowerCamelCase : Union[str, Any] = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase) * self.scheduler.init_noise_sigma
_lowerCamelCase : List[str] = sample.to(self.device)
self.scheduler.set_timesteps(_UpperCamelCase)
self.scheduler.set_sigmas(_UpperCamelCase)
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
_lowerCamelCase : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device)
# correction step
for _ in range(self.scheduler.config.correct_steps):
_lowerCamelCase : List[str] = self.unet(_UpperCamelCase , _UpperCamelCase).sample
_lowerCamelCase : Optional[Any] = self.scheduler.step_correct(_UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase).prev_sample
# prediction step
_lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase).sample
_lowerCamelCase : Optional[Any] = self.scheduler.step_pred(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = output.prev_sample, output.prev_sample_mean
_lowerCamelCase : Union[str, Any] = sample_mean.clamp(0 , 1)
_lowerCamelCase : Tuple = sample.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
_lowerCamelCase : Any = self.numpy_to_pil(_UpperCamelCase)
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_UpperCamelCase)
| 15 | from __future__ import annotations
lowerCAmelCase : int =[]
def A__ ( __A , __A , __A ):
'''simple docstring'''
for i in range(len(__A ) ):
if board[row][i] == 1:
return False
for i in range(len(__A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( __A , __A ):
'''simple docstring'''
if row >= len(__A ):
solution.append(__A )
printboard(__A )
print()
return True
for i in range(len(__A ) ):
if is_safe(__A , __A , __A ):
_lowerCamelCase : int = 1
solve(__A , row + 1 )
_lowerCamelCase : List[str] = 0
return False
def A__ ( __A ):
'''simple docstring'''
for i in range(len(__A ) ):
for j in range(len(__A ) ):
if board[i][j] == 1:
print("""Q""" , end=""" """ )
else:
print(""".""" , end=""" """ )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase : int =8
lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 15 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__)
lowerCAmelCase : Any ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase : Tuple ={
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
lowerCAmelCase : Union[str, Any] ={
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
lowerCAmelCase : Optional[Any] ={
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
lowerCAmelCase : List[Any] ={
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
lowerCAmelCase : Tuple ={
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
lowerCAmelCase : Dict ={
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
lowerCAmelCase : List[Any] ={
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
lowerCAmelCase : Optional[Any] ={
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
lowerCAmelCase : int ={
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_snake_case = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = DPRContextEncoderTokenizer
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_snake_case = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = DPRQuestionEncoderTokenizer
lowerCAmelCase : str =collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
lowerCAmelCase : List[Any] =collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
lowerCAmelCase : List[Any] =r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__lowerCAmelCase )
class __snake_case :
'''simple docstring'''
def __call__( self : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Union[bool, str] = False , _UpperCamelCase : Union[bool, str] = False , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : Optional[bool] = None , **_UpperCamelCase : List[Any] , ) ->BatchEncoding:
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , )
elif titles is None or texts is None:
_lowerCamelCase : int = titles if texts is None else texts
return super().__call__(
_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : Union[str, Any] = titles if not isinstance(_UpperCamelCase , _UpperCamelCase) else [titles]
_lowerCamelCase : List[str] = texts if not isinstance(_UpperCamelCase , _UpperCamelCase) else [texts]
_lowerCamelCase : Tuple = len(_UpperCamelCase)
_lowerCamelCase : List[str] = questions if not isinstance(_UpperCamelCase , _UpperCamelCase) else [questions] * n_passages
assert len(_UpperCamelCase) == len(
_UpperCamelCase), F"""There should be as many titles than texts but got {len(_UpperCamelCase)} titles and {len(_UpperCamelCase)} texts."""
_lowerCamelCase : Any = super().__call__(_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase)["""input_ids"""]
_lowerCamelCase : Optional[int] = super().__call__(_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase)["""input_ids"""]
_lowerCamelCase : str = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_UpperCamelCase , _UpperCamelCase)
]
}
if return_attention_mask is not False:
_lowerCamelCase : List[str] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
_lowerCamelCase : str = attention_mask
return self.pad(_UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : BatchEncoding , _UpperCamelCase : DPRReaderOutput , _UpperCamelCase : int = 16 , _UpperCamelCase : int = 64 , _UpperCamelCase : int = 4 , ) ->List[DPRSpanPrediction]:
"""simple docstring"""
_lowerCamelCase : Dict = reader_input["""input_ids"""]
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = reader_output[:3]
_lowerCamelCase : Optional[int] = len(_UpperCamelCase)
_lowerCamelCase : List[Any] = sorted(range(_UpperCamelCase) , reverse=_UpperCamelCase , key=relevance_logits.__getitem__)
_lowerCamelCase : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_lowerCamelCase : List[Any] = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
_lowerCamelCase : List[str] = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_lowerCamelCase : Union[str, Any] = sequence_ids.index(self.pad_token_id)
else:
_lowerCamelCase : Dict = len(_UpperCamelCase)
_lowerCamelCase : List[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCamelCase , top_spans=_UpperCamelCase , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCamelCase , start_index=_UpperCamelCase , end_index=_UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(_UpperCamelCase) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : List[int] , _UpperCamelCase : List[int] , _UpperCamelCase : int , _UpperCamelCase : int , ) ->List[DPRSpanPrediction]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = []
for start_index, start_score in enumerate(_UpperCamelCase):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
_lowerCamelCase : int = sorted(_UpperCamelCase , key=lambda _UpperCamelCase: x[1] , reverse=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]"""
_lowerCamelCase : str = end_index - start_index + 1
assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(_UpperCamelCase) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__lowerCAmelCase )
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = READER_PRETRAINED_VOCAB_FILES_MAP
_snake_case = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = READER_PRETRAINED_INIT_CONFIGURATION
_snake_case = ['input_ids', 'attention_mask']
_snake_case = DPRReaderTokenizer
| 15 | import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCAmelCase : int ={
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A__ ( __A , __A , __A , __A=None ):
'''simple docstring'''
# Initialise PyTorch model
_lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A )
_lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowerCamelCase : int = finetuning_task
_lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowerCamelCase : int = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
_lowerCamelCase : Dict = finetuning_task
_lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A )
else:
_lowerCamelCase : Any = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : Optional[Any] = os.path.join(__A , __A )
_lowerCamelCase : Any = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : List[str] ={
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str =["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any =[
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Union[str, Any] =[
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] =[
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 15 | def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 0
for ch in input_str:
_lowerCamelCase : Optional[Any] = ord(__A )
_lowerCamelCase : List[str] = pow(2 , __A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[int]=32 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Any=4 , _UpperCamelCase : int=[10, 20, 30, 40] , _UpperCamelCase : Optional[int]=[2, 2, 3, 2] , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]=37 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : Any=10 , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"] , _UpperCamelCase : Tuple=3 , _UpperCamelCase : Optional[Any]=None , ) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = parent
_lowerCamelCase : Any = batch_size
_lowerCamelCase : List[str] = image_size
_lowerCamelCase : Any = num_channels
_lowerCamelCase : Optional[Any] = num_stages
_lowerCamelCase : str = hidden_sizes
_lowerCamelCase : List[str] = depths
_lowerCamelCase : Union[str, Any] = is_training
_lowerCamelCase : Dict = use_labels
_lowerCamelCase : Union[str, Any] = intermediate_size
_lowerCamelCase : Optional[int] = hidden_act
_lowerCamelCase : str = type_sequence_label_size
_lowerCamelCase : Any = initializer_range
_lowerCamelCase : str = out_features
_lowerCamelCase : int = num_labels
_lowerCamelCase : List[Any] = scope
_lowerCamelCase : List[Any] = num_stages
def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_lowerCamelCase : Any = None
if self.use_labels:
_lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_lowerCamelCase : List[Any] = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
"""simple docstring"""
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_UpperCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[Any] = UperNetForSemanticSegmentation(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Tuple = model(_UpperCamelCase)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size))
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_lowerCamelCase
) , (
_lowerCamelCase
) , (
_lowerCamelCase
) ,
) : List[Any] = config_and_inputs
_lowerCamelCase : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
_snake_case = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = UperNetModelTester(self)
_lowerCamelCase : Dict = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
"""simple docstring"""
return
def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Tuple = model_class(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Optional[int] = [*signature.parameters.keys()]
_lowerCamelCase : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase)
@unittest.skip(reason="""UperNet does not use inputs_embeds""")
def _SCREAMING_SNAKE_CASE ( self : Dict) ->str:
"""simple docstring"""
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""UperNet does not have a base model""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""UperNet does not have a base model""")
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""")
def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
"""simple docstring"""
def check_hidden_states_output(_UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]):
_lowerCamelCase : List[Any] = model_class(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
with torch.no_grad():
_lowerCamelCase : Tuple = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase))
_lowerCamelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCamelCase : Dict = self.model_tester.num_stages
self.assertEqual(len(_UpperCamelCase) , expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowerCamelCase , _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Optional[int] = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : str = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Optional[Any] = _config_zero_init(_UpperCamelCase)
_lowerCamelCase : int = _config_zero_init(configs_no_init.backbone_config)
for model_class in self.all_model_classes:
_lowerCamelCase : List[Any] = model_class(config=_UpperCamelCase)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""")
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]:
"""simple docstring"""
pass
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
"""simple docstring"""
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(_UpperCamelCase)
self.assertIsNotNone(_UpperCamelCase)
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[str] = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_lowerCamelCase : Optional[int] = Image.open(__A ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
"""simple docstring"""
_lowerCamelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""")
_lowerCamelCase : str = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""").to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = prepare_img()
_lowerCamelCase : Optional[Any] = processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase)
with torch.no_grad():
_lowerCamelCase : Any = model(**_UpperCamelCase)
_lowerCamelCase : List[Any] = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape , _UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]]).to(_UpperCamelCase)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1E-4))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Dict = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""")
_lowerCamelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""").to(_UpperCamelCase)
_lowerCamelCase : Dict = prepare_img()
_lowerCamelCase : str = processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase)
with torch.no_grad():
_lowerCamelCase : str = model(**_UpperCamelCase)
_lowerCamelCase : List[str] = torch.Size((1, model.config.num_labels, 512, 512))
self.assertEqual(outputs.logits.shape , _UpperCamelCase)
_lowerCamelCase : List[str] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]]).to(_UpperCamelCase)
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCamelCase , atol=1E-4))
| 15 | import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
_lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""")
_lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : str = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""")
_lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : Union[str, Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
| 15 | 1 |
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowerCAmelCase : List[Any] ="hf-internal-testing/tiny-random-bert"
lowerCAmelCase : List[Any] =os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert")
lowerCAmelCase : List[str] ="9b8c223d42b2188cb49d29af482996f9d0f3e5a6"
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = cached_file(_UpperCamelCase , _UpperCamelCase)
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_UpperCamelCase))
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase , _UpperCamelCase)))
with open(os.path.join(_UpperCamelCase , """refs""" , """main""")) as f:
_lowerCamelCase : Optional[int] = f.read()
self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , """snapshots""" , _UpperCamelCase , _UpperCamelCase))
self.assertTrue(os.path.isfile(_UpperCamelCase))
# File is cached at the same place the second time.
_lowerCamelCase : Optional[int] = cached_file(_UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
# Using a specific revision to test the full commit hash.
_lowerCamelCase : str = cached_file(_UpperCamelCase , _UpperCamelCase , revision="""9b8c223""")
self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , """snapshots""" , _UpperCamelCase , _UpperCamelCase))
def _SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]:
"""simple docstring"""
with self.assertRaisesRegex(_UpperCamelCase , """is not a valid model identifier"""):
_lowerCamelCase : List[str] = cached_file("""tiny-random-bert""" , _UpperCamelCase)
with self.assertRaisesRegex(_UpperCamelCase , """is not a valid git identifier"""):
_lowerCamelCase : List[str] = cached_file(_UpperCamelCase , _UpperCamelCase , revision="""aaaa""")
with self.assertRaisesRegex(_UpperCamelCase , """does not appear to have a file named"""):
_lowerCamelCase : int = cached_file(_UpperCamelCase , """conf""")
def _SCREAMING_SNAKE_CASE ( self : int) ->str:
"""simple docstring"""
with self.assertRaisesRegex(_UpperCamelCase , """does not appear to have a file named"""):
_lowerCamelCase : List[str] = cached_file(_UpperCamelCase , """conf""")
with open(os.path.join(_UpperCamelCase , """refs""" , """main""")) as f:
_lowerCamelCase : Dict = f.read()
self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase , """.no_exist""" , _UpperCamelCase , """conf""")))
_lowerCamelCase : List[str] = cached_file(_UpperCamelCase , """conf""" , _raise_exceptions_for_missing_entries=_UpperCamelCase)
self.assertIsNone(_UpperCamelCase)
_lowerCamelCase : str = cached_file(_UpperCamelCase , """conf""" , local_files_only=_UpperCamelCase , _raise_exceptions_for_missing_entries=_UpperCamelCase)
self.assertIsNone(_UpperCamelCase)
_lowerCamelCase : List[Any] = mock.Mock()
_lowerCamelCase : List[Any] = 500
_lowerCamelCase : Any = {}
_lowerCamelCase : List[Any] = HTTPError
_lowerCamelCase : Any = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=_UpperCamelCase) as mock_head:
_lowerCamelCase : Optional[int] = cached_file(_UpperCamelCase , """conf""" , _raise_exceptions_for_connection_errors=_UpperCamelCase)
self.assertIsNone(_UpperCamelCase)
# This check we did call the fake head request
mock_head.assert_called()
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any:
"""simple docstring"""
self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCamelCase))
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCamelCase))
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , _UpperCamelCase))
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
"""simple docstring"""
self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt"""))
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_UpperCamelCase , """is not a valid model identifier"""):
get_file_from_repo("""bert-base-case""" , _UpperCamelCase)
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_UpperCamelCase , """is not a valid git identifier"""):
get_file_from_repo("""bert-base-cased""" , _UpperCamelCase , revision="""ahaha""")
_lowerCamelCase : Union[str, Any] = get_file_from_repo("""bert-base-cased""" , _UpperCamelCase)
# The name is the cached name which is not very easy to test, so instead we load the content.
_lowerCamelCase : Tuple = json.loads(open(_UpperCamelCase , """r""").read())
self.assertEqual(config["""hidden_size"""] , 768)
def _SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_lowerCamelCase : List[str] = Path(_UpperCamelCase) / """a.txt"""
filename.touch()
self.assertEqual(get_file_from_repo(_UpperCamelCase , """a.txt""") , str(_UpperCamelCase))
self.assertIsNone(get_file_from_repo(_UpperCamelCase , """b.txt"""))
| 15 | from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['pixel_values']
def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = do_resize
_lowerCamelCase : int = size
_lowerCamelCase : Optional[int] = resample
_lowerCamelCase : int = do_center_crop
_lowerCamelCase : Optional[Any] = crop_size
_lowerCamelCase : Union[str, Any] = do_rescale
_lowerCamelCase : List[str] = rescale_factor
_lowerCamelCase : List[Any] = do_normalize
_lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return resize(
_UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image:
"""simple docstring"""
_lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCamelCase : List[str] = resample if resample is not None else self.resample
_lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
_lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean
_lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
_lowerCamelCase : Optional[Any] = size if size is not None else self.size
_lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = make_list_of_images(_UpperCamelCase)
if not valid_images(_UpperCamelCase):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
_lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images]
if do_resize:
_lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images]
if do_center_crop:
_lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images]
if do_rescale:
_lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images]
if do_normalize:
_lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images]
_lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images]
_lowerCamelCase : int = {"""pixel_values""": images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
| 15 | 1 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : str=13 , _UpperCamelCase : str=32 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : List[Any]=[10, 20, 30, 40] , _UpperCamelCase : int=[2, 2, 3, 2] , _UpperCamelCase : Tuple=True , _UpperCamelCase : List[str]=True , _UpperCamelCase : Dict=37 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Optional[Any]=10 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : List[Any]=["stage2", "stage3", "stage4"] , _UpperCamelCase : Union[str, Any]=[2, 3, 4] , _UpperCamelCase : Optional[int]=None , ) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = parent
_lowerCamelCase : Union[str, Any] = batch_size
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : Optional[Any] = num_channels
_lowerCamelCase : Optional[Any] = num_stages
_lowerCamelCase : int = hidden_sizes
_lowerCamelCase : Tuple = depths
_lowerCamelCase : List[str] = is_training
_lowerCamelCase : Tuple = use_labels
_lowerCamelCase : Tuple = intermediate_size
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : str = num_labels
_lowerCamelCase : List[str] = initializer_range
_lowerCamelCase : List[str] = out_features
_lowerCamelCase : Optional[int] = out_indices
_lowerCamelCase : List[Any] = scope
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_lowerCamelCase : Dict = None
if self.use_labels:
_lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels)
_lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Dict = ConvNextModel(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : str = model(_UpperCamelCase)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Any) ->int:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = ConvNextForImageClassification(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : str = model(_UpperCamelCase , labels=_UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Optional[int] = ConvNextBackbone(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Optional[Any] = model(_UpperCamelCase)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:])
# verify backbone works with out_features=None
_lowerCamelCase : Optional[Any] = None
_lowerCamelCase : List[Any] = ConvNextBackbone(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : str = model(_UpperCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels) , 1)
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]])
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : int = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = config_and_inputs
_lowerCamelCase : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_snake_case = (
{'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : List[Any] = ConvNextModelTester(self)
_lowerCamelCase : List[str] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""")
def _SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""")
def _SCREAMING_SNAKE_CASE ( self : int) ->int:
"""simple docstring"""
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""")
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : str = model_class(_UpperCamelCase)
_lowerCamelCase : Tuple = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Any = [*signature.parameters.keys()]
_lowerCamelCase : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple:
"""simple docstring"""
def check_hidden_states_output(_UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : str):
_lowerCamelCase : Union[str, Any] = model_class(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
with torch.no_grad():
_lowerCamelCase : Dict = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase))
_lowerCamelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowerCamelCase : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(_UpperCamelCase) , expected_num_stages + 1)
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowerCamelCase , _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCamelCase : Union[str, Any] = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Any = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase)
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : int = ConvNextModel.from_pretrained(_UpperCamelCase)
self.assertIsNotNone(_UpperCamelCase)
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""") if is_vision_available() else None
@slow
def _SCREAMING_SNAKE_CASE ( self : int) ->Dict:
"""simple docstring"""
_lowerCamelCase : List[str] = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""").to(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = self.default_image_processor
_lowerCamelCase : str = prepare_img()
_lowerCamelCase : Optional[Any] = image_processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase)
# forward pass
with torch.no_grad():
_lowerCamelCase : List[Any] = model(**_UpperCamelCase)
# verify the logits
_lowerCamelCase : str = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape , _UpperCamelCase)
_lowerCamelCase : Any = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1]).to(_UpperCamelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4))
@require_torch
class __snake_case ( unittest.TestCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = (ConvNextBackbone,) if is_torch_available() else ()
_snake_case = ConvNextConfig
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = ConvNextModelTester(self)
| 15 | from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float:
"""simple docstring"""
return 0.0
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Tuple = [1] + [0] * (size - 1)
_lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) )
_lowerCamelCase : List[Any] = 20 * np.logaa(__A )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCamelCase : Any = get_bounds(__A , __A )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__A )
plt.show()
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
_lowerCamelCase : int = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Any = np.angle(np.fft.fft(__A ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__A , -2 * pi ) )
plt.show()
| 15 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : List[str] = 384
if "tiny" in model_name:
_lowerCamelCase : Optional[Any] = [3, 3, 9, 3]
_lowerCamelCase : Optional[int] = [96, 192, 384, 768]
if "small" in model_name:
_lowerCamelCase : List[Any] = [3, 3, 27, 3]
_lowerCamelCase : Optional[int] = [96, 192, 384, 768]
if "base" in model_name:
_lowerCamelCase : int = [3, 3, 27, 3]
_lowerCamelCase : Optional[int] = [128, 256, 512, 1_024]
_lowerCamelCase : List[Any] = 512
if "large" in model_name:
_lowerCamelCase : List[Any] = [3, 3, 27, 3]
_lowerCamelCase : int = [192, 384, 768, 1_536]
_lowerCamelCase : int = 768
if "xlarge" in model_name:
_lowerCamelCase : List[Any] = [3, 3, 27, 3]
_lowerCamelCase : Dict = [256, 512, 1_024, 2_048]
_lowerCamelCase : Optional[Any] = 1_024
# set label information
_lowerCamelCase : Dict = 150
_lowerCamelCase : int = """huggingface/label-files"""
_lowerCamelCase : List[Any] = """ade20k-id2label.json"""
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) )
_lowerCamelCase : Optional[int] = {int(__A ): v for k, v in idalabel.items()}
_lowerCamelCase : Optional[int] = {v: k for k, v in idalabel.items()}
_lowerCamelCase : str = ConvNextConfig(
depths=__A , hidden_sizes=__A , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
_lowerCamelCase : int = UperNetConfig(
backbone_config=__A , auxiliary_in_channels=__A , num_labels=__A , idalabel=__A , labelaid=__A , )
return config
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Dict = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") )
rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") )
if i > 0:
rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") )
rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : Any = dct.pop(__A )
_lowerCamelCase : Optional[int] = val
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : Any = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
_lowerCamelCase : Tuple = model_name_to_url[model_name]
_lowerCamelCase : Optional[int] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" )["""state_dict"""]
_lowerCamelCase : Optional[int] = get_upernet_config(__A )
_lowerCamelCase : Any = UperNetForSemanticSegmentation(__A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowerCamelCase : Optional[Any] = state_dict.pop(__A )
if "bn" in key:
_lowerCamelCase : str = key.replace("""bn""" , """batch_norm""" )
_lowerCamelCase : str = val
# rename keys
_lowerCamelCase : str = create_rename_keys(__A )
for src, dest in rename_keys:
rename_key(__A , __A , __A )
model.load_state_dict(__A )
# verify on image
_lowerCamelCase : Union[str, Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
_lowerCamelCase : Any = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" )
_lowerCamelCase : Optional[int] = SegformerImageProcessor()
_lowerCamelCase : List[str] = processor(__A , return_tensors="""pt""" ).pixel_values
with torch.no_grad():
_lowerCamelCase : Optional[Any] = model(__A )
if model_name == "upernet-convnext-tiny":
_lowerCamelCase : Optional[int] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
_lowerCamelCase : Any = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
_lowerCamelCase : Dict = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
_lowerCamelCase : Optional[int] = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
_lowerCamelCase : Tuple = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("""Logits:""" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __A , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(__A )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
lowerCAmelCase : str =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-convnext-tiny",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]],
help="Name of the ConvNext UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase : Tuple =parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 15 | import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=__A , exist_ok=__A )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , )
else:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , )
@torch.no_grad()
def A__ ( __A , __A , __A , __A = False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCamelCase : str = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCamelCase : List[str] = """cpu"""
_lowerCamelCase : Dict = Path(__A )
# VAE DECODER
_lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCamelCase : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCamelCase : Tuple = vae_decoder.decode
onnx_export(
__A , model_args=(
torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__A , )
del vae_decoder
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowerCAmelCase : Optional[Any] =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 15 | 1 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['image_processor', 'tokenizer']
_snake_case = 'OwlViTImageProcessor'
_snake_case = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self : str , _UpperCamelCase : Dict=None , _UpperCamelCase : Any=None , **_UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _UpperCamelCase , )
_lowerCamelCase : Optional[int] = kwargs.pop("""feature_extractor""")
_lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""")
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""")
super().__init__(_UpperCamelCase , _UpperCamelCase)
def __call__( self : int , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : Dict="max_length" , _UpperCamelCase : List[str]="np" , **_UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""")
if text is not None:
if isinstance(_UpperCamelCase , _UpperCamelCase) or (isinstance(_UpperCamelCase , _UpperCamelCase) and not isinstance(text[0] , _UpperCamelCase)):
_lowerCamelCase : int = [self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase)]
elif isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(text[0] , _UpperCamelCase):
_lowerCamelCase : Union[str, Any] = []
# Maximum number of queries across batch
_lowerCamelCase : List[str] = max([len(_UpperCamelCase) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(_UpperCamelCase) != max_num_queries:
_lowerCamelCase : Any = t + [""" """] * (max_num_queries - len(_UpperCamelCase))
_lowerCamelCase : int = self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase)
encodings.append(_UpperCamelCase)
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""")
if return_tensors == "np":
_lowerCamelCase : List[str] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0)
_lowerCamelCase : Union[str, Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_lowerCamelCase : str = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0)
_lowerCamelCase : Optional[Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
_lowerCamelCase : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0)
_lowerCamelCase : List[Any] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_lowerCamelCase : List[str] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0)
_lowerCamelCase : List[str] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0)
else:
raise ValueError("""Target return tensor type could not be returned""")
_lowerCamelCase : Any = BatchEncoding()
_lowerCamelCase : str = input_ids
_lowerCamelCase : Union[str, Any] = attention_mask
if query_images is not None:
_lowerCamelCase : Optional[Any] = BatchEncoding()
_lowerCamelCase : int = self.image_processor(
_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase).pixel_values
_lowerCamelCase : Tuple = query_pixel_values
if images is not None:
_lowerCamelCase : Any = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase)
if text is not None and images is not None:
_lowerCamelCase : List[str] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_lowerCamelCase : List[str] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCamelCase) , tensor_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *_UpperCamelCase : int , **_UpperCamelCase : int) ->Tuple:
"""simple docstring"""
return self.image_processor.post_process(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Tuple , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : List[Any]) ->Union[str, Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , *_UpperCamelCase : Dict , **_UpperCamelCase : str) ->int:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *_UpperCamelCase : Any , **_UpperCamelCase : str) ->List[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , *_UpperCamelCase : Tuple , **_UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase)
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCamelCase , )
return self.image_processor_class
@property
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCamelCase , )
return self.image_processor
| 15 | from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
lowerCAmelCase : Optional[int] =[0, 2, 4, 6, 8]
lowerCAmelCase : Tuple =[1, 3, 5, 7, 9]
def A__ ( __A , __A , __A , __A ):
'''simple docstring'''
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
_lowerCamelCase : Union[str, Any] = 0
for digit in range(10 ):
_lowerCamelCase : Optional[int] = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , __A , __A )
return result
_lowerCamelCase : Optional[Any] = 0
for digita in range(10 ):
_lowerCamelCase : Tuple = digita
if (remainder + digita) % 2 == 0:
_lowerCamelCase : Tuple = ODD_DIGITS
else:
_lowerCamelCase : Optional[int] = EVEN_DIGITS
for digita in other_parity_digits:
_lowerCamelCase : Tuple = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , __A , __A , )
return result
def A__ ( __A = 9 ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(__A , 0 , [0] * length , __A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 15 | import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = {}
_lowerCamelCase : List[Any] = tokenizer(example["""content"""] , truncation=__A )["""input_ids"""]
_lowerCamelCase : Tuple = len(example["""content"""] ) / len(output["""input_ids"""] )
return output
lowerCAmelCase : int =HfArgumentParser(PretokenizationArguments)
lowerCAmelCase : int =parser.parse_args()
if args.num_workers is None:
lowerCAmelCase : Any =multiprocessing.cpu_count()
lowerCAmelCase : Optional[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowerCAmelCase : str =time.time()
lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train")
print(F"""Dataset loaded in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Dict =time.time()
lowerCAmelCase : Dict =ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""")
lowerCAmelCase : Tuple =time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
| 15 | 1 |
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = [0] * len(__A )
_lowerCamelCase : int = []
_lowerCamelCase : List[Any] = [1] * len(__A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__A ) ):
if indegree[i] == 0:
queue.append(__A )
while queue:
_lowerCamelCase : str = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
_lowerCamelCase : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(__A )
print(max(__A ) )
# Adjacency list of Graph
lowerCAmelCase : Optional[Any] ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 15 | import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = IFPipeline
_snake_case = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_snake_case = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case = PipelineTesterMixin.required_optional_params - {'latents'}
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
"""simple docstring"""
return self._get_dummy_components()
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any]=0) ->Optional[Any]:
"""simple docstring"""
if str(_UpperCamelCase).startswith("""mps"""):
_lowerCamelCase : int = torch.manual_seed(_UpperCamelCase)
else:
_lowerCamelCase : List[Any] = torch.Generator(device=_UpperCamelCase).manual_seed(_UpperCamelCase)
_lowerCamelCase : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""")
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1)
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
"""simple docstring"""
self._test_save_load_local()
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3)
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa)
_lowerCamelCase : Tuple = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=_UpperCamelCase , tokenizer=_UpperCamelCase)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""")
_lowerCamelCase , _lowerCamelCase : str = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""")
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_lowerCamelCase : str = None
_lowerCamelCase : str = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_lowerCamelCase : Optional[Any] = IFImgaImgPipeline(**pipe_a.components)
_lowerCamelCase : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_lowerCamelCase : Any = IFInpaintingPipeline(**pipe_a.components)
_lowerCamelCase : Dict = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str) ->Tuple:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Optional[int] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Optional[int] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Dict = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_lowerCamelCase : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : str = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : List[Any]) ->Any:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Dict = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Union[str, Any] = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : List[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : str = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple) ->Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : int = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Any = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , num_inference_steps=2 , generator=_UpperCamelCase , output_type="""np""" , )
_lowerCamelCase : Any = output.images[0]
assert image.shape == (64, 64, 3)
_lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_lowerCamelCase : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
# pipeline 2
_start_torch_memory_measurement()
_lowerCamelCase : Tuple = torch.Generator(device="""cpu""").manual_seed(0)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(_UpperCamelCase)
_lowerCamelCase : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(_UpperCamelCase)
_lowerCamelCase : List[str] = pipe_a(
prompt_embeds=_UpperCamelCase , negative_prompt_embeds=_UpperCamelCase , image=_UpperCamelCase , mask_image=_UpperCamelCase , original_image=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_lowerCamelCase : Optional[Any] = output.images[0]
assert image.shape == (256, 256, 3)
_lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_lowerCamelCase : int = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""")
assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase)
def A__ ( ):
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 15 | 1 |
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
lowerCAmelCase : Optional[Any] =logging.getLogger(__name__)
lowerCAmelCase : Union[str, Any] ="Hello world! cécé herlolip"
lowerCAmelCase : str =namedtuple(
"BertAbsConfig",
[
"temp_dir",
"large",
"use_bert_emb",
"finetune_bert",
"encoder",
"share_emb",
"max_pos",
"enc_layers",
"enc_hidden_size",
"enc_heads",
"enc_ff_size",
"enc_dropout",
"dec_layers",
"dec_hidden_size",
"dec_heads",
"dec_ff_size",
"dec_dropout",
],
)
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = BertAbsConfig(
temp_dir=""".""" , finetune_bert=__A , large=__A , share_emb=__A , use_bert_emb=__A , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , )
_lowerCamelCase : Dict = torch.load(__A , lambda __A , __A : storage )
_lowerCamelCase : List[Any] = AbsSummarizer(__A , torch.device("""cpu""" ) , __A )
original.eval()
_lowerCamelCase : Optional[Any] = BertAbsSummarizer(__A , torch.device("""cpu""" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("""convert the model""" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("""Make sure that the models' outputs are identical""" )
_lowerCamelCase : Dict = BertTokenizer.from_pretrained("""bert-base-uncased""" )
# prepare the model inputs
_lowerCamelCase : Union[str, Any] = tokenizer.encode("""This is sample éàalj'-.""" )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__A )) )
_lowerCamelCase : List[str] = torch.tensor(__A ).unsqueeze(0 )
_lowerCamelCase : int = tokenizer.encode("""This is sample 3 éàalj'-.""" )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__A )) )
_lowerCamelCase : int = torch.tensor(__A ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
_lowerCamelCase : Union[str, Any] = encoder_input_ids
_lowerCamelCase : str = decoder_input_ids
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : int = None
_lowerCamelCase : Tuple = None
_lowerCamelCase : Any = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
_lowerCamelCase : Optional[int] = original(__A , __A , __A , __A , __A , __A , __A )[0]
_lowerCamelCase : Union[str, Any] = original.generator(__A )
_lowerCamelCase : Dict = new_model(
__A , __A , __A , __A , __A )[0]
_lowerCamelCase : int = new_model.generator(__A )
_lowerCamelCase : Optional[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(__A ) )
_lowerCamelCase : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(__A ) )
_lowerCamelCase : Any = torch.allclose(__A , __A , atol=1E-3 )
if are_identical:
logging.info("""all weights are equal up to 1e-3""" )
else:
raise ValueError("""the weights are different. The new model is likely different from the original one.""" )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("""saving the model's state dictionary""" )
torch.save(
new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" )
if __name__ == "__main__":
lowerCAmelCase : str =argparse.ArgumentParser()
parser.add_argument(
"--bertabs_checkpoint_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.",
)
lowerCAmelCase : Optional[int] =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 15 | from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : Any =logging.get_logger(__name__)
lowerCAmelCase : List[Any] ={
"microsoft/swin-tiny-patch4-window7-224": (
"https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'swin'
_snake_case = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Optional[int] , _UpperCamelCase : List[str]=224 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Dict=96 , _UpperCamelCase : Any=[2, 2, 6, 2] , _UpperCamelCase : Any=[3, 6, 12, 24] , _UpperCamelCase : Tuple=7 , _UpperCamelCase : Tuple=4.0 , _UpperCamelCase : Dict=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Any=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : str=False , _UpperCamelCase : str=0.0_2 , _UpperCamelCase : Dict=1E-5 , _UpperCamelCase : List[str]=32 , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : List[Any] , ) ->Tuple:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : List[str] = image_size
_lowerCamelCase : Tuple = patch_size
_lowerCamelCase : Dict = num_channels
_lowerCamelCase : Union[str, Any] = embed_dim
_lowerCamelCase : str = depths
_lowerCamelCase : str = len(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = num_heads
_lowerCamelCase : Tuple = window_size
_lowerCamelCase : int = mlp_ratio
_lowerCamelCase : Optional[int] = qkv_bias
_lowerCamelCase : List[str] = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : Tuple = drop_path_rate
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : Dict = use_absolute_embeddings
_lowerCamelCase : int = layer_norm_eps
_lowerCamelCase : str = initializer_range
_lowerCamelCase : Dict = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCamelCase : int = int(embed_dim * 2 ** (len(_UpperCamelCase) - 1))
_lowerCamelCase : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 , len(_UpperCamelCase) + 1)]
_lowerCamelCase , _lowerCamelCase : List[str] = get_aligned_output_features_output_indices(
out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = version.parse('1.11' )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float:
"""simple docstring"""
return 1E-4
| 15 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : str ={
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] =[
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 15 | import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = (EulerDiscreteScheduler,)
_snake_case = 10
def _SCREAMING_SNAKE_CASE ( self : Tuple , **_UpperCamelCase : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {
"""num_train_timesteps""": 1100,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCamelCase)
return config
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2]):
self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.scheduler_classes[0]
_lowerCamelCase : str = self.get_scheduler_config()
_lowerCamelCase : Any = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : str = torch.manual_seed(0)
_lowerCamelCase : str = self.dummy_model()
_lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : int = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Dict = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Any = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : int = self.scheduler_classes[0]
_lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""")
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps)
_lowerCamelCase : Any = torch.manual_seed(0)
_lowerCamelCase : int = self.dummy_model()
_lowerCamelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma
_lowerCamelCase : Dict = sample.to(_UpperCamelCase)
for i, t in enumerate(scheduler.timesteps):
_lowerCamelCase : Optional[int] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : str = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[Any] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : Tuple = output.prev_sample
_lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : Optional[int] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 0.0_0_0_2) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.scheduler_classes[0]
_lowerCamelCase : int = self.get_scheduler_config()
_lowerCamelCase : List[Any] = scheduler_class(**_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Tuple = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : List[Any] = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : List[Any] = output.prev_sample
_lowerCamelCase : Any = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[Any] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_0.0_8_0_7) < 1E-2
assert abs(result_mean.item() - 0.0_1_3_1) < 1E-3
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[str] = self.scheduler_classes[0]
_lowerCamelCase : Optional[int] = self.get_scheduler_config()
_lowerCamelCase : int = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase)
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase)
_lowerCamelCase : int = torch.manual_seed(0)
_lowerCamelCase : Tuple = self.dummy_model()
_lowerCamelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_lowerCamelCase : Optional[int] = sample.to(_UpperCamelCase)
for t in scheduler.timesteps:
_lowerCamelCase : Tuple = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Any = model(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : List[str] = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase)
_lowerCamelCase : int = output.prev_sample
_lowerCamelCase : Tuple = torch.sum(torch.abs(_UpperCamelCase))
_lowerCamelCase : List[str] = torch.mean(torch.abs(_UpperCamelCase))
assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9) < 1E-2
assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3) < 1E-3
| 15 | 1 |
import os
# Precomputes a list of the 100 first triangular numbers
lowerCAmelCase : Tuple =[int(0.5 * n * (n + 1)) for n in range(1, 101)]
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = os.path.dirname(os.path.realpath(__A ) )
_lowerCamelCase : Tuple = os.path.join(__A , """words.txt""" )
_lowerCamelCase : int = """"""
with open(__A ) as f:
_lowerCamelCase : Union[str, Any] = f.readline()
_lowerCamelCase : Tuple = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
_lowerCamelCase : Optional[Any] = [
word
for word in [sum(ord(__A ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__A )
if __name__ == "__main__":
print(solution())
| 15 | import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Dict =logging.get_logger(__name__)
lowerCAmelCase : Dict ={"vocab_file": "vocab.json"}
lowerCAmelCase : List[str] ={
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
lowerCAmelCase : int ={"mgp-str": 27}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int="[GO]" , _UpperCamelCase : Any="[GO]" , _UpperCamelCase : Optional[Any]="[s]" , _UpperCamelCase : List[str]="[GO]" , **_UpperCamelCase : Dict) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , **_UpperCamelCase , )
with open(_UpperCamelCase , encoding="""utf-8""") as vocab_handle:
_lowerCamelCase : Optional[Any] = json.load(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def _SCREAMING_SNAKE_CASE ( self : str) ->Any:
"""simple docstring"""
return len(self.vocab)
def _SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = []
for s in text:
char_tokens.extend(_UpperCamelCase)
return char_tokens
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : int) ->Optional[int]:
"""simple docstring"""
return self.vocab.get(_UpperCamelCase , self.vocab.get(self.unk_token))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[Any]) ->Dict:
"""simple docstring"""
return self.decoder.get(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCamelCase):
logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCamelCase))
return
_lowerCamelCase : Tuple = os.path.join(
_UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
with open(_UpperCamelCase , """w""" , encoding="""utf-8""") as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCamelCase , ensure_ascii=_UpperCamelCase) + """\n""")
return (vocab_file,)
| 15 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase : List[Any] =logging.get_logger(__name__)
lowerCAmelCase : str ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase : Optional[int] ={
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
lowerCAmelCase : Optional[Any] ={
"gpt2": 1024,
"gpt2-medium": 1024,
"gpt2-large": 1024,
"gpt2-xl": 1024,
"distilgpt2": 1024,
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['input_ids', 'attention_mask']
_snake_case = GPTaTokenizer
def __init__( self : Any , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : Tuple="<|endoftext|>" , _UpperCamelCase : Optional[Any]="<|endoftext|>" , _UpperCamelCase : List[str]="<|endoftext|>" , _UpperCamelCase : Optional[int]=False , **_UpperCamelCase : Dict , ) ->List[str]:
"""simple docstring"""
super().__init__(
_UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : Optional[Any] = kwargs.pop("""add_bos_token""" , _UpperCamelCase)
_lowerCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , _UpperCamelCase) != add_prefix_space:
_lowerCamelCase : Optional[int] = getattr(_UpperCamelCase , pre_tok_state.pop("""type"""))
_lowerCamelCase : Dict = add_prefix_space
_lowerCamelCase : List[Any] = pre_tok_class(**_UpperCamelCase)
_lowerCamelCase : Optional[Any] = add_prefix_space
def _SCREAMING_SNAKE_CASE ( self : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Optional[int]) ->BatchEncoding:
"""simple docstring"""
_lowerCamelCase : int = kwargs.get("""is_split_into_words""" , _UpperCamelCase)
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict , *_UpperCamelCase : Dict , **_UpperCamelCase : Dict) ->BatchEncoding:
"""simple docstring"""
_lowerCamelCase : List[Any] = kwargs.get("""is_split_into_words""" , _UpperCamelCase)
assert self.add_prefix_space or not is_split_into_words, (
F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None) ->Tuple[str]:
"""simple docstring"""
_lowerCamelCase : Any = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase)
return tuple(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : "Conversation") ->List[int]:
"""simple docstring"""
_lowerCamelCase : List[str] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase) + [self.eos_token_id])
if len(_UpperCamelCase) > self.model_max_length:
_lowerCamelCase : str = input_ids[-self.model_max_length :]
return input_ids
| 15 | import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""c"""])
self.assertEqual(_UpperCamelCase , [2])
# Out indices set to match out features
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features set to match out indices
_lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features selected from negative indices
_lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [-3, -1])
def _SCREAMING_SNAKE_CASE ( self : int) ->int:
"""simple docstring"""
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase)
# Out features must be a list
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""])
# Out features must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""])
# Out indices must be a list or tuple
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""])
# Out indices must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""])
# Out features and out indices must be the same length
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""])
# Out features should match out indices
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""])
# Out features and out indices should be in order
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""])
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""])
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : int = BackboneMixin()
_lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""]
_lowerCamelCase : Tuple = ["""a""", """c"""]
_lowerCamelCase : List[Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
_lowerCamelCase : str = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""])
self.assertEqual(backbone.out_indices , [0, 1])
_lowerCamelCase : Optional[int] = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [-3, -1])
| 15 | 1 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : int=2 , _UpperCamelCase : Optional[Any]=3 , _UpperCamelCase : Union[str, Any]=16 , _UpperCamelCase : List[str]=[32, 64, 128] , _UpperCamelCase : Any=[1, 2, 1] , _UpperCamelCase : Tuple=[2, 2, 4] , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=2.0 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : List[str]=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : int="gelu" , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : int=True , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : List[Any]=1E-5 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=None , _UpperCamelCase : str=True , _UpperCamelCase : Dict=10 , _UpperCamelCase : Dict=8 , _UpperCamelCase : Any=["stage1", "stage2"] , _UpperCamelCase : Dict=[1, 2] , ) ->str:
"""simple docstring"""
_lowerCamelCase : List[Any] = parent
_lowerCamelCase : List[Any] = batch_size
_lowerCamelCase : Union[str, Any] = image_size
_lowerCamelCase : Optional[Any] = patch_size
_lowerCamelCase : int = num_channels
_lowerCamelCase : Any = embed_dim
_lowerCamelCase : Union[str, Any] = hidden_sizes
_lowerCamelCase : str = depths
_lowerCamelCase : List[Any] = num_heads
_lowerCamelCase : Union[str, Any] = window_size
_lowerCamelCase : Optional[Any] = mlp_ratio
_lowerCamelCase : List[str] = qkv_bias
_lowerCamelCase : Any = hidden_dropout_prob
_lowerCamelCase : Tuple = attention_probs_dropout_prob
_lowerCamelCase : Optional[Any] = drop_path_rate
_lowerCamelCase : Union[str, Any] = hidden_act
_lowerCamelCase : str = use_absolute_embeddings
_lowerCamelCase : List[str] = patch_norm
_lowerCamelCase : Dict = layer_norm_eps
_lowerCamelCase : int = initializer_range
_lowerCamelCase : str = is_training
_lowerCamelCase : Optional[int] = scope
_lowerCamelCase : str = use_labels
_lowerCamelCase : List[Any] = type_sequence_label_size
_lowerCamelCase : Any = encoder_stride
_lowerCamelCase : List[Any] = out_features
_lowerCamelCase : str = out_indices
def _SCREAMING_SNAKE_CASE ( self : str) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_lowerCamelCase : str = None
if self.use_labels:
_lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_lowerCamelCase : Tuple = self.get_config()
return config, pixel_values, labels
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]:
"""simple docstring"""
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : int) ->Dict:
"""simple docstring"""
_lowerCamelCase : List[Any] = FocalNetModel(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Optional[Any] = model(_UpperCamelCase)
_lowerCamelCase : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
_lowerCamelCase : int = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : List[str]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = FocalNetBackbone(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Any = model(_UpperCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1])
# verify backbone works with out_features=None
_lowerCamelCase : List[Any] = None
_lowerCamelCase : int = FocalNetBackbone(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Tuple = model(_UpperCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels) , 1)
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]])
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = FocalNetForMaskedImageModeling(config=_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Tuple = model(_UpperCamelCase)
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size))
# test greyscale images
_lowerCamelCase : Tuple = 1
_lowerCamelCase : int = FocalNetForMaskedImageModeling(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
_lowerCamelCase : List[Any] = model(_UpperCamelCase)
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : str = self.type_sequence_label_size
_lowerCamelCase : Optional[int] = FocalNetForImageClassification(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Any = model(_UpperCamelCase , labels=_UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
_lowerCamelCase : List[str] = 1
_lowerCamelCase : int = FocalNetForImageClassification(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
_lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
_lowerCamelCase : List[Any] = model(_UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def _SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Any = self.prepare_config_and_inputs()
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = config_and_inputs
_lowerCamelCase : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
_snake_case = (
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
"""simple docstring"""
_lowerCamelCase : int = FocalNetModelTester(self)
_lowerCamelCase : str = ConfigTester(self , config_class=_UpperCamelCase , embed_dim=37 , has_text_modality=_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
return
def _SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int) ->Any:
"""simple docstring"""
_lowerCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase)
@unittest.skip(reason="""FocalNet does not use inputs_embeds""")
def _SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
"""simple docstring"""
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""")
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->int:
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : Tuple = model_class(_UpperCamelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
_lowerCamelCase : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear))
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : List[str] = model_class(_UpperCamelCase)
_lowerCamelCase : Dict = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCamelCase : Union[str, Any] = [*signature.parameters.keys()]
_lowerCamelCase : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = model_class(_UpperCamelCase)
model.to(_UpperCamelCase)
model.eval()
with torch.no_grad():
_lowerCamelCase : int = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase))
_lowerCamelCase : Union[str, Any] = outputs.hidden_states
_lowerCamelCase : Optional[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths) + 1)
self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase)
# FocalNet has a different seq_length
_lowerCamelCase : List[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
_lowerCamelCase : str = outputs.reshaped_hidden_states
self.assertEqual(len(_UpperCamelCase) , _UpperCamelCase)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = reshaped_hidden_states[0].shape
_lowerCamelCase : Dict = (
reshaped_hidden_states[0].view(_UpperCamelCase , _UpperCamelCase , height * width).permute(0 , 2 , 1)
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , )
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Any:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : List[str] = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Tuple = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : int = 3
_lowerCamelCase : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
_lowerCamelCase : int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
_lowerCamelCase : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_lowerCamelCase : int = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
_lowerCamelCase : Dict = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCamelCase : Dict = True
self.check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , (padded_height, padded_width))
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
"""simple docstring"""
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Optional[Any] = FocalNetModel.from_pretrained(_UpperCamelCase)
self.assertIsNotNone(_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->int:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : List[str] = _config_zero_init(_UpperCamelCase)
for model_class in self.all_model_classes:
_lowerCamelCase : Any = model_class(config=_UpperCamelCase)
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@require_vision
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""") if is_vision_available() else None
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Dict = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""").to(_UpperCamelCase)
_lowerCamelCase : Dict = self.default_image_processor
_lowerCamelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
_lowerCamelCase : List[str] = image_processor(images=_UpperCamelCase , return_tensors="""pt""").to(_UpperCamelCase)
# forward pass
with torch.no_grad():
_lowerCamelCase : Optional[int] = model(**_UpperCamelCase)
# verify the logits
_lowerCamelCase : List[Any] = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape , _UpperCamelCase)
_lowerCamelCase : Optional[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1]).to(_UpperCamelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4))
self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281)
@require_torch
class __snake_case ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_snake_case = (FocalNetBackbone,) if is_torch_available() else ()
_snake_case = FocalNetConfig
_snake_case = False
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = FocalNetModelTester(self)
| 15 | import math
def A__ ( __A ):
'''simple docstring'''
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_lowerCamelCase : List[Any] = range(3 , int(math.sqrt(__A ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def A__ ( __A , __A=1 , **__A ):
'''simple docstring'''
_lowerCamelCase : Dict = factor * value
_lowerCamelCase : str = value
while not is_prime(__A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **__A )
return value
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : List[Any] ={
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int =[
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
lowerCAmelCase : Optional[Any] =["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 15 | from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowerCAmelCase : Optional[Any] =logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple:
"""simple docstring"""
super().__init__(*_UpperCamelCase , **_UpperCamelCase)
requires_backends(self , """vision""")
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING)
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : Optional[int] = {}
if top_k is not None:
_lowerCamelCase : str = top_k
return {}, {}, postprocess_params
def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict:
"""simple docstring"""
return super().__call__(_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Tuple = load_image(_UpperCamelCase)
_lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework)
return model_inputs
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Any = self.model(**_UpperCamelCase)
return model_outputs
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str:
"""simple docstring"""
if top_k > self.model.config.num_labels:
_lowerCamelCase : Union[str, Any] = self.model.config.num_labels
if self.framework == "pt":
_lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0]
_lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase)
elif self.framework == "tf":
_lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0]
_lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase)
_lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"""Unsupported framework: {self.framework}""")
_lowerCamelCase : str = scores.tolist()
_lowerCamelCase : str = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
| 15 | 1 |
from __future__ import annotations
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : List[str] = 0.00
_lowerCamelCase : Optional[int] = 0
for resistor in resistors:
if resistor <= 0:
_lowerCamelCase : List[str] = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(__A )
first_sum += 1 / float(__A )
index += 1
return 1 / first_sum
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = 0.00
_lowerCamelCase : Optional[int] = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
_lowerCamelCase : Optional[Any] = F"""Resistor at index {index} has a negative value!"""
raise ValueError(__A )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
_snake_case = ViTImageProcessor if is_vision_available() else None
@property
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (3, 32, 128)
_lowerCamelCase : str = tempfile.mkdtemp()
# fmt: off
_lowerCamelCase : Dict = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_lowerCamelCase : str = dict(zip(_UpperCamelCase , range(len(_UpperCamelCase))))
_lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(_UpperCamelCase) + """\n""")
_lowerCamelCase : Any = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
_lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCamelCase)
with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp:
json.dump(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , **_UpperCamelCase : Any) ->Tuple:
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict , **_UpperCamelCase : Optional[Any]) ->List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
"""simple docstring"""
_lowerCamelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)
_lowerCamelCase : int = Image.fromarray(np.moveaxis(_UpperCamelCase , 0 , -1))
return image_input
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Tuple = self.get_image_processor()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : int = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCamelCase)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_tokenizer()
_lowerCamelCase : Optional[Any] = self.get_image_processor()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
processor.save_pretrained(self.tmpdirname)
_lowerCamelCase : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""")
_lowerCamelCase : Union[str, Any] = self.get_image_processor(do_normalize=_UpperCamelCase , padding_value=1.0)
_lowerCamelCase : Tuple = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCamelCase , padding_value=1.0)
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.char_tokenizer , _UpperCamelCase)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Any) ->int:
"""simple docstring"""
_lowerCamelCase : int = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : List[str] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""np""")
_lowerCamelCase : int = processor(images=_UpperCamelCase , return_tensors="""np""")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Optional[int] = """test"""
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase)
_lowerCamelCase : Dict = tokenizer(_UpperCamelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[Any] = self.get_tokenizer()
_lowerCamelCase : Any = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = """test"""
_lowerCamelCase : List[str] = self.prepare_image_inputs()
_lowerCamelCase : int = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""])
# test if it raises when no input is passed
with pytest.raises(_UpperCamelCase):
processor()
def _SCREAMING_SNAKE_CASE ( self : Any) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = self.get_image_processor()
_lowerCamelCase : List[str] = self.get_tokenizer()
_lowerCamelCase : Dict = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
_lowerCamelCase : Any = processor.char_decode(_UpperCamelCase)
_lowerCamelCase : Tuple = tokenizer.batch_decode(_UpperCamelCase)
_lowerCamelCase : List[str] = [seq.replace(""" """ , """""") for seq in decoded_tok]
self.assertListEqual(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Dict = self.get_image_processor()
_lowerCamelCase : str = self.get_tokenizer()
_lowerCamelCase : List[Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : int = None
_lowerCamelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCamelCase : Union[str, Any] = processor(text=_UpperCamelCase , images=_UpperCamelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
"""simple docstring"""
_lowerCamelCase : List[str] = self.get_image_processor()
_lowerCamelCase : int = self.get_tokenizer()
_lowerCamelCase : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCamelCase , image_processor=_UpperCamelCase)
_lowerCamelCase : Any = torch.randn(1 , 27 , 38)
_lowerCamelCase : List[Any] = torch.randn(1 , 27 , 5_0257)
_lowerCamelCase : List[str] = torch.randn(1 , 27 , 3_0522)
_lowerCamelCase : int = processor.batch_decode([char_input, bpe_input, wp_input])
self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
| 15 | 1 |
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""c"""])
self.assertEqual(_UpperCamelCase , [2])
# Out indices set to match out features
_lowerCamelCase , _lowerCamelCase : int = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCamelCase , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features set to match out indices
_lowerCamelCase , _lowerCamelCase : Tuple = get_aligned_output_features_output_indices(_UpperCamelCase , [0, 2] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [0, 2])
# Out features selected from negative indices
_lowerCamelCase , _lowerCamelCase : str = get_aligned_output_features_output_indices(_UpperCamelCase , [-3, -1] , _UpperCamelCase)
self.assertEqual(_UpperCamelCase , ["""a""", """c"""])
self.assertEqual(_UpperCamelCase , [-3, -1])
def _SCREAMING_SNAKE_CASE ( self : int) ->int:
"""simple docstring"""
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCamelCase)
# Out features must be a list
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""])
# Out features must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""])
# Out indices must be a list or tuple
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , 0 , ["""a""", """b"""])
# Out indices must be a subset of stage names
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(_UpperCamelCase , (0, 1) , ["""a"""])
# Out features and out indices must be the same length
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""])
# Out features should match out indices
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""])
# Out features and out indices should be in order
with self.assertRaises(_UpperCamelCase):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""])
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""])
def _SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : int = BackboneMixin()
_lowerCamelCase : Union[str, Any] = ["""a""", """b""", """c"""]
_lowerCamelCase : Tuple = ["""a""", """c"""]
_lowerCamelCase : List[Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [0, 2])
# Check out features and indices are updated correctly
_lowerCamelCase : str = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""])
self.assertEqual(backbone.out_indices , [0, 1])
_lowerCamelCase : Optional[int] = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""])
self.assertEqual(backbone.out_indices , [-3, -1])
| 15 | import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__A , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__A )
return parser.parse_args()
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[str] = parse_args()
# Import training_script as a module.
_lowerCamelCase : List[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowerCamelCase : Optional[Any] = script_fpath.stem
_lowerCamelCase : Dict = importlib.import_module(__A )
# Patch sys.argv
_lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 15 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase : List[str] =logging.get_logger(__name__)
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
_lowerCamelCase : Tuple = [144, 192, 240]
_lowerCamelCase : str = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
_lowerCamelCase : List[Any] = [96, 120, 144]
_lowerCamelCase : Optional[int] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
_lowerCamelCase : Union[str, Any] = [64, 80, 96]
_lowerCamelCase : Tuple = [16, 16, 24, 48, 64, 80, 320]
_lowerCamelCase : Any = 0.05
_lowerCamelCase : Tuple = 2.0
if mobilevit_name.startswith("""deeplabv3_""" ):
_lowerCamelCase : Union[str, Any] = 512
_lowerCamelCase : Optional[int] = 16
_lowerCamelCase : Optional[Any] = 21
_lowerCamelCase : Dict = """pascal-voc-id2label.json"""
else:
_lowerCamelCase : Optional[Any] = 1_000
_lowerCamelCase : Tuple = """imagenet-1k-id2label.json"""
_lowerCamelCase : Tuple = """huggingface/label-files"""
_lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) )
_lowerCamelCase : Dict = {int(__A ): v for k, v in idalabel.items()}
_lowerCamelCase : Tuple = idalabel
_lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
return config
def A__ ( __A , __A=False ):
'''simple docstring'''
for i in range(1 , 6 ):
if F"""layer_{i}.""" in name:
_lowerCamelCase : Tuple = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
_lowerCamelCase : Any = name.replace("""conv_1.""" , """conv_stem.""" )
if ".block." in name:
_lowerCamelCase : Tuple = name.replace(""".block.""" , """.""" )
if "exp_1x1" in name:
_lowerCamelCase : Optional[int] = name.replace("""exp_1x1""" , """expand_1x1""" )
if "red_1x1" in name:
_lowerCamelCase : Tuple = name.replace("""red_1x1""" , """reduce_1x1""" )
if ".local_rep.conv_3x3." in name:
_lowerCamelCase : List[Any] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" )
if ".local_rep.conv_1x1." in name:
_lowerCamelCase : Union[str, Any] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" )
if ".norm." in name:
_lowerCamelCase : Optional[int] = name.replace(""".norm.""" , """.normalization.""" )
if ".conv." in name:
_lowerCamelCase : List[Any] = name.replace(""".conv.""" , """.convolution.""" )
if ".conv_proj." in name:
_lowerCamelCase : Optional[int] = name.replace(""".conv_proj.""" , """.conv_projection.""" )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
_lowerCamelCase : str = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F""".{i}.{j}.""" in name:
_lowerCamelCase : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.""" )
if "expand_1x1" in name:
_lowerCamelCase : List[Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" )
if "conv_3x3" in name:
_lowerCamelCase : Union[str, Any] = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" )
if "reduce_1x1" in name:
_lowerCamelCase : int = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" )
for i in range(2 , 5 ):
if F""".global_rep.{i}.weight""" in name:
_lowerCamelCase : int = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" )
if F""".global_rep.{i}.bias""" in name:
_lowerCamelCase : Optional[int] = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" )
if ".global_rep." in name:
_lowerCamelCase : Optional[int] = name.replace(""".global_rep.""" , """.transformer.""" )
if ".pre_norm_mha.0." in name:
_lowerCamelCase : Tuple = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" )
if ".pre_norm_mha.1.out_proj." in name:
_lowerCamelCase : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" )
if ".pre_norm_ffn.0." in name:
_lowerCamelCase : int = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" )
if ".pre_norm_ffn.1." in name:
_lowerCamelCase : Optional[Any] = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" )
if ".pre_norm_ffn.4." in name:
_lowerCamelCase : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" )
if ".transformer." in name:
_lowerCamelCase : str = name.replace(""".transformer.""" , """.transformer.layer.""" )
if ".aspp_layer." in name:
_lowerCamelCase : Optional[int] = name.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in name:
_lowerCamelCase : Optional[int] = name.replace(""".aspp_pool.""" , """.""" )
if "seg_head." in name:
_lowerCamelCase : int = name.replace("""seg_head.""" , """segmentation_head.""" )
if "segmentation_head.classifier.classifier." in name:
_lowerCamelCase : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" )
if "classifier.fc." in name:
_lowerCamelCase : Any = name.replace("""classifier.fc.""" , """classifier.""" )
elif (not base_model) and ("segmentation_head." not in name):
_lowerCamelCase : Optional[Any] = """mobilevit.""" + name
return name
def A__ ( __A , __A , __A=False ):
'''simple docstring'''
if base_model:
_lowerCamelCase : Union[str, Any] = """"""
else:
_lowerCamelCase : Dict = """mobilevit."""
for key in orig_state_dict.copy().keys():
_lowerCamelCase : Optional[Any] = orig_state_dict.pop(__A )
if key[:8] == "encoder.":
_lowerCamelCase : str = key[8:]
if "qkv" in key:
_lowerCamelCase : List[str] = key.split(""".""" )
_lowerCamelCase : List[Any] = int(key_split[0][6:] ) - 1
_lowerCamelCase : str = int(key_split[3] )
_lowerCamelCase : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" )
_lowerCamelCase : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size
_lowerCamelCase : int = (
F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
_lowerCamelCase : Union[str, Any] = val[:dim, :]
_lowerCamelCase : Tuple = val[dim : dim * 2, :]
_lowerCamelCase : Any = val[-dim:, :]
else:
_lowerCamelCase : Any = val[:dim]
_lowerCamelCase : str = val[dim : dim * 2]
_lowerCamelCase : str = val[-dim:]
else:
_lowerCamelCase : List[str] = val
return orig_state_dict
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_lowerCamelCase : Any = Image.open(requests.get(__A , stream=__A ).raw )
return im
@torch.no_grad()
def A__ ( __A , __A , __A , __A=False ):
'''simple docstring'''
_lowerCamelCase : List[str] = get_mobilevit_config(__A )
# load original state_dict
_lowerCamelCase : int = torch.load(__A , map_location="""cpu""" )
# load 🤗 model
if mobilevit_name.startswith("""deeplabv3_""" ):
_lowerCamelCase : List[str] = MobileViTForSemanticSegmentation(__A ).eval()
else:
_lowerCamelCase : List[str] = MobileViTForImageClassification(__A ).eval()
_lowerCamelCase : List[str] = convert_state_dict(__A , __A )
model.load_state_dict(__A )
# Check outputs on an image, prepared by MobileViTImageProcessor
_lowerCamelCase : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_lowerCamelCase : Any = image_processor(images=prepare_img() , return_tensors="""pt""" )
_lowerCamelCase : Any = model(**__A )
_lowerCamelCase : Any = outputs.logits
if mobilevit_name.startswith("""deeplabv3_""" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
_lowerCamelCase : List[str] = torch.tensor(
[
[[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]],
[[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]],
[[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
_lowerCamelCase : Union[str, Any] = torch.tensor(
[
[[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]],
[[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]],
[[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
_lowerCamelCase : Optional[Any] = torch.tensor(
[
[[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]],
[[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]],
[[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]],
] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3] , __A , atol=1E-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
_lowerCamelCase : Optional[int] = torch.tensor([-0.9_866, 0.2_392, -1.1_241] )
elif mobilevit_name == "mobilevit_xs":
_lowerCamelCase : Dict = torch.tensor([-2.4_761, -0.9_399, -1.9_587] )
elif mobilevit_name == "mobilevit_xxs":
_lowerCamelCase : List[str] = torch.tensor([-1.9_364, -1.2_327, -0.4_653] )
else:
raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3] , __A , atol=1E-4 )
Path(__A ).mkdir(exist_ok=__A )
print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__A )
if push_to_hub:
_lowerCamelCase : Optional[Any] = {
"""mobilevit_s""": """mobilevit-small""",
"""mobilevit_xs""": """mobilevit-x-small""",
"""mobilevit_xxs""": """mobilevit-xx-small""",
"""deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""",
"""deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""",
"""deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""",
}
print("""Pushing to the hub...""" )
_lowerCamelCase : Dict = model_mapping[mobilevit_name]
image_processor.push_to_hub(__A , organization="""apple""" )
model.push_to_hub(__A , organization="""apple""" )
if __name__ == "__main__":
lowerCAmelCase : List[str] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase : Tuple =parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 15 | def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
if n == 0:
return 0
_lowerCamelCase : Tuple = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
_lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def A__ ( __A , __A , __A ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowerCamelCase : int = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Optional[Any] = max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
_lowerCamelCase : Optional[Any] = max_revenue
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_lowerCamelCase : Any = 0
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max_rev[i]
for j in range(1 , i + 1 ):
_lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] )
_lowerCamelCase : int = max_revenue_i
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
if n < 0:
_lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__A )
if n > len(__A ):
_lowerCamelCase : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(__A )}"""
)
raise ValueError(__A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : str = [6, 10, 12, 15, 20, 23]
_lowerCamelCase : List[str] = len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowerCamelCase : Tuple = 36
_lowerCamelCase : Any = top_down_cut_rod(__A , __A )
_lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A )
_lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 | 1 |
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
lowerCAmelCase : int =logging.getLogger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'sequence-classification'
def __init__( self : Optional[int] , _UpperCamelCase : str) ->Tuple:
"""simple docstring"""
if type(_UpperCamelCase) == dict:
_lowerCamelCase : Any = Namespace(**_UpperCamelCase)
_lowerCamelCase : List[Any] = glue_output_modes[hparams.task]
_lowerCamelCase : Optional[int] = glue_tasks_num_labels[hparams.task]
super().__init__(_UpperCamelCase , _UpperCamelCase , self.mode)
def _SCREAMING_SNAKE_CASE ( self : int , **_UpperCamelCase : Dict) ->List[str]:
"""simple docstring"""
return self.model(**_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any]) ->Optional[int]:
"""simple docstring"""
_lowerCamelCase : int = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_lowerCamelCase : List[Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
_lowerCamelCase : Optional[Any] = self(**_UpperCamelCase)
_lowerCamelCase : int = outputs[0]
_lowerCamelCase : List[str] = self.trainer.lr_schedulers[0]["""scheduler"""]
_lowerCamelCase : Union[str, Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def _SCREAMING_SNAKE_CASE ( self : str) ->str:
"""simple docstring"""
_lowerCamelCase : str = self.hparams
_lowerCamelCase : Optional[int] = processors[args.task]()
_lowerCamelCase : Optional[Any] = processor.get_labels()
for mode in ["train", "dev"]:
_lowerCamelCase : Union[str, Any] = self._feature_file(_UpperCamelCase)
if os.path.exists(_UpperCamelCase) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , _UpperCamelCase)
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir)
_lowerCamelCase : Tuple = (
processor.get_dev_examples(args.data_dir)
if mode == """dev"""
else processor.get_train_examples(args.data_dir)
)
_lowerCamelCase : Optional[int] = convert_examples_to_features(
_UpperCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info("""Saving features into cached file %s""" , _UpperCamelCase)
torch.save(_UpperCamelCase , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : bool = False) ->DataLoader:
"""simple docstring"""
_lowerCamelCase : int = """dev""" if mode == """test""" else mode
_lowerCamelCase : str = self._feature_file(_UpperCamelCase)
logger.info("""Loading features from cached file %s""" , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = torch.load(_UpperCamelCase)
_lowerCamelCase : Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long)
_lowerCamelCase : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long)
_lowerCamelCase : int = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long)
if self.hparams.glue_output_mode == "classification":
_lowerCamelCase : Any = torch.tensor([f.label for f in features] , dtype=torch.long)
elif self.hparams.glue_output_mode == "regression":
_lowerCamelCase : Dict = torch.tensor([f.label for f in features] , dtype=torch.float)
return DataLoader(
TensorDataset(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) , batch_size=_UpperCamelCase , shuffle=_UpperCamelCase , )
def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]) ->Dict:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_lowerCamelCase : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
_lowerCamelCase : Any = self(**_UpperCamelCase)
_lowerCamelCase , _lowerCamelCase : Optional[int] = outputs[:2]
_lowerCamelCase : str = logits.detach().cpu().numpy()
_lowerCamelCase : int = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _SCREAMING_SNAKE_CASE ( self : int , _UpperCamelCase : Tuple) ->tuple:
"""simple docstring"""
_lowerCamelCase : Dict = torch.stack([x["""val_loss"""] for x in outputs]).mean().detach().cpu().item()
_lowerCamelCase : int = np.concatenate([x["""pred"""] for x in outputs] , axis=0)
if self.hparams.glue_output_mode == "classification":
_lowerCamelCase : Any = np.argmax(_UpperCamelCase , axis=1)
elif self.hparams.glue_output_mode == "regression":
_lowerCamelCase : Tuple = np.squeeze(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0)
_lowerCamelCase : Any = [[] for _ in range(out_label_ids.shape[0])]
_lowerCamelCase : Any = [[] for _ in range(out_label_ids.shape[0])]
_lowerCamelCase : int = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , _UpperCamelCase , _UpperCamelCase)}
_lowerCamelCase : int = dict(results.items())
_lowerCamelCase : Optional[Any] = results
return ret, preds_list, out_label_list
def _SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCamelCase : list) ->dict:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self._eval_end(_UpperCamelCase)
_lowerCamelCase : Optional[int] = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : Optional[int]) ->dict:
"""simple docstring"""
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self._eval_end(_UpperCamelCase)
_lowerCamelCase : str = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _SCREAMING_SNAKE_CASE ( _UpperCamelCase : List[str] , _UpperCamelCase : Tuple) ->Any:
"""simple docstring"""
BaseTransformer.add_model_specific_args(_UpperCamelCase , _UpperCamelCase)
parser.add_argument(
"""--max_seq_length""" , default=128 , type=_UpperCamelCase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--task""" , default="""""" , type=_UpperCamelCase , required=_UpperCamelCase , help="""The GLUE task to run""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=_UpperCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""")
return parser
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
add_generic_args(__A , os.getcwd() )
_lowerCamelCase : str = GLUETransformer.add_model_specific_args(__A , os.getcwd() )
_lowerCamelCase : Any = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
_lowerCamelCase : Union[str, Any] = os.path.join(
"""./results""" , F"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , )
os.makedirs(args.output_dir )
_lowerCamelCase : List[str] = GLUETransformer(__A )
_lowerCamelCase : str = generic_train(__A , __A )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
_lowerCamelCase : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__A ) )
_lowerCamelCase : Dict = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(__A )
if __name__ == "__main__":
main()
| 15 | from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = key
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Union[str, Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : str , _UpperCamelCase : int) ->list[str]:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCamelCase) ^ key) for ch in content]
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Any = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->str:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
_lowerCamelCase : int = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_lowerCamelCase : Optional[Any] = """"""
for ch in content:
ans += chr(ord(_UpperCamelCase) ^ key)
return ans
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : int = 0) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""encrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : int) ->bool:
"""simple docstring"""
assert isinstance(_UpperCamelCase , _UpperCamelCase) and isinstance(_UpperCamelCase , _UpperCamelCase)
try:
with open(_UpperCamelCase) as fin, open("""decrypt.out""" , """w+""") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCamelCase , _UpperCamelCase))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 15 | 1 |
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
if n == 0:
return 0
_lowerCamelCase : Tuple = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max(
__A , prices[i - 1] + naive_cut_rod_recursive(n - i , __A ) )
return max_revue
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
_lowerCamelCase : Optional[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(__A , __A , __A )
def A__ ( __A , __A , __A ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowerCamelCase : int = float("""-inf""" )
for i in range(1 , n + 1 ):
_lowerCamelCase : Optional[Any] = max(
__A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __A , __A ) , )
_lowerCamelCase : Optional[Any] = max_revenue
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
_enforce_args(__A , __A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowerCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )]
_lowerCamelCase : Any = 0
for i in range(1 , n + 1 ):
_lowerCamelCase : Any = max_rev[i]
for j in range(1 , i + 1 ):
_lowerCamelCase : List[Any] = max(__A , prices[j - 1] + max_rev[i - j] )
_lowerCamelCase : int = max_revenue_i
return max_rev[n]
def A__ ( __A , __A ):
'''simple docstring'''
if n < 0:
_lowerCamelCase : Any = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(__A )
if n > len(__A ):
_lowerCamelCase : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(__A )}"""
)
raise ValueError(__A )
def A__ ( ):
'''simple docstring'''
_lowerCamelCase : str = [6, 10, 12, 15, 20, 23]
_lowerCamelCase : List[str] = len(__A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowerCamelCase : Tuple = 36
_lowerCamelCase : Any = top_down_cut_rod(__A , __A )
_lowerCamelCase : Dict = bottom_up_cut_rod(__A , __A )
_lowerCamelCase : List[str] = naive_cut_rod_recursive(__A , __A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCamelCase : NestedDataStructureLike[PathLike] , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : Optional[int] = None , **_UpperCamelCase : Tuple , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(
_UpperCamelCase , split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , num_proc=_UpperCamelCase , **_UpperCamelCase , )
_lowerCamelCase : List[Any] = path_or_paths if isinstance(_UpperCamelCase , _UpperCamelCase) else {self.split: path_or_paths}
_lowerCamelCase : Any = Text(
cache_dir=_UpperCamelCase , data_files=_UpperCamelCase , features=_UpperCamelCase , **_UpperCamelCase , )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
"""simple docstring"""
if self.streaming:
_lowerCamelCase : Tuple = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_lowerCamelCase : List[Any] = None
_lowerCamelCase : Any = None
_lowerCamelCase : List[str] = None
_lowerCamelCase : Dict = None
self.builder.download_and_prepare(
download_config=_UpperCamelCase , download_mode=_UpperCamelCase , verification_mode=_UpperCamelCase , base_path=_UpperCamelCase , num_proc=self.num_proc , )
_lowerCamelCase : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCamelCase , in_memory=self.keep_in_memory)
return dataset
| 15 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase : List[Any] =logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] =[
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
lowerCAmelCase : List[Any] =[
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = torch.load(__A , map_location="""cpu""" )
return sd
def A__ ( __A , __A , __A=rename_keys_prefix ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = OrderedDict()
_lowerCamelCase : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_lowerCamelCase : int = key
for name_pair in rename_keys_prefix:
_lowerCamelCase : str = new_key.replace(name_pair[0] , name_pair[1] )
_lowerCamelCase : int = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_lowerCamelCase : Optional[Any] = new_d["""cls.predictions.bias"""]
return new_d
@torch.no_grad()
def A__ ( __A , __A ):
'''simple docstring'''
assert (
checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
_lowerCamelCase : List[str] = """pretraining"""
if "vcr" in checkpoint_path:
_lowerCamelCase : str = {"""visual_embedding_dim""": 512}
elif "vqa_advanced" in checkpoint_path:
_lowerCamelCase : Dict = {"""visual_embedding_dim""": 2_048}
elif "vqa" in checkpoint_path:
_lowerCamelCase : Optional[int] = {"""visual_embedding_dim""": 2_048}
elif "nlvr" in checkpoint_path:
_lowerCamelCase : Tuple = {"""visual_embedding_dim""": 1_024}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
_lowerCamelCase : int = {"""visual_embedding_dim""": 512}
_lowerCamelCase : Optional[int] = """multichoice"""
elif "vqa_advanced" in checkpoint_path:
_lowerCamelCase : List[Any] = {"""visual_embedding_dim""": 2_048}
_lowerCamelCase : Optional[Any] = """vqa_advanced"""
elif "vqa" in checkpoint_path:
_lowerCamelCase : Optional[Any] = {"""visual_embedding_dim""": 2_048, """num_labels""": 3_129}
_lowerCamelCase : Optional[int] = """vqa"""
elif "nlvr" in checkpoint_path:
_lowerCamelCase : List[str] = {
"""visual_embedding_dim""": 1_024,
"""num_labels""": 2,
}
_lowerCamelCase : Optional[int] = """nlvr"""
_lowerCamelCase : Any = VisualBertConfig(**__A )
# Load State Dict
_lowerCamelCase : Optional[int] = load_state_dict(__A )
_lowerCamelCase : int = get_new_dict(__A , __A )
if model_type == "pretraining":
_lowerCamelCase : Optional[int] = VisualBertForPreTraining(__A )
elif model_type == "vqa":
_lowerCamelCase : Dict = VisualBertForQuestionAnswering(__A )
elif model_type == "nlvr":
_lowerCamelCase : Tuple = VisualBertForVisualReasoning(__A )
elif model_type == "multichoice":
_lowerCamelCase : Optional[Any] = VisualBertForMultipleChoice(__A )
model.load_state_dict(__A )
# Save Checkpoints
Path(__A ).mkdir(exist_ok=__A )
model.save_pretrained(__A )
if __name__ == "__main__":
lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
lowerCAmelCase : Tuple =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 15 | lowerCAmelCase : Tuple =0 # The first color of the flag.
lowerCAmelCase : Union[str, Any] =1 # The second color of the flag.
lowerCAmelCase : Any =2 # The third color of the flag.
lowerCAmelCase : List[str] =(red, white, blue)
def A__ ( __A ):
'''simple docstring'''
if not sequence:
return []
if len(__A ) == 1:
return list(__A )
_lowerCamelCase : int = 0
_lowerCamelCase : Dict = len(__A ) - 1
_lowerCamelCase : str = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCamelCase , _lowerCamelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCamelCase , _lowerCamelCase : str = sequence[high], sequence[mid]
high -= 1
else:
_lowerCamelCase : int = F"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(__A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] =input("Enter numbers separated by commas:\n").strip()
lowerCAmelCase : Dict =[int(item.strip()) for item in user_input.split(",")]
print(F"""{dutch_national_flag_sort(unsorted)}""")
| 15 | 1 |
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
lowerCAmelCase : int ="\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n"
lowerCAmelCase : Union[str, Any] ="\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n"
lowerCAmelCase : Optional[int] =r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n"
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string"""),
"""references""": datasets.Value("""string"""),
}) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : str) ->Any:
"""simple docstring"""
_lowerCamelCase : Any = 0.0
for i, j in zip(_UpperCamelCase , _UpperCamelCase):
n_correct += 1.0 if math_equivalence.is_equiv(_UpperCamelCase , _UpperCamelCase) else 0.0
_lowerCamelCase : str = n_correct / len(_UpperCamelCase)
return {
"accuracy": accuracy,
}
| 15 | from __future__ import annotations
lowerCAmelCase : int =[]
def A__ ( __A , __A , __A ):
'''simple docstring'''
for i in range(len(__A ) ):
if board[row][i] == 1:
return False
for i in range(len(__A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( __A , __A ):
'''simple docstring'''
if row >= len(__A ):
solution.append(__A )
printboard(__A )
print()
return True
for i in range(len(__A ) ):
if is_safe(__A , __A , __A ):
_lowerCamelCase : int = 1
solve(__A , row + 1 )
_lowerCamelCase : List[str] = 0
return False
def A__ ( __A ):
'''simple docstring'''
for i in range(len(__A ) ):
for j in range(len(__A ) ):
if board[i][j] == 1:
print("""Q""" , end=""" """ )
else:
print(""".""" , end=""" """ )
print()
# n=int(input("The no. of queens"))
lowerCAmelCase : int =8
lowerCAmelCase : Union[str, Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 15 | 1 |
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCAmelCase : int ={
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A__ ( __A , __A , __A , __A=None ):
'''simple docstring'''
# Initialise PyTorch model
_lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A )
_lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowerCamelCase : int = finetuning_task
_lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowerCamelCase : int = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
_lowerCamelCase : Dict = finetuning_task
_lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A )
else:
_lowerCamelCase : Any = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : Optional[Any] = os.path.join(__A , __A )
_lowerCamelCase : Any = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 15 | import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowerCAmelCase : int ={
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def A__ ( __A , __A , __A , __A=None ):
'''simple docstring'''
# Initialise PyTorch model
_lowerCamelCase : Tuple = XLNetConfig.from_json_file(__A )
_lowerCamelCase : List[Any] = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" )
_lowerCamelCase : int = finetuning_task
_lowerCamelCase : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
_lowerCamelCase : int = XLNetForSequenceClassification(__A )
elif "squad" in finetuning_task:
_lowerCamelCase : Dict = finetuning_task
_lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(__A )
else:
_lowerCamelCase : Any = XLNetLMHeadModel(__A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__A , __A , __A )
# Save pytorch-model
_lowerCamelCase : Optional[Any] = os.path.join(__A , __A )
_lowerCamelCase : Any = os.path.join(__A , __A )
print(F"""Save PyTorch model to {os.path.abspath(__A )}""" )
torch.save(model.state_dict() , __A )
print(F"""Save configuration file to {os.path.abspath(__A )}""" )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowerCAmelCase : Union[str, Any] =parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 15 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase : Union[str, Any] ={
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[str] =["ConvNextFeatureExtractor"]
lowerCAmelCase : Optional[Any] =["ConvNextImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any =[
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvNextForImageClassification",
"ConvNextModel",
"ConvNextPreTrainedModel",
"ConvNextBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str =[
"TFConvNextForImageClassification",
"TFConvNextModel",
"TFConvNextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
lowerCAmelCase : int =_LazyModule(__name__, globals()["__file__"], _import_structure)
| 15 | def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 0
for ch in input_str:
_lowerCamelCase : Optional[Any] = ord(__A )
_lowerCamelCase : List[str] = pow(2 , __A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : str =logging.get_logger(__name__)
lowerCAmelCase : Any ={
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = 'xlm-roberta'
def __init__( self : List[str] , _UpperCamelCase : Any=3_0522 , _UpperCamelCase : Optional[Any]=768 , _UpperCamelCase : Any=12 , _UpperCamelCase : Optional[int]=12 , _UpperCamelCase : Optional[Any]=3072 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : Tuple=512 , _UpperCamelCase : str=2 , _UpperCamelCase : Dict=0.0_2 , _UpperCamelCase : List[str]=1E-1_2 , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : str=2 , _UpperCamelCase : Tuple="absolute" , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Dict , ) ->List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase)
_lowerCamelCase : Union[str, Any] = vocab_size
_lowerCamelCase : Tuple = hidden_size
_lowerCamelCase : Union[str, Any] = num_hidden_layers
_lowerCamelCase : int = num_attention_heads
_lowerCamelCase : List[str] = hidden_act
_lowerCamelCase : List[Any] = intermediate_size
_lowerCamelCase : Optional[Any] = hidden_dropout_prob
_lowerCamelCase : str = attention_probs_dropout_prob
_lowerCamelCase : Tuple = max_position_embeddings
_lowerCamelCase : Union[str, Any] = type_vocab_size
_lowerCamelCase : Dict = initializer_range
_lowerCamelCase : Any = layer_norm_eps
_lowerCamelCase : Union[str, Any] = position_embedding_type
_lowerCamelCase : Tuple = use_cache
_lowerCamelCase : int = classifier_dropout
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : List[str]) ->Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_lowerCamelCase : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_lowerCamelCase : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 15 | import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
"""simple docstring"""
_lowerCamelCase : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-base""")
_lowerCamelCase : Optional[int] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : Optional[Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : str = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : List[str] = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
@slow
def _SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-large""")
_lowerCamelCase : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]])
# The dog is cute and lives in the garden house
_lowerCamelCase : str = torch.Size((1, 12, 1024)) # batch_size, sequence_length, embedding_vector_dim
_lowerCamelCase : Union[str, Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
_lowerCamelCase : int = model(_UpperCamelCase)["""last_hidden_state"""].detach()
self.assertEqual(output.shape , _UpperCamelCase)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1E-3))
| 15 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __snake_case :
'''simple docstring'''
_snake_case = 42
_snake_case = 42
class __snake_case :
'''simple docstring'''
def __init__( self : Tuple , _UpperCamelCase : int) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : list[list[Edge]] = [[] for _ in range(_UpperCamelCase)]
_lowerCamelCase : Any = size
def __getitem__( self : int , _UpperCamelCase : int) ->Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex])
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
"""simple docstring"""
return self._size
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int) ->Optional[int]:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""")
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""")
self._graph[from_vertex].append(Edge(_UpperCamelCase , _UpperCamelCase))
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int) ->int | None:
"""simple docstring"""
_lowerCamelCase : List[str] = deque([start_vertex])
_lowerCamelCase : list[int | None] = [None] * self.size
_lowerCamelCase : List[str] = 0
while queue:
_lowerCamelCase : int = queue.popleft()
_lowerCamelCase : Union[str, Any] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_lowerCamelCase : List[Any] = current_distance + edge.weight
_lowerCamelCase : List[str] = distances[edge.destination_vertex]
if (
isinstance(_UpperCamelCase , _UpperCamelCase)
and new_distance >= dest_vertex_distance
):
continue
_lowerCamelCase : List[str] = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex)
else:
queue.append(edge.destination_vertex)
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""")
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase : Tuple =logging.get_logger(__name__)
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
_snake_case = ['pixel_values']
def __init__( self : Optional[Any] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : str , ) ->None:
"""simple docstring"""
super().__init__(**_UpperCamelCase)
_lowerCamelCase : Tuple = size if size is not None else {"""height""": 256, """width""": 256}
_lowerCamelCase : Optional[Any] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_lowerCamelCase : Any = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = do_resize
_lowerCamelCase : int = size
_lowerCamelCase : Optional[int] = resample
_lowerCamelCase : int = do_center_crop
_lowerCamelCase : Optional[Any] = crop_size
_lowerCamelCase : Union[str, Any] = do_rescale
_lowerCamelCase : List[str] = rescale_factor
_lowerCamelCase : List[Any] = do_normalize
_lowerCamelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowerCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _SCREAMING_SNAKE_CASE ( self : Any , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : PILImageResampling = PIL.Image.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return resize(
_UpperCamelCase , size=(size["""height"""], size["""width"""]) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[str] , ) ->np.ndarray:
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = get_size_dict(_UpperCamelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""")
return center_crop(_UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->str:
"""simple docstring"""
return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Union[str, Any] , ) ->np.ndarray:
"""simple docstring"""
return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : Tuple=None , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : List[Any] , ) ->PIL.Image.Image:
"""simple docstring"""
_lowerCamelCase : Any = do_resize if do_resize is not None else self.do_resize
_lowerCamelCase : List[str] = resample if resample is not None else self.resample
_lowerCamelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowerCamelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_lowerCamelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowerCamelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize
_lowerCamelCase : int = image_mean if image_mean is not None else self.image_mean
_lowerCamelCase : Dict = image_std if image_std is not None else self.image_std
_lowerCamelCase : Optional[Any] = size if size is not None else self.size
_lowerCamelCase : Optional[int] = get_size_dict(_UpperCamelCase)
_lowerCamelCase : List[str] = crop_size if crop_size is not None else self.crop_size
_lowerCamelCase : Dict = get_size_dict(_UpperCamelCase , param_name="""crop_size""")
_lowerCamelCase : int = make_list_of_images(_UpperCamelCase)
if not valid_images(_UpperCamelCase):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""")
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""")
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""")
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""")
# All transformations expect numpy arrays.
_lowerCamelCase : Union[str, Any] = [to_numpy_array(_UpperCamelCase) for image in images]
if do_resize:
_lowerCamelCase : Any = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase) for image in images]
if do_center_crop:
_lowerCamelCase : str = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase) for image in images]
if do_rescale:
_lowerCamelCase : Optional[int] = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase) for image in images]
if do_normalize:
_lowerCamelCase : List[str] = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase) for image in images]
_lowerCamelCase : List[str] = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase) for image in images]
_lowerCamelCase : int = {"""pixel_values""": images}
return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase)
| 15 | 1 |
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def A__ ( __A ):
'''simple docstring'''
_lowerCamelCase : List[Any] = prime_factors(__A )
if is_square_free(__A ):
return -1 if len(__A ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class __snake_case ( __lowerCAmelCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float:
"""simple docstring"""
return 0.0
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Tuple = [1] + [0] * (size - 1)
_lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) )
_lowerCamelCase : List[Any] = 20 * np.logaa(__A )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
# Display within reasonable bounds
_lowerCamelCase : Any = get_bounds(__A , __A )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("""Gain (dB)""" )
plt.plot(__A )
plt.show()
def A__ ( __A , __A ):
'''simple docstring'''
_lowerCamelCase : Tuple = 512
_lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
_lowerCamelCase : int = [filter_type.process(__A ) for item in inputs]
_lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCamelCase : Any = np.angle(np.fft.fft(__A ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("""Frequency (Hz)""" )
plt.xscale("""log""" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("""Phase shift (Radians)""" )
plt.plot(np.unwrap(__A , -2 * pi ) )
plt.show()
| 15 | 1 |
from __future__ import annotations
def A__ ( __A , __A , __A ):
'''simple docstring'''
_lowerCamelCase : Any = list(range(len(__A ) ) )
_lowerCamelCase : List[Any] = [v / w for v, w in zip(__A , __A )]
index.sort(key=lambda __A : ratio[i] , reverse=__A )
_lowerCamelCase : float = 0
_lowerCamelCase : list[float] = [0] * len(__A )
for i in index:
if weight[i] <= capacity:
_lowerCamelCase : Dict = 1
max_value += value[i]
capacity -= weight[i]
else:
_lowerCamelCase : str = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
lowerCAmelCase : Tuple =version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A__ ( __A , __A , __A , __A , __A , __A , __A , __A=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=__A , exist_ok=__A )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , use_external_data_format=__A , enable_onnx_checker=__A , opset_version=__A , )
else:
export(
__A , __A , f=output_path.as_posix() , input_names=__A , output_names=__A , dynamic_axes=__A , do_constant_folding=__A , opset_version=__A , )
@torch.no_grad()
def A__ ( __A , __A , __A , __A = False ):
'''simple docstring'''
_lowerCamelCase : Tuple = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowerCamelCase : str = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
_lowerCamelCase : List[str] = """cpu"""
_lowerCamelCase : Dict = Path(__A )
# VAE DECODER
_lowerCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" )
_lowerCamelCase : List[str] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowerCamelCase : Tuple = vae_decoder.decode
onnx_export(
__A , model_args=(
torch.randn(1 , __A , 25 , 25 ).to(device=__A , dtype=__A ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=__A , )
del vae_decoder
if __name__ == "__main__":
lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
lowerCAmelCase : Optional[Any] =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 15 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@parameterized.expand([(None,), ("""foo.json""",)])
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Union[str, Any]) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : Tuple = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCamelCase , config_name=_UpperCamelCase)
_lowerCamelCase : Tuple = GenerationConfig.from_pretrained(_UpperCamelCase , config_name=_UpperCamelCase)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , _UpperCamelCase)
self.assertEqual(loaded_config.temperature , 0.7)
self.assertEqual(loaded_config.length_penalty , 1.0)
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50)
self.assertEqual(loaded_config.max_length , 20)
self.assertEqual(loaded_config.max_time , _UpperCamelCase)
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
"""simple docstring"""
_lowerCamelCase : List[str] = AutoConfig.from_pretrained("""gpt2""")
_lowerCamelCase : Optional[Any] = GenerationConfig.from_model_config(_UpperCamelCase)
_lowerCamelCase : Any = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(_UpperCamelCase , _UpperCamelCase)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id)
def _SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = GenerationConfig()
_lowerCamelCase : str = {
"""max_new_tokens""": 1024,
"""foo""": """bar""",
}
_lowerCamelCase : List[str] = copy.deepcopy(_UpperCamelCase)
_lowerCamelCase : Optional[int] = generation_config.update(**_UpperCamelCase)
# update_kwargs was not modified (no side effects)
self.assertEqual(_UpperCamelCase , _UpperCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(_UpperCamelCase , {"""foo""": """bar"""})
def _SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
"""simple docstring"""
_lowerCamelCase : List[Any] = GenerationConfig()
_lowerCamelCase : List[str] = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""") as tmp_dir:
generation_config.save_pretrained(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = GenerationConfig.from_pretrained(_UpperCamelCase)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""")
_lowerCamelCase : List[Any] = GenerationConfig.from_model_config(_UpperCamelCase)
assert not hasattr(_UpperCamelCase , """foo""") # no new kwargs should be initialized if from config
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
"""simple docstring"""
_lowerCamelCase : Dict = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0)
self.assertEqual(default_config.do_sample , _UpperCamelCase)
self.assertEqual(default_config.num_beams , 1)
_lowerCamelCase : List[Any] = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7)
self.assertEqual(config.do_sample , _UpperCamelCase)
self.assertEqual(config.num_beams , 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCamelCase)
_lowerCamelCase : Optional[Any] = GenerationConfig.from_pretrained(_UpperCamelCase , temperature=1.0)
self.assertEqual(loaded_config.temperature , 1.0)
self.assertEqual(loaded_config.do_sample , _UpperCamelCase)
self.assertEqual(loaded_config.num_beams , 1) # default value
@is_staging_test
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Any) ->str:
"""simple docstring"""
_lowerCamelCase : Optional[Any] = TOKEN
HfFolder.save_token(_UpperCamelCase)
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : int) ->Optional[Any]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""")
except HTTPError:
pass
def _SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
"""simple docstring"""
_lowerCamelCase : int = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token)
_lowerCamelCase : Dict = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCamelCase , repo_id="""test-generation-config""" , push_to_hub=_UpperCamelCase , use_auth_token=self._token)
_lowerCamelCase : Dict = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase))
def _SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
"""simple docstring"""
_lowerCamelCase : Optional[int] = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token)
_lowerCamelCase : List[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase))
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCamelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=_UpperCamelCase , use_auth_token=self._token)
_lowerCamelCase : str = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase))
| 15 | from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase : List[Any] =300 # TEMPERATURE (unit = K)
def A__ ( __A , __A , __A , ):
'''simple docstring'''
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.