code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = (1 - _cos) / 2 UpperCAmelCase_ = 1 - _cos UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = (1 + _cos) / 2 UpperCAmelCase_ = -1 - _cos UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = _sin / 2 UpperCAmelCase_ = 0 UpperCAmelCase_ = -ba UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 1 - alpha UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 + alpha UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) , ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 10 ** (gain_db / 40) UpperCAmelCase_ = 1 + alpha * big_a UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha * big_a UpperCAmelCase_ = 1 + alpha / big_a UpperCAmelCase_ = -2 * _cos UpperCAmelCase_ = 1 - alpha / big_a UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) , ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 10 ** (gain_db / 40) UpperCAmelCase_ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ = 2 * sqrt(lowerCAmelCase__ ) * alpha UpperCAmelCase_ = big_a * (pmc + aaa) UpperCAmelCase_ = 2 * big_a * mpc UpperCAmelCase_ = big_a * (pmc - aaa) UpperCAmelCase_ = ppmc + aaa UpperCAmelCase_ = -2 * pmpc UpperCAmelCase_ = ppmc - aaa UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 / sqrt(2 ) , ): UpperCAmelCase_ = tau * frequency / samplerate UpperCAmelCase_ = sin(lowerCAmelCase__ ) UpperCAmelCase_ = cos(lowerCAmelCase__ ) UpperCAmelCase_ = _sin / (2 * q_factor) UpperCAmelCase_ = 10 ** (gain_db / 40) UpperCAmelCase_ = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ = 2 * sqrt(lowerCAmelCase__ ) * alpha UpperCAmelCase_ = big_a * (ppmc + aaa) UpperCAmelCase_ = -2 * big_a * pmpc UpperCAmelCase_ = big_a * (ppmc - aaa) UpperCAmelCase_ = pmc + aaa UpperCAmelCase_ = 2 * mpc UpperCAmelCase_ = pmc - aaa UpperCAmelCase_ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase = TypeVar("""T""") def a__ ( lowerCAmelCase__ ): return (position - 1) // 2 def a__ ( lowerCAmelCase__ ): return (2 * position) + 1 def a__ ( lowerCAmelCase__ ): return (2 * position) + 2 class lowercase__ ( Generic[T] ): '''simple docstring''' def __init__( self : int ) -> None: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = {} UpperCAmelCase_ = 0 def __len__( self : Optional[int] ) -> int: '''simple docstring''' return self.elements def __repr__( self : str ) -> str: '''simple docstring''' return str(self.heap ) def lowercase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.elements == 0 def lowercase__ ( self : List[str] , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) UpperCAmelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def lowercase__ ( self : int ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def lowercase__ ( self : Dict , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' UpperCAmelCase_ = self.position_map[elem] UpperCAmelCase_ = (elem, weight) if position > 0: UpperCAmelCase_ = get_parent_position(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : T ) -> None: '''simple docstring''' UpperCAmelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCAmelCase_ = get_parent_position(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.heap[curr_pos] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def lowercase__ ( self : Any , _UpperCAmelCase : T ) -> None: '''simple docstring''' UpperCAmelCase_ = self.position_map[elem] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[curr_pos] UpperCAmelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCAmelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_left_position] UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCAmelCase_ , UpperCAmelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def lowercase__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: '''simple docstring''' UpperCAmelCase_ = self.heap[nodea_pos][0] UpperCAmelCase_ = self.heap[nodea_pos][0] UpperCAmelCase_ , UpperCAmelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCAmelCase_ = nodea_pos UpperCAmelCase_ = nodea_pos class lowercase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Any ) -> None: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = 0 def __repr__( self : List[str] ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self : Optional[Any] ) -> int: '''simple docstring''' return self.nodes def lowercase__ ( self : int , _UpperCAmelCase : T ) -> None: '''simple docstring''' if node not in self.connections: UpperCAmelCase_ = {} self.nodes += 1 def lowercase__ ( self : int , _UpperCAmelCase : T , _UpperCAmelCase : T , _UpperCAmelCase : int ) -> None: '''simple docstring''' self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCAmelCase_ = weight UpperCAmelCase_ = weight def a__ ( lowerCAmelCase__ , ): UpperCAmelCase_ = {node: maxsize for node in graph.connections} UpperCAmelCase_ = {node: None for node in graph.connections} UpperCAmelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__ , lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization UpperCAmelCase_ = priority_queue.extract_min() UpperCAmelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) UpperCAmelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCAmelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCAmelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__ , dist[neighbour] ) UpperCAmelCase_ = node return dist, parent
14
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , ): output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: UpperCAmelCase_ = "cpu" UpperCAmelCase_ = Path(lowerCAmelCase__ ) # VAE DECODER UpperCAmelCase_ = AutoencoderKL.from_pretrained(model_path + "/vae" ) UpperCAmelCase_ = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ = vae_decoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , 25 , 25 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=lowerCAmelCase__ , ) del vae_decoder if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") lowerCamelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import math import sys def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = "" try: with open(lowerCAmelCase__ , "rb" ) as binary_file: UpperCAmelCase_ = binary_file.read() for dat in data: UpperCAmelCase_ = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {"0": "0", "1": "1"} UpperCAmelCase_ , UpperCAmelCase_ = "", "" UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ = lexicon[curr_string] result += last_match_id UpperCAmelCase_ = last_match_id + "0" if math.loga(lowerCAmelCase__ ).is_integer(): UpperCAmelCase_ = {} for curr_key in list(lowerCAmelCase__ ): UpperCAmelCase_ = lexicon.pop(lowerCAmelCase__ ) UpperCAmelCase_ = new_lex UpperCAmelCase_ = last_match_id + "1" index += 1 UpperCAmelCase_ = "" return result def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 8 try: with open(lowerCAmelCase__ , "wb" ) as opened_file: UpperCAmelCase_ = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ = data_bits[counter:] UpperCAmelCase_ = data_bits[counter + 1 :] return data_bits def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = read_file_binary(lowerCAmelCase__ ) UpperCAmelCase_ = remove_prefix(lowerCAmelCase__ ) UpperCAmelCase_ = decompress_data(lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
14
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
"""simple docstring""" lowerCamelCase = [ (1_000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while place < len(lowerCAmelCase__ ): if (place + 1 < len(lowerCAmelCase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) = divmod(lowerCAmelCase__ , lowerCAmelCase__ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( ): UpperCAmelCase_ = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def a__ ( lowerCAmelCase__ = 2000000 ): return sum(takewhile(lambda lowerCAmelCase__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = False UpperCamelCase = 3.0 class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCAmelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase_ = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _UpperCAmelCase ) @require_multi_gpu def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase = torch.nn.Linear(100, 200) lowerCamelCase = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase = """""" lowerCamelCase = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
14
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import argparse from collections import defaultdict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowerCAmelCase__ , "r" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = f"""class {class_name}(""" UpperCAmelCase_ = f"""{4 * ' '}def {test_name}(""" UpperCAmelCase_ = f"""{8 * ' '}{correct_line.split()[0]}""" UpperCAmelCase_ = f"""{16 * ' '}{correct_line.split()[0]}""" UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = [] for line in lines: if line.startswith(lowerCAmelCase__ ): UpperCAmelCase_ = True elif in_class and line.startswith(lowerCAmelCase__ ): UpperCAmelCase_ = True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): UpperCAmelCase_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , "w" ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ): if fail is not None: with open(lowerCAmelCase__ , "r" ) as f: UpperCAmelCase_ = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ = None with open(lowerCAmelCase__ , "r" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = defaultdict(lowerCAmelCase__ ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) lowerCamelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = VideoMAEConfig() set_architecture_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "finetuned" not in model_name: UpperCAmelCase_ = False if "finetuned" in model_name: UpperCAmelCase_ = "huggingface/label-files" if "kinetics" in model_name: UpperCAmelCase_ = 400 UpperCAmelCase_ = "kinetics400-id2label.json" elif "ssv2" in model_name: UpperCAmelCase_ = 174 UpperCAmelCase_ = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if "small" in model_name: UpperCAmelCase_ = 384 UpperCAmelCase_ = 1536 UpperCAmelCase_ = 12 UpperCAmelCase_ = 16 UpperCAmelCase_ = 12 UpperCAmelCase_ = 3 UpperCAmelCase_ = 192 UpperCAmelCase_ = 768 elif "large" in model_name: UpperCAmelCase_ = 1024 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 UpperCAmelCase_ = 12 UpperCAmelCase_ = 8 UpperCAmelCase_ = 512 UpperCAmelCase_ = 2048 elif "huge" in model_name: UpperCAmelCase_ = 1280 UpperCAmelCase_ = 5120 UpperCAmelCase_ = 32 UpperCAmelCase_ = 16 UpperCAmelCase_ = 12 UpperCAmelCase_ = 8 UpperCAmelCase_ = 640 UpperCAmelCase_ = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def a__ ( lowerCAmelCase__ ): if "encoder." in name: UpperCAmelCase_ = name.replace("encoder." , "" ) if "cls_token" in name: UpperCAmelCase_ = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: UpperCAmelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: UpperCAmelCase_ = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCAmelCase_ = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: UpperCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: UpperCAmelCase_ = name.replace("attn" , "attention.self" ) if "attn" in name: UpperCAmelCase_ = name.replace("attn" , "attention.attention" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCAmelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCAmelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCAmelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase_ = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCAmelCase_ = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: UpperCAmelCase_ = name.replace("head" , "classifier" ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(lowerCAmelCase__ ) if key.startswith("encoder." ): UpperCAmelCase_ = key.replace("encoder." , "" ) if "qkv" in key: UpperCAmelCase_ = key.split("." ) if key.startswith("decoder.blocks" ): UpperCAmelCase_ = config.decoder_hidden_size UpperCAmelCase_ = int(key_split[2] ) UpperCAmelCase_ = "decoder.decoder_layers." if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = config.hidden_size UpperCAmelCase_ = int(key_split[1] ) UpperCAmelCase_ = "videomae.encoder.layer." if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val return orig_state_dict def a__ ( ): UpperCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCAmelCase_ = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = get_videomae_config(lowerCAmelCase__ ) if "finetuned" in model_name: UpperCAmelCase_ = VideoMAEForVideoClassification(lowerCAmelCase__ ) else: UpperCAmelCase_ = VideoMAEForPreTraining(lowerCAmelCase__ ) # download original checkpoint, hosted on Google Drive UpperCAmelCase_ = "pytorch_model.bin" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" ) if "model" in files: UpperCAmelCase_ = files["model"] else: UpperCAmelCase_ = files["module"] UpperCAmelCase_ = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify model on basic input UpperCAmelCase_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCAmelCase_ = prepare_video() UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) if "finetuned" not in model_name: UpperCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits UpperCAmelCase_ = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCAmelCase_ = torch.Size([1, 174] ) UpperCAmelCase_ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCAmelCase_ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCAmelCase_ = torch.Size([1, 400] ) UpperCAmelCase_ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCAmelCase_ = torch.Size([1, 174] ) UpperCAmelCase_ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": UpperCAmelCase_ = torch.Size([1, 1408, 1536] ) UpperCAmelCase_ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCAmelCase_ = torch.Size([1, 174] ) UpperCAmelCase_ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCAmelCase_ = outputs.loss assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(lowerCAmelCase__ , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
14
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
14
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCamelCase = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def a__ ( lowerCAmelCase__ ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model UpperCAmelCase_ = list(s_dict.keys() ) for key in keys: UpperCAmelCase_ = r".*/layers_(\d+)" UpperCAmelCase_ = key if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = re.sub(r"layers_(\d+)" , r"block/\1/layer" , lowerCAmelCase__ ) UpperCAmelCase_ = r"(encoder|decoder)\/" if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).groups() if groups[0] == "encoder": UpperCAmelCase_ = re.sub(r"/mlp/" , r"/1/mlp/" , lowerCAmelCase__ ) UpperCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , lowerCAmelCase__ ) elif groups[0] == "decoder": UpperCAmelCase_ = re.sub(r"/mlp/" , r"/2/mlp/" , lowerCAmelCase__ ) UpperCAmelCase_ = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , lowerCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: UpperCAmelCase_ = new_key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""{key} -> {new_key}""" ) UpperCAmelCase_ = s_dict.pop(lowerCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: UpperCAmelCase_ = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: UpperCAmelCase_ = s_dict[key].shape[0] UpperCAmelCase_ = s_dict[key] for idx in range(lowerCAmelCase__ ): UpperCAmelCase_ = expert_weihts[idx] print(f"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase__ ) return s_dict lowerCamelCase = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase__ , "r" ) as f: UpperCAmelCase_ = f.read() UpperCAmelCase_ = re.findall(r"(.*) = ([0-9.]*)" , lowerCAmelCase__ ) UpperCAmelCase_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": UpperCAmelCase_ = float(lowerCAmelCase__ ) if "." in value else int(lowerCAmelCase__ ) UpperCAmelCase_ = re.findall(r"(.*activations) = \(\'(.*)\',\)" , lowerCAmelCase__ )[0] UpperCAmelCase_ = str(activation[1] ) UpperCAmelCase_ = num_experts UpperCAmelCase_ = SwitchTransformersConfig(**lowerCAmelCase__ ) return config def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="./" , lowerCAmelCase__=8 ): # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) if gin_file is not None: UpperCAmelCase_ = convert_gin_to_config(lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCAmelCase_ = SwitchTransformersConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = SwitchTransformersForConditionalGeneration(lowerCAmelCase__ ) UpperCAmelCase_ = flax_params["target"] UpperCAmelCase_ = flatten_dict(lowerCAmelCase__ , sep="/" ) UpperCAmelCase_ = rename_keys(lowerCAmelCase__ ) UpperCAmelCase_ = unflatten_dict(lowerCAmelCase__ , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCAmelCase__ ) UpperCAmelCase_ = [] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): UpperCAmelCase_ = True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: UpperCAmelCase_ = False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
14
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
1
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = LxmertTokenizer UpperCamelCase = LxmertTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' super().setUp() UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase__ ( self : Dict , _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
1
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "ylacombe/bark-small" UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = "en_speaker_1" UpperCAmelCase_ = "This is a test string" UpperCAmelCase_ = "speaker_embeddings_path.json" UpperCAmelCase_ = "speaker_embeddings" def lowercase__ ( self : str , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ = 35 UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = { "semantic_prompt": np.ones(_UpperCAmelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) UpperCAmelCase_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = processor(text=self.input_string , voice_preset=_UpperCAmelCase ) UpperCAmelCase_ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = BarkProcessor(tokenizer=_UpperCAmelCase ) UpperCAmelCase_ = processor(text=self.input_string ) UpperCAmelCase_ = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCamelCase = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ lowerCamelCase = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ lowerCamelCase = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowercase__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Union[str, Any]=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
1
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None def a__ ( lowerCAmelCase__ ): # Validation def is_valid_tree(lowerCAmelCase__ ) -> bool: if node is None: return True if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowerCAmelCase__ ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowerCAmelCase__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowerCAmelCase__ ) ) return is_binary_search_tree_recursive_check(lowerCAmelCase__ , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
1
"""simple docstring""" import requests from bsa import BeautifulSoup def a__ ( lowerCAmelCase__ = "https://www.worldometers.info/coronavirus" ): UpperCAmelCase_ = BeautifulSoup(requests.get(lowerCAmelCase__ ).text , "html.parser" ) UpperCAmelCase_ = soup.findAll("h1" ) UpperCAmelCase_ = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCAmelCase__ , lowerCAmelCase__ )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DownBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ResnetDownsampleBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnDownBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CrossAttnDownBlockaD # noqa F405 UpperCamelCase = '''down''' def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SimpleCrossAttnDownBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SkipDownBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_skip_sample=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnSkipDownBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : str ) -> str: '''simple docstring''' return super().get_dummy_input(include_skip_sample=_UpperCAmelCase ) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DownEncoderBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = { "in_channels": 32, "out_channels": 32, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnDownEncoderBlockaD # noqa F405 UpperCamelCase = '''down''' @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = { "in_channels": 32, "out_channels": 32, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UNetMidBlockaD # noqa F405 UpperCamelCase = '''mid''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = { "in_channels": 32, "temb_channels": 128, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UNetMidBlockaDCrossAttn # noqa F405 UpperCamelCase = '''mid''' def lowercase__ ( self : Any ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UNetMidBlockaDSimpleCrossAttn # noqa F405 UpperCamelCase = '''mid''' @property def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_encoder_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ResnetUpsampleBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CrossAttnUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SimpleCrossAttnUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase , include_encoder_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase_ = 32 return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = SkipUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnSkipUpBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return super().get_dummy_input(include_res_hidden_states_tuple=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = UpDecoderBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' UpperCAmelCase_ = {"in_channels": 32, "out_channels": 32} UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AttnUpDecoderBlockaD # noqa F405 UpperCamelCase = '''up''' @property def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return super().get_dummy_input(include_temb=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = {"in_channels": 32, "out_channels": 32} UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_UpperCAmelCase )
14
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
1
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=100 , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[Any]=[0, 1, 2, 3] , ) -> int: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = 100 UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = out_indices UpperCAmelCase_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = BeitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = BeitForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = BeitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = BeitForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = BeitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling]: continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = BeitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).pixel_values.to(_UpperCAmelCase ) # prepare bool_masked_pos UpperCAmelCase_ = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , bool_masked_pos=_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCAmelCase , atol=1e-2 ) ) @slow def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21841) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCAmelCase ) @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ) UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_UpperCAmelCase , ) else: UpperCAmelCase_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = BeitImageProcessor(do_resize=_UpperCAmelCase , size=640 , do_center_crop=_UpperCAmelCase ) UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ) UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(500, 300)] ) UpperCAmelCase_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
1
"""simple docstring""" from __future__ import annotations import queue class lowercase__ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def a__ ( ): print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(lowerCAmelCase__ ) ) q.put(lowerCAmelCase__ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(lowerCAmelCase__ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(lowerCAmelCase__ ) ) UpperCAmelCase_ = left_node q.put(lowerCAmelCase__ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(lowerCAmelCase__ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(lowerCAmelCase__ ) ) UpperCAmelCase_ = right_node q.put(lowerCAmelCase__ ) raise def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(lowerCAmelCase__ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(lowerCAmelCase__ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(lowerCAmelCase__ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(lowerCAmelCase__ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(lowerCAmelCase__ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def a__ ( lowerCAmelCase__ = "" , lowerCAmelCase__=50 , lowerCAmelCase__="*" ): if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(lowerCAmelCase__ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , SCREAMING_SNAKE_CASE , )
14
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Initialise PyTorch model UpperCAmelCase_ = FunnelConfig.from_json_file(lowerCAmelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = FunnelBaseModel(lowerCAmelCase__ ) if base_model else FunnelModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
14
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
1
"""simple docstring""" import argparse import struct import unittest class lowercase__ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : bytes ) -> None: '''simple docstring''' UpperCAmelCase_ = data # Initialize hash values UpperCAmelCase_ = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants UpperCAmelCase_ = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] UpperCAmelCase_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowercase__ ( _UpperCAmelCase : bytes ) -> bytes: '''simple docstring''' UpperCAmelCase_ = B"\x80" + (B"\x00" * (63 - (len(_UpperCAmelCase ) + 8) % 64)) UpperCAmelCase_ = struct.pack(">Q" , (len(_UpperCAmelCase ) * 8) ) return data + padding + big_endian_integer def lowercase__ ( self : Tuple ) -> None: '''simple docstring''' UpperCAmelCase_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase_ = list(struct.unpack(">16L" , _UpperCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression UpperCAmelCase_ = self.ror(_UpperCAmelCase , 6 ) ^ self.ror(_UpperCAmelCase , 11 ) ^ self.ror(_UpperCAmelCase , 25 ) UpperCAmelCase_ = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) UpperCAmelCase_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 UpperCAmelCase_ = self.ror(_UpperCAmelCase , 2 ) ^ self.ror(_UpperCAmelCase , 13 ) ^ self.ror(_UpperCAmelCase , 22 ) UpperCAmelCase_ = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase_ = (sa + maj) % 0x1_00_00_00_00 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) UpperCAmelCase_ = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase_ = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] UpperCAmelCase_ = "".join([hex(_UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowercase__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> None: '''simple docstring''' import hashlib UpperCAmelCase_ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(_UpperCAmelCase ).hash , hashlib.shaaaa(_UpperCAmelCase ).hexdigest() ) def a__ ( ): import doctest doctest.testmod() UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = bytes(lowerCAmelCase__ , "utf-8" ) print(SHAaaa(lowerCAmelCase__ ).hash ) if __name__ == "__main__": main()
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" from math import pow def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase_ = int(pow(lowerCAmelCase__ , lowerCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase_ , UpperCAmelCase_ = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase_ , UpperCAmelCase_ = backtrack( lowerCAmelCase__ , lowerCAmelCase__ , current_number + 1 , lowerCAmelCase__ , lowerCAmelCase__ ) return current_sum, solutions_count def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(lowerCAmelCase__ , lowerCAmelCase__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = 0 def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(_UpperCAmelCase ) / "preprocessor_config.json" UpperCAmelCase_ = Path(_UpperCAmelCase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_UpperCAmelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(_UpperCAmelCase , "w" ) ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(_UpperCAmelCase ) / "preprocessor_config.json" UpperCAmelCase_ = Path(_UpperCAmelCase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(_UpperCAmelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(_UpperCAmelCase , "w" ) ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCAmelCase_ = Path(_UpperCAmelCase ) / "preprocessor_config.json" UpperCAmelCase_ = Path(_UpperCAmelCase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_UpperCAmelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(_UpperCAmelCase , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase ).to_dict() config_dict.pop("image_processor_type" ) UpperCAmelCase_ = CLIPImageProcessor(**_UpperCAmelCase ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) config.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) # make sure private variable is not incorrectly saved UpperCAmelCase_ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(_UpperCAmelCase ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_UpperCAmelCase , "w" ) , ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , "clip-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("clip-base" ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase , revision="aaaaaa" ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_UpperCAmelCase ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' try: AutoConfig.register("custom" , _UpperCAmelCase ) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = Path(_UpperCAmelCase ) / "preprocessor_config.json" UpperCAmelCase_ = Path(_UpperCAmelCase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(_UpperCAmelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(_UpperCAmelCase , "w" ) ) UpperCAmelCase_ = CustomImageProcessor.from_pretrained(_UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = True try: AutoConfig.register("custom" , _UpperCAmelCase ) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local UpperCAmelCase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCAmelCase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(_UpperCAmelCase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class lowercase__ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = str(id_ ) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = [] UpperCAmelCase_ = {} # {vertex:distance} def __lt__( self : str , _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' return self.key < other.key def __repr__( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.id def lowercase__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' self.neighbors.append(_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = weight def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = graph[:] while q: UpperCAmelCase_ = min(lowerCAmelCase__ ) q.remove(lowerCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] for i in range(1 , len(lowerCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): for u in graph: UpperCAmelCase_ = math.inf UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = list(lowerCAmelCase__ ) hq.heapify(lowerCAmelCase__ ) while h: UpperCAmelCase_ = hq.heappop(lowerCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase_ = u UpperCAmelCase_ = u.edges[v.id] hq.heapify(lowerCAmelCase__ ) for i in range(1 , len(lowerCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 10 def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCAmelCase , self.block_size , 0 ) , _UpperCAmelCase ) def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCAmelCase_ , UpperCAmelCase_ = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ , UpperCAmelCase_ = process_story(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [] ) self.assertEqual(_UpperCAmelCase , [] ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_UpperCAmelCase ) UpperCAmelCase_ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = ["It was the best of times."] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 23 ).numpy() , expected.numpy() ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase_ = compute_token_type_ids(_UpperCAmelCase , _UpperCAmelCase ) np.testing.assert_array_equal(_UpperCAmelCase , _UpperCAmelCase )
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Tuple=None , ) -> str: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = bos_token_id def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ = input_mask.shape UpperCAmelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = TFBlipTextModel(config=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , training=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = BlipTextModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass @slow def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFBlipTextModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any]=True ) -> Union[str, Any]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCAmelCase )
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : str , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : int , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : int , **_UpperCAmelCase : Tuple ) -> Any: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : Any ) -> int: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : Any , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) class lowercase__ ( metaclass=SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''flax''', '''transformers'''] def __init__( self : Dict , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase__ ( cls : List[str] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(cls , ["flax", "transformers"] )
14
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" from math import isclose, sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = point_y / 4 / point_x UpperCAmelCase_ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase_ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase_ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase_ = outgoing_gradient**2 + 4 UpperCAmelCase_ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase_ = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase_ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase_ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase_ = x_minus if isclose(lowerCAmelCase__ , lowerCAmelCase__ ) else x_plus UpperCAmelCase_ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a__ ( lowerCAmelCase__ = 1.4 , lowerCAmelCase__ = -9.6 ): UpperCAmelCase_ = 0 UpperCAmelCase_ = first_x_coord UpperCAmelCase_ = first_y_coord UpperCAmelCase_ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = next_point(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
14
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , lowerCAmelCase__ ).groups()[0] class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : int=None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = file_names UpperCAmelCase_ = image_transform UpperCAmelCase_ = label_to_id def __len__( self : Any ) -> int: '''simple docstring''' return len(self.file_names ) def __getitem__( self : Optional[int] , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.file_names[idx] UpperCAmelCase_ = PIL.Image.open(_UpperCAmelCase ) UpperCAmelCase_ = raw_image.convert("RGB" ) if self.image_transform is not None: UpperCAmelCase_ = self.image_transform(_UpperCAmelCase ) UpperCAmelCase_ = extract_label(_UpperCAmelCase ) if self.label_to_id is not None: UpperCAmelCase_ = self.label_to_id[label] return {"image": image, "label": label} def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # Initialize accelerator if args.with_tracking: UpperCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["lr"] UpperCAmelCase_ = int(config["num_epochs"] ) UpperCAmelCase_ = int(config["seed"] ) UpperCAmelCase_ = int(config["batch_size"] ) UpperCAmelCase_ = config["image_size"] if not isinstance(lowerCAmelCase__ , (list, tuple) ): UpperCAmelCase_ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": UpperCAmelCase_ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase_ = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase_ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase_ = os.path.split(lowerCAmelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCAmelCase__ , lowerCAmelCase__ ) # Grab all the image filenames UpperCAmelCase_ = [os.path.join(args.data_dir , lowerCAmelCase__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences UpperCAmelCase_ = [extract_label(lowerCAmelCase__ ) for fname in file_names] UpperCAmelCase_ = list(set(lowerCAmelCase__ ) ) id_to_label.sort() UpperCAmelCase_ = {lbl: i for i, lbl in enumerate(lowerCAmelCase__ )} # Set the seed before splitting the data. np.random.seed(lowerCAmelCase__ ) torch.manual_seed(lowerCAmelCase__ ) torch.cuda.manual_seed_all(lowerCAmelCase__ ) # Split our filenames between train and validation UpperCAmelCase_ = np.random.permutation(len(lowerCAmelCase__ ) ) UpperCAmelCase_ = int(0.8 * len(lowerCAmelCase__ ) ) UpperCAmelCase_ = random_perm[:cut] UpperCAmelCase_ = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase_ = Compose([RandomResizedCrop(lowerCAmelCase__ , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase_ = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCAmelCase__ , label_to_id=lowerCAmelCase__ ) # For evaluation, we use a deterministic Resize UpperCAmelCase_ = Compose([Resize(lowerCAmelCase__ ), ToTensor()] ) UpperCAmelCase_ = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCAmelCase__ , label_to_id=lowerCAmelCase__ ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4 ) UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = create_model("resnet50d" , pretrained=lowerCAmelCase__ , num_classes=len(lowerCAmelCase__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase_ = False for param in model.get_classifier().parameters(): UpperCAmelCase_ = True # We normalize the batches of images to be a bit faster. UpperCAmelCase_ = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase_ = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase_ = OneCycleLR(optimizer=lowerCAmelCase__ , max_lr=lowerCAmelCase__ , epochs=lowerCAmelCase__ , steps_per_epoch=len(lowerCAmelCase__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase_ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase_ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase_ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase_ = os.path.splitext(lowerCAmelCase__ )[0] if "epoch" in training_difference: UpperCAmelCase_ = int(training_difference.replace("epoch_" , "" ) ) + 1 UpperCAmelCase_ = None else: UpperCAmelCase_ = int(training_difference.replace("step_" , "" ) ) UpperCAmelCase_ = resume_step // len(lowerCAmelCase__ ) resume_step -= starting_epoch * len(lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() if args.with_tracking: UpperCAmelCase_ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase_ = accelerator.skip_first_batches(lowerCAmelCase__ , lowerCAmelCase__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase_ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase_ = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase_ = (batch["image"] - mean) / std UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = torch.nn.functional.cross_entropy(lowerCAmelCase__ , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase_ = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) model.eval() UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase_ = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase_ = (batch["image"] - mean) / std with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch["label"]) ) UpperCAmelCase_ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase_ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(lowerCAmelCase__ ), "epoch": epoch, } , step=lowerCAmelCase__ , ) if checkpointing_steps == "epoch": UpperCAmelCase_ = f"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase_ = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) if args.with_tracking: accelerator.end_training() def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=lowerCAmelCase__ , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=lowerCAmelCase__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCAmelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
1
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 0 if start < end: UpperCAmelCase_ = randint(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ , UpperCAmelCase_ = _in_place_partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += _in_place_quick_sort(lowerCAmelCase__ , lowerCAmelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase__ , p + 1 , lowerCAmelCase__ ) return count def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 0 UpperCAmelCase_ = randint(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = a[end] UpperCAmelCase_ = a[pivot] UpperCAmelCase_ = temp UpperCAmelCase_ = start - 1 for index in range(lowerCAmelCase__ , lowerCAmelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ = new_pivot_index + 1 UpperCAmelCase_ = a[new_pivot_index] UpperCAmelCase_ = a[index] UpperCAmelCase_ = temp UpperCAmelCase_ = a[new_pivot_index + 1] UpperCAmelCase_ = a[end] UpperCAmelCase_ = temp return new_pivot_index + 1, count lowerCamelCase = TemporaryFile() lowerCamelCase = 100 # 1000 elements are to be sorted lowerCamelCase , lowerCamelCase = 0, 1 # mean and standard deviation lowerCamelCase = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array lowerCamelCase = np.load(outfile) lowerCamelCase = len(M) - 1 lowerCamelCase = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
1
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ) -> int: '''simple docstring''' UpperCAmelCase_ = name UpperCAmelCase_ = value UpperCAmelCase_ = weight def __repr__( self : Tuple ) -> List[str]: '''simple docstring''' return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return self.value def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' return self.name def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.weight def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' return self.value / self.weight def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] for i in range(len(lowerCAmelCase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = sorted(lowerCAmelCase__ , key=lowerCAmelCase__ , reverse=lowerCAmelCase__ ) UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = 0.0, 0.0 for i in range(len(lowerCAmelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def a__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
1
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
1
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
1
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } UpperCAmelCase_ , UpperCAmelCase_ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase_ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) assert base_extractor.is_extractable(lowerCAmelCase__ ) UpperCAmelCase_ = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase_ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase_ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase_ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } UpperCAmelCase_ = input_paths[compression_format] if input_path is None: UpperCAmelCase_ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_ = Extractor.infer_extractor_format(lowerCAmelCase__ ) assert extractor_format is not None UpperCAmelCase_ = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase_ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase_ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase_ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): import tarfile UpperCAmelCase_ = tmp_path / "data_dot_dot" directory.mkdir() UpperCAmelCase_ = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(lowerCAmelCase__ , "w" ) as f: f.add(lowerCAmelCase__ , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def a__ ( lowerCAmelCase__ ): import tarfile UpperCAmelCase_ = tmp_path / "data_sym_link" directory.mkdir() UpperCAmelCase_ = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=lowerCAmelCase__ ) with tarfile.TarFile(lowerCAmelCase__ , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } UpperCAmelCase_ = insecure_tar_files[insecure_tar_file] UpperCAmelCase_ = tmp_path / "extracted" TarExtractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def a__ ( lowerCAmelCase__ ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number UpperCAmelCase_ = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase_ = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(lowerCAmelCase__ ) assert zipfile.is_zipfile(str(lowerCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCAmelCase__ ) # but we're right
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=512, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def a__ ( lowerCAmelCase__ ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) lowerCamelCase = parser.parse_args() lowerCamelCase = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCAmelCase__ , n - 1 , lowerCAmelCase__ ) * a) % mod else: UpperCAmelCase_ = binary_exponentiation(lowerCAmelCase__ , n / 2 , lowerCAmelCase__ ) return (b * b) % mod # a prime number lowerCamelCase = 701 lowerCamelCase = 1_000_000_000 lowerCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
14
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ = 1000 ): UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 UpperCAmelCase_ = [] for i in range(1 , n + 1 ): UpperCAmelCase_ = prev_numerator + 2 * prev_denominator UpperCAmelCase_ = prev_numerator + prev_denominator if len(str(lowerCAmelCase__ ) ) > len(str(lowerCAmelCase__ ) ): result.append(lowerCAmelCase__ ) UpperCAmelCase_ = numerator UpperCAmelCase_ = denominator return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"{solution() = }")
14
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCamelCase = TypeVar("""KEY""") lowerCamelCase = TypeVar("""VAL""") @dataclass(frozen=SCREAMING_SNAKE_CASE , slots=SCREAMING_SNAKE_CASE ) class lowercase__ ( Generic[KEY, VAL] ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 class lowercase__ ( _Item ): '''simple docstring''' def __init__( self : Tuple ) -> None: '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__( self : List[Any] ) -> bool: '''simple docstring''' return False lowerCamelCase = _DeletedItem() class lowercase__ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.75 ) -> None: '''simple docstring''' UpperCAmelCase_ = initial_block_size UpperCAmelCase_ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 UpperCAmelCase_ = capacity_factor UpperCAmelCase_ = 0 def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : KEY ) -> int: '''simple docstring''' return hash(_UpperCAmelCase ) % len(self._buckets ) def lowercase__ ( self : Dict , _UpperCAmelCase : int ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowercase__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : KEY , _UpperCAmelCase : VAL ) -> bool: '''simple docstring''' UpperCAmelCase_ = self._buckets[ind] if not stored: UpperCAmelCase_ = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: UpperCAmelCase_ = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def lowercase__ ( self : Union[str, Any] ) -> bool: '''simple docstring''' UpperCAmelCase_ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False UpperCAmelCase_ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowercase__ ( self : List[Any] , _UpperCAmelCase : int ) -> None: '''simple docstring''' UpperCAmelCase_ = self._buckets UpperCAmelCase_ = [None] * new_size UpperCAmelCase_ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowercase__ ( self : Optional[int] ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowercase__ ( self : str ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowercase__ ( self : List[str] , _UpperCAmelCase : KEY ) -> Iterator[int]: '''simple docstring''' UpperCAmelCase_ = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind UpperCAmelCase_ = self._get_next_ind(_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : KEY , _UpperCAmelCase : VAL ) -> None: '''simple docstring''' for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__( self : List[str] , _UpperCAmelCase : KEY , _UpperCAmelCase : VAL ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__( self : Any , _UpperCAmelCase : KEY ) -> None: '''simple docstring''' for ind in self._iterate_buckets(_UpperCAmelCase ): UpperCAmelCase_ = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: UpperCAmelCase_ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : int , _UpperCAmelCase : KEY ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(_UpperCAmelCase ): UpperCAmelCase_ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return self._len def __iter__( self : Optional[Any] ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = " ,".join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , **_UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["bs4"] ) super().__init__(**_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCAmelCase_ = parent.find_all(child.name , recursive=_UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_UpperCAmelCase ) else next(i for i, s in enumerate(_UpperCAmelCase , 1 ) if s is child ) ) UpperCAmelCase_ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = BeautifulSoup(_UpperCAmelCase , "html.parser" ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for element in html_code.descendants: if type(_UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCAmelCase_ = html.unescape(_UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = self.xpath_soup(_UpperCAmelCase ) stringaxtag_seq.append(_UpperCAmelCase ) stringaxsubs_seq.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowercase__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "" for tagname, subs in zip(_UpperCAmelCase , _UpperCAmelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : List[str] , _UpperCAmelCase : Optional[Any] ) -> BatchFeature: '''simple docstring''' UpperCAmelCase_ = False # Check that strings has a valid type if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = True elif isinstance(_UpperCAmelCase , (list, tuple) ): if len(_UpperCAmelCase ) == 0 or isinstance(html_strings[0] , _UpperCAmelCase ): UpperCAmelCase_ = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(_UpperCAmelCase )}.""" ) UpperCAmelCase_ = bool(isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , _UpperCAmelCase )) ) if not is_batched: UpperCAmelCase_ = [html_strings] # Get nodes + xpaths UpperCAmelCase_ = [] UpperCAmelCase_ = [] for html_string in html_strings: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.get_three_from_single(_UpperCAmelCase ) nodes.append(_UpperCAmelCase ) UpperCAmelCase_ = [] for node, tag_list, sub_list in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = self.construct_xpath(_UpperCAmelCase , _UpperCAmelCase ) xpath_strings.append(_UpperCAmelCase ) xpaths.append(_UpperCAmelCase ) # return as Dict UpperCAmelCase_ = {"nodes": nodes, "xpaths": xpaths} UpperCAmelCase_ = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) return encoded_inputs
14
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) UpperCAmelCase_ = "" while len(lowerCAmelCase__ ) % 3 != 0: UpperCAmelCase_ = "0" + bin_string UpperCAmelCase_ = [ bin_string[index : index + 3] for index in range(len(lowerCAmelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCAmelCase_ = 0 for index, val in enumerate(lowerCAmelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCAmelCase__ ) ) oct_string += str(lowerCAmelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''funnel''' UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Optional[int] , _UpperCAmelCase : int=30522 , _UpperCAmelCase : Tuple=[4, 4, 4] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Optional[int]=3072 , _UpperCAmelCase : Dict="gelu_new" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=1e-9 , _UpperCAmelCase : Tuple="mean" , _UpperCAmelCase : Dict="relative_shift" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = block_sizes UpperCAmelCase_ = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." UpperCAmelCase_ = num_decoder_layers UpperCAmelCase_ = d_model UpperCAmelCase_ = n_head UpperCAmelCase_ = d_head UpperCAmelCase_ = d_inner UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_std UpperCAmelCase_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" UpperCAmelCase_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" UpperCAmelCase_ = attention_type UpperCAmelCase_ = separate_cls UpperCAmelCase_ = truncate_seq UpperCAmelCase_ = pool_q_only super().__init__(**_UpperCAmelCase ) @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
14
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" from __future__ import annotations lowerCamelCase = list[list[int]] # assigning initial values to the grid lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a__ ( lowerCAmelCase__ ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a__ ( lowerCAmelCase__ ): if location := find_empty_location(lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = digit if sudoku(lowerCAmelCase__ ) is not None: return grid UpperCAmelCase_ = 0 return None def a__ ( lowerCAmelCase__ ): for row in grid: for cell in row: print(lowerCAmelCase__ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
1
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=0 ): UpperCAmelCase_ = [] for old_item in old_list: UpperCAmelCase_ = old_item.replace("in_layers.0" , "norm1" ) UpperCAmelCase_ = new_item.replace("in_layers.2" , "conv1" ) UpperCAmelCase_ = new_item.replace("out_layers.0" , "norm2" ) UpperCAmelCase_ = new_item.replace("out_layers.3" , "conv2" ) UpperCAmelCase_ = new_item.replace("emb_layers.1" , "time_emb_proj" ) UpperCAmelCase_ = new_item.replace("skip_connection" , "conv_shortcut" ) UpperCAmelCase_ = shave_segments(lowerCAmelCase__ , n_shave_prefix_segments=lowerCAmelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( lowerCAmelCase__ , lowerCAmelCase__=0 ): UpperCAmelCase_ = [] for old_item in old_list: UpperCAmelCase_ = old_item UpperCAmelCase_ = new_item.replace("norm.weight" , "group_norm.weight" ) UpperCAmelCase_ = new_item.replace("norm.bias" , "group_norm.bias" ) UpperCAmelCase_ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) UpperCAmelCase_ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) UpperCAmelCase_ = shave_segments(lowerCAmelCase__ , n_shave_prefix_segments=lowerCAmelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase_ = old_checkpoint[path] UpperCAmelCase_ = old_tensor.shape[0] // 3 UpperCAmelCase_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase_ = old_tensor.shape[0] // config["num_head_channels"] // 3 UpperCAmelCase_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase_ = query.reshape(lowerCAmelCase__ ) UpperCAmelCase_ = key.reshape(lowerCAmelCase__ ) UpperCAmelCase_ = value.reshape(lowerCAmelCase__ ) for path in paths: UpperCAmelCase_ = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase_ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) UpperCAmelCase_ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) UpperCAmelCase_ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase_ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase_ = old_checkpoint[path["old"]][:, :, 0] else: UpperCAmelCase_ = old_checkpoint[path["old"]] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint["time_embed.0.weight"] UpperCAmelCase_ = checkpoint["time_embed.0.bias"] UpperCAmelCase_ = checkpoint["time_embed.2.weight"] UpperCAmelCase_ = checkpoint["time_embed.2.bias"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase_ = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase_ = checkpoint["out.0.weight"] UpperCAmelCase_ = checkpoint["out.0.bias"] UpperCAmelCase_ = checkpoint["out.2.weight"] UpperCAmelCase_ = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the middle blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } # Retrieves the keys for the output blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase__ ) } for i in range(1 , lowerCAmelCase__ ): UpperCAmelCase_ = (i - 1) // (config["num_res_blocks"] + 1) UpperCAmelCase_ = (i - 1) % (config["num_res_blocks"] + 1) UpperCAmelCase_ = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase_ = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase_ = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase_ = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""input_blocks.{i}.0""", "new": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase_ = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path, resnet_op] , config=lowerCAmelCase__ ) if len(lowerCAmelCase__ ): UpperCAmelCase_ = renew_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = { "old": f"""input_blocks.{i}.1""", "new": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase_ = { f"""input_blocks.{i}.1.qkv.bias""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCAmelCase__ , config=lowerCAmelCase__ , ) UpperCAmelCase_ = middle_blocks[0] UpperCAmelCase_ = middle_blocks[1] UpperCAmelCase_ = middle_blocks[2] UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) UpperCAmelCase_ = renew_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , attention_paths_to_split=lowerCAmelCase__ , config=lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): UpperCAmelCase_ = i // (config["num_res_blocks"] + 1) UpperCAmelCase_ = i % (config["num_res_blocks"] + 1) UpperCAmelCase_ = [shave_segments(lowerCAmelCase__ , 2 ) for name in output_blocks[i]] UpperCAmelCase_ = {} for layer in output_block_layers: UpperCAmelCase_ , UpperCAmelCase_ = layer.split("." )[0], shave_segments(lowerCAmelCase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [layer_name] if len(lowerCAmelCase__ ) > 1: UpperCAmelCase_ = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase_ = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ ) UpperCAmelCase_ = {"old": f"""output_blocks.{i}.0""", "new": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase_ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) UpperCAmelCase_ = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase_ = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(lowerCAmelCase__ ) == 2: UpperCAmelCase_ = [] if len(lowerCAmelCase__ ): UpperCAmelCase_ = renew_attention_paths(lowerCAmelCase__ ) UpperCAmelCase_ = { "old": f"""output_blocks.{i}.1""", "new": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase_ = { f"""output_blocks.{i}.1.qkv.bias""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=lowerCAmelCase__ , ) else: UpperCAmelCase_ = renew_resnet_paths(lowerCAmelCase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase_ = ".".join(["output_blocks", str(lowerCAmelCase__ ), path["old"]] ) UpperCAmelCase_ = ".".join(["up_blocks", str(lowerCAmelCase__ ), "resnets", str(lowerCAmelCase__ ), path["new"]] ) UpperCAmelCase_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCamelCase = parser.parse_args() lowerCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCamelCase = json.loads(f.read()) lowerCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCamelCase = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowerCamelCase = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowerCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
14
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union lowerCamelCase = TypeVar("""T""") lowerCamelCase = Union[List[T], Tuple[T, ...]] lowerCamelCase = Union[T, List[T], Dict[str, T]] lowerCamelCase = Union[str, bytes, os.PathLike]
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "num_attention_heads" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Any=[128, 256, 384] , _UpperCAmelCase : Dict=[4, 6, 8] , _UpperCAmelCase : Any=[2, 3, 4] , _UpperCAmelCase : Optional[int]=[16, 16, 16] , _UpperCAmelCase : str=0 , _UpperCAmelCase : Optional[int]=[2, 2, 2] , _UpperCAmelCase : Optional[int]=[2, 2, 2] , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=2 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCAmelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = LevitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : str ) -> Any: '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCAmelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase_ = problem_type["title"] UpperCAmelCase_ = problem_type["num_labels"] UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: UpperCAmelCase_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Any ) -> Any: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowerCamelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def a__ ( ): UpperCAmelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ = g.get_repo("huggingface/diffusers" ) UpperCAmelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ = sorted(issue.get_comments() , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) UpperCAmelCase_ = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
14
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase__ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Union[str, Any]=32 * 4 , _UpperCAmelCase : Dict=32 * 6 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=32 , ) -> str: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = is_training UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = num_queries UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_size UpperCAmelCase_ = max_size UpperCAmelCase_ = num_labels UpperCAmelCase_ = mask_feature_size def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = output.encoder_hidden_states UpperCAmelCase_ = output.pixel_decoder_hidden_states UpperCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_config.decoder_layers ) def lowercase__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): UpperCAmelCase_ = MaskFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = MaskFormerForInstanceSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCAmelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MaskFormerModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : str ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="MaskFormer is not a generative model" ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase_ = MaskFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = (self.model_tester.min_size,) * 2 UpperCAmelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=_UpperCAmelCase ), "mask_labels": torch.randn((2, 10, *size) , device=_UpperCAmelCase ), "class_labels": torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCAmelCase_ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase = 1e-4 def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCAmelCase_ = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_UpperCAmelCase ) .eval() ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase_ = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCAmelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_ = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(_UpperCAmelCase ) .eval() ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) UpperCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase_ = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCAmelCase_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_ = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_UpperCAmelCase ) .eval() ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) UpperCAmelCase_ = inputs["pixel_values"].to(_UpperCAmelCase ) UpperCAmelCase_ = [el.to(_UpperCAmelCase ) for el in inputs["mask_labels"]] UpperCAmelCase_ = [el.to(_UpperCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
14
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''microsoft/speecht5_tts''' UpperCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) UpperCamelCase = '''text_reader''' UpperCamelCase = SpeechTaProcessor UpperCamelCase = SpeechTaForTextToSpeech UpperCamelCase = SpeechTaHifiGan UpperCamelCase = ['''text'''] UpperCamelCase = ['''audio'''] def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' if self.post_processor is None: UpperCAmelCase_ = "microsoft/speecht5_hifigan" super().setup() def lowercase__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.pre_processor(text=_UpperCAmelCase , return_tensors="pt" , truncation=_UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ = torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> List[str]: '''simple docstring''' with torch.no_grad(): return self.post_processor(_UpperCAmelCase ).cpu().detach()
14
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
1
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowercase__ : '''simple docstring''' def __init__( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=1 ) -> Dict: '''simple docstring''' if self.graph.get(_UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCAmelCase_ = [[w, v]] if not self.graph.get(_UpperCAmelCase ): UpperCAmelCase_ = [] def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' return list(self.graph ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' if self.graph.get(_UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : int=-2 , _UpperCAmelCase : Union[str, Any]=-1 ) -> Tuple: '''simple docstring''' if s == d: return [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return visited def lowercase__ ( self : List[Any] , _UpperCAmelCase : List[Any]=-1 ) -> List[str]: '''simple docstring''' if c == -1: UpperCAmelCase_ = floor(random() * 10000 ) + 10 for i in range(_UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase_ = floor(random() * c ) + 1 if n != i: self.add_pair(_UpperCAmelCase , _UpperCAmelCase , 1 ) def lowercase__ ( self : Dict , _UpperCAmelCase : Union[str, Any]=-2 ) -> Dict: '''simple docstring''' UpperCAmelCase_ = deque() UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph )[0] d.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) while d: UpperCAmelCase_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self : int , _UpperCAmelCase : str ) -> str: '''simple docstring''' UpperCAmelCase_ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase__ ( self : Dict , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Any=-2 ) -> int: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = s UpperCAmelCase_ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return sorted_nodes def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_UpperCAmelCase ) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return list(_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_UpperCAmelCase ) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return False def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Dict=-2 , _UpperCAmelCase : Tuple=-1 ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = time() self.dfs(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = time() return end - begin def lowercase__ ( self : List[str] , _UpperCAmelCase : Optional[Any]=-2 ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = time() self.bfs(_UpperCAmelCase ) UpperCAmelCase_ = time() return end - begin class lowercase__ : '''simple docstring''' def __init__( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = {} def lowercase__ ( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=1 ) -> Tuple: '''simple docstring''' if self.graph.get(_UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCAmelCase_ = [[w, v]] # add the other way if self.graph.get(_UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCAmelCase_ = [[w, u]] def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' if self.graph.get(_UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_UpperCAmelCase ) # the other way round if self.graph.get(_UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : Dict=-2 , _UpperCAmelCase : Optional[Any]=-1 ) -> Any: '''simple docstring''' if s == d: return [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return visited def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=-1 ) -> Any: '''simple docstring''' if c == -1: UpperCAmelCase_ = floor(random() * 10000 ) + 10 for i in range(_UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): UpperCAmelCase_ = floor(random() * c ) + 1 if n != i: self.add_pair(_UpperCAmelCase , _UpperCAmelCase , 1 ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any]=-2 ) -> str: '''simple docstring''' UpperCAmelCase_ = deque() UpperCAmelCase_ = [] if s == -2: UpperCAmelCase_ = list(self.graph )[0] d.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) while d: UpperCAmelCase_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_UpperCAmelCase ) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return list(_UpperCAmelCase ) def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) UpperCAmelCase_ = -2 UpperCAmelCase_ = [] UpperCAmelCase_ = s UpperCAmelCase_ = False UpperCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCAmelCase_ = len(_UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCAmelCase_ = True if len(_UpperCAmelCase ) != 0: UpperCAmelCase_ = stack[len(_UpperCAmelCase ) - 1] else: UpperCAmelCase_ = False indirect_parents.append(_UpperCAmelCase ) UpperCAmelCase_ = s UpperCAmelCase_ = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return False def lowercase__ ( self : Dict ) -> str: '''simple docstring''' return list(self.graph ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple=-2 , _UpperCAmelCase : Tuple=-1 ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = time() self.dfs(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = time() return end - begin def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any]=-2 ) -> int: '''simple docstring''' UpperCAmelCase_ = time() self.bfs(_UpperCAmelCase ) UpperCAmelCase_ = time() return end - begin
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : int ) -> None: '''simple docstring''' warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowerCamelCase = 0 for log in Path().glob("""*.log"""): lowerCamelCase = 0 with open(log, """r""") as f: for line in f: lowerCamelCase = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase = [] log.unlink() lowerCamelCase = """""" lowerCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase = [] lowerCamelCase = {} for test in failed_tests: lowerCamelCase = test[0].split("""::""") lowerCamelCase = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase = [test[0] for test in failed_table] lowerCamelCase = list(set(files)) # Count number of instances in failed_tests lowerCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: lowerCamelCase = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase = len(err) + 10 lowerCamelCase = message[: 3_000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowerCamelCase = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowerCamelCase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowerCamelCase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase = row[0] else: lowerCamelCase = """""" lowerCamelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 0 UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return arr, 0 UpperCAmelCase_ = len(lowerCAmelCase__ ) // 2 UpperCAmelCase_ = arr[0:mid] UpperCAmelCase_ = arr[mid:] UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = _count_cross_inversions(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = inversion_p + inversions_q + cross_inversions return c, num_inversions def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = 0 while i < len(lowerCAmelCase__ ) and j < len(lowerCAmelCase__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a__ ( ): UpperCAmelCase_ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCAmelCase_ = count_inversions_bf(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , lowerCAmelCase__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCAmelCase_ = count_inversions_bf(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase__ ) # an empty list should also have zero inversions UpperCAmelCase_ = [] UpperCAmelCase_ = count_inversions_bf(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = count_inversions_recursive(lowerCAmelCase__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase__ ) if __name__ == "__main__": main()
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self : Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_UpperCAmelCase ) @property def lowercase__ ( self : str ) -> str: '''simple docstring''' def extract(*_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ): class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = torch.ones([0] ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' self.pixel_values.to(_UpperCAmelCase ) return self return Out() return extract def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase_ = 77 UpperCAmelCase_ = self.dummy_image.to(_UpperCAmelCase ) UpperCAmelCase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCAmelCase_ = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase ) UpperCAmelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) UpperCAmelCase_ = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_UpperCAmelCase , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) UpperCAmelCase_ = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.dummy_cond_unet UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase_ = 77 UpperCAmelCase_ = self.dummy_image.to(_UpperCAmelCase ) # put models in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = vae.half() UpperCAmelCase_ = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase ) UpperCAmelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = alt_pipe( [prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=_UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_ = init_image.resize((760, 504) ) UpperCAmelCase_ = "BAAI/AltDiffusion" UpperCAmelCase_ = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "A fantasy landscape, trending on artstation" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) UpperCAmelCase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ = init_image.resize((768, 512) ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) UpperCAmelCase_ = "BAAI/AltDiffusion" UpperCAmelCase_ = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "A fantasy landscape, trending on artstation" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
14
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
1
"""simple docstring""" from jiwer import compute_measures import datasets lowerCamelCase = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCamelCase = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ lowerCamelCase = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]=False ) -> str: '''simple docstring''' if concatenate_texts: return compute_measures(_UpperCAmelCase , _UpperCAmelCase )["wer"] else: UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for prediction, reference in zip(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = compute_measures(_UpperCAmelCase , _UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
14
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase__ : '''simple docstring''' UpperCamelCase = XGLMConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=14 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : str=99 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Union[str, Any]=512 , _UpperCAmelCase : Optional[Any]=0.02 , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = ffn_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = 2 UpperCAmelCase_ = 1 def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , ) def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = TFXGLMModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @slow def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFXGLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : str , _UpperCAmelCase : List[Any]=True ) -> Any: '''simple docstring''' UpperCAmelCase_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase_ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on UpperCAmelCase_ = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase ) @slow def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) UpperCAmelCase_ = tokenizer("Today is a nice day and" , return_tensors="tf" ) UpperCAmelCase_ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): UpperCAmelCase_ = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] ) UpperCAmelCase_ = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) UpperCAmelCase_ = "left" # use different length sentences to test batching UpperCAmelCase_ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] UpperCAmelCase_ = tokenizer(_UpperCAmelCase , return_tensors="tf" , padding=_UpperCAmelCase ) UpperCAmelCase_ = inputs["input_ids"] UpperCAmelCase_ = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) UpperCAmelCase_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCAmelCase_ = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) UpperCAmelCase_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCAmelCase_ = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) UpperCAmelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
14
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
"""simple docstring""" import random def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = num - 1 UpperCAmelCase_ = 0 while s % 2 == 0: UpperCAmelCase_ = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase_ = random.randrange(2 , num - 1 ) UpperCAmelCase_ = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if v != 1: UpperCAmelCase_ = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase_ = i + 1 UpperCAmelCase_ = (v**2) % num return True def a__ ( lowerCAmelCase__ ): if num < 2: return False UpperCAmelCase_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ = 1024 ): while True: UpperCAmelCase_ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase__ ): return num if __name__ == "__main__": lowerCamelCase = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
14
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = FunnelTokenizer UpperCamelCase = FunnelTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' super().setUp() UpperCAmelCase_ = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase__ ( self : Dict , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "UNwant\u00E9d,running" UpperCAmelCase_ = "unwanted, running" return input_text, output_text def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: UpperCAmelCase_ = tokenizer("UNwant\u00E9d,running" ) UpperCAmelCase_ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCAmelCase_ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def a__ ( lowerCAmelCase__=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE ) ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = None UpperCamelCase = None def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = dataset_module_factory(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) UpperCAmelCase_ = builder_cls( cache_dir=_UpperCAmelCase , config_name=_UpperCAmelCase , hash=dataset_module.hash , ) UpperCAmelCase_ = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_UpperCAmelCase ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase_ = cached_path(_UpperCAmelCase , cache_dir=_UpperCAmelCase ) self.assertTrue(os.path.exists(_UpperCAmelCase ) ) @pytest.mark.integration def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" UpperCAmelCase_ = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase__ ) UpperCAmelCase_ = import_main_class(dataset_module.module_path ) UpperCAmelCase_ = builder_cls( cache_dir=lowerCAmelCase__ , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ = None builder_instance.download_and_prepare() UpperCAmelCase_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase__ ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase__ ) UpperCAmelCase_ = builder_cls( cache_dir=lowerCAmelCase__ , config_name="20220301.frr" , hash=dataset_module.hash , ) UpperCAmelCase_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert "train" in ds assert isinstance(ds["train"] , lowerCAmelCase__ ) assert next(iter(ds["train"] ) )
14
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''CLIPImageProcessor''' UpperCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : List[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[str] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: UpperCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowercase__ ( self : List[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = (UnCLIPScheduler,) def lowercase__ ( self : Any , **_UpperCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_UpperCAmelCase ) return config def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCAmelCase , prev_timestep=_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(variance_type="fixed_small_log" ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(variance_type="learned_range" ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCAmelCase ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCAmelCase ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCAmelCase ) - -0.001_0011 < 1e-5 def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(25 ) UpperCAmelCase_ = scheduler.timesteps UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter UpperCAmelCase_ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCAmelCase ): # 1. predict noise residual UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) if i + 1 == timesteps.shape[0]: UpperCAmelCase_ = None else: UpperCAmelCase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase_ = scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , prev_timestep=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample UpperCAmelCase_ = pred_prev_sample UpperCAmelCase_ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' pass def lowercase__ ( self : int ) -> Dict: '''simple docstring''' pass
14
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , **_UpperCAmelCase : Any ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(_UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : Union[str, "Image.Image", List[Dict[str, Any]]] , _UpperCAmelCase : Union[str, List[str]] = None , **_UpperCAmelCase : Optional[int] , ) -> Tuple: '''simple docstring''' if "text_queries" in kwargs: UpperCAmelCase_ = kwargs.pop("text_queries" ) if isinstance(_UpperCAmelCase , (str, Image.Image) ): UpperCAmelCase_ = {"image": image, "candidate_labels": candidate_labels} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def lowercase__ ( self : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} if "threshold" in kwargs: UpperCAmelCase_ = kwargs["threshold"] if "top_k" in kwargs: UpperCAmelCase_ = kwargs["top_k"] return {}, {}, postprocess_params def lowercase__ ( self : str , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = load_image(inputs["image"] ) UpperCAmelCase_ = inputs["candidate_labels"] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = candidate_labels.split("," ) UpperCAmelCase_ = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework ) UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self : int , _UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = model_inputs.pop("target_size" ) UpperCAmelCase_ = model_inputs.pop("candidate_label" ) UpperCAmelCase_ = model_inputs.pop("is_last" ) UpperCAmelCase_ = self.model(**_UpperCAmelCase ) UpperCAmelCase_ = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def lowercase__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = [] for model_output in model_outputs: UpperCAmelCase_ = model_output["candidate_label"] UpperCAmelCase_ = BaseModelOutput(_UpperCAmelCase ) UpperCAmelCase_ = self.image_processor.post_process_object_detection( outputs=_UpperCAmelCase , threshold=_UpperCAmelCase , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase_ = outputs["scores"][index].item() UpperCAmelCase_ = self._get_bounding_box(outputs["boxes"][index][0] ) UpperCAmelCase_ = {"score": score, "label": label, "box": box} results.append(_UpperCAmelCase ) UpperCAmelCase_ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x["score"] , reverse=_UpperCAmelCase ) if top_k: UpperCAmelCase_ = results[:top_k] return results def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = box.int().tolist() UpperCAmelCase_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ = 1000 ): UpperCAmelCase_ = 2**power UpperCAmelCase_ = 0 while n: UpperCAmelCase_ , UpperCAmelCase_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''nllb-moe''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any]=128112 , _UpperCAmelCase : Optional[int]=1024 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[Any]=4096 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[str]=4096 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]=0.05 , _UpperCAmelCase : List[Any]=0.05 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict="relu" , _UpperCAmelCase : Dict=1024 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : List[str]="float32" , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=128 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=0.001 , _UpperCAmelCase : str=0.001 , _UpperCAmelCase : Optional[Any]="all" , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=0.2 , _UpperCAmelCase : str=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=False , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = use_cache UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase_ = router_z_loss_coef UpperCAmelCase_ = router_aux_loss_coef UpperCAmelCase_ = decoder_sparse_step UpperCAmelCase_ = encoder_sparse_step UpperCAmelCase_ = num_experts UpperCAmelCase_ = expert_capacity UpperCAmelCase_ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCAmelCase_ = router_dtype UpperCAmelCase_ = router_ignore_padding_tokens UpperCAmelCase_ = batch_prioritized_routing UpperCAmelCase_ = second_expert_policy UpperCAmelCase_ = normalize_router_prob_before_dropping UpperCAmelCase_ = moe_eval_capacity_token_fraction UpperCAmelCase_ = moe_token_dropout UpperCAmelCase_ = output_router_logits super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
14
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase = """src/diffusers""" # Matches is_xxx_available() lowerCamelCase = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCamelCase = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCamelCase = """ {0} = None """ lowerCamelCase = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ lowerCamelCase = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = _re_backend.findall(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 0: return None return "_and_".join(lowerCAmelCase__ ) def a__ ( ): with open(os.path.join(lowerCAmelCase__ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ = 0 UpperCAmelCase_ = {} # Go through the end of the file while line_index < len(lowerCAmelCase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase__ ) and len(lines[line_index] ) > 1: UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _re_single_line_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_ = objects else: line_index += 1 return backend_specific_objects def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase__ , lowerCAmelCase__ ) else: return DUMMY_CLASS.format(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__=None ): if backend_specific_objects is None: UpperCAmelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase__ , lowerCAmelCase__ ) for o in objects] ) UpperCAmelCase_ = dummy_file return dummy_files def a__ ( lowerCAmelCase__=False ): UpperCAmelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "utils" ) UpperCAmelCase_ = { backend: os.path.join(lowerCAmelCase__ , f"""dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py""" ) for backend in dummy_files.keys() } UpperCAmelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(lowerCAmelCase__ , lowerCAmelCase__ )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCamelCase = """\ Text data. Second line of data.""" lowerCamelCase = """file""" @pytest.fixture(scope="session" ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCAmelCase_ = bytes(lowerCAmelCase__ , "utf-8" ) with zstd.open(lowerCAmelCase__ , "wb" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture def a__ ( lowerCAmelCase__ ): with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase__ ) , "w" ) as f: f.write(lowerCAmelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCAmelCase_ = input_paths[compression_format] UpperCAmelCase_ = tmp_path / "cache" UpperCAmelCase_ = DownloadConfig(cache_dir=lowerCAmelCase__ , extract_compressed_file=lowerCAmelCase__ ) UpperCAmelCase_ = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) with open(lowerCAmelCase__ ) as f: UpperCAmelCase_ = f.read() with open(lowerCAmelCase__ ) as f: UpperCAmelCase_ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = "custom_cache" UpperCAmelCase_ = "custom_extracted_dir" UpperCAmelCase_ = tmp_path / "custom_extracted_path" if default_extracted: UpperCAmelCase_ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , lowerCAmelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) UpperCAmelCase_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase_ = xz_file UpperCAmelCase_ = ( DownloadConfig(extract_compressed_file=lowerCAmelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase__ ) ) UpperCAmelCase_ = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected def a__ ( lowerCAmelCase__ ): # absolute path UpperCAmelCase_ = str(Path(lowerCAmelCase__ ).resolve() ) assert cached_path(lowerCAmelCase__ ) == text_file # relative path UpperCAmelCase_ = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase__ ) == text_file def a__ ( lowerCAmelCase__ ): # absolute path UpperCAmelCase_ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) # relative path UpperCAmelCase_ = "./__missing_file__.txt" with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(lowerCAmelCase__ ) as f: UpperCAmelCase_ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def a__ ( ): with pytest.raises(lowerCAmelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase__ ): http_get("https://huggingface.co" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase__ ): ftp_get("ftp://huggingface.co" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase__ ): fsspec_get("s3://huggingface.co" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): fsspec_head("s3://huggingface.co" )
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''xlm-roberta-xl''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=250880 , _UpperCAmelCase : int=2560 , _UpperCAmelCase : Optional[Any]=36 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]=10240 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=514 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Tuple=1e-05 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]="absolute" , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Tuple , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
14
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : str=0 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Optional[Any]=None , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = decoder_seq_length # For common tests UpperCAmelCase_ = self.decoder_seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_attention_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_model UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = decoder_start_token_id UpperCAmelCase_ = use_cache UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = None UpperCAmelCase_ = decoder_seq_length UpperCAmelCase_ = 2 UpperCAmelCase_ = 1 def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_attention_mask: UpperCAmelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCAmelCase_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = True UpperCAmelCase_ = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() UpperCAmelCase_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCAmelCase_ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) UpperCAmelCase_ = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ = model(_UpperCAmelCase )["last_hidden_state"] UpperCAmelCase_ = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )["last_hidden_state"] # select random slice UpperCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCAmelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () UpperCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} UpperCamelCase = True UpperCamelCase = False def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' pass
14
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''text''': Value('''string''' )} ) UpperCamelCase = Features({} ) UpperCamelCase = "text" @property def lowercase__ ( self : Any ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def a__ ( lowerCAmelCase__ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase_ = k.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if k.startswith("encoder" ): UpperCAmelCase_ = k.replace(".attn" , ".self_attn" ) UpperCAmelCase_ = k.replace("norm1" , "self_attn_layer_norm" ) UpperCAmelCase_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): UpperCAmelCase_ = k.replace("norm1" , "self_attn_layer_norm" ) UpperCAmelCase_ = k.replace("norm2" , "encoder_attn_layer_norm" ) UpperCAmelCase_ = k.replace("norm3" , "final_layer_norm" ) return k def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: UpperCAmelCase_ = sd.pop(lowerCAmelCase__ ) UpperCAmelCase_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd UpperCAmelCase_ = v lowerCamelCase = ["""START"""] @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" ) UpperCAmelCase_ = model["model"] UpperCAmelCase_ = BlenderbotConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_ = BlenderbotForConditionalGeneration(lowerCAmelCase__ ) UpperCAmelCase_ = m.model.state_dict().keys() UpperCAmelCase_ = [] UpperCAmelCase_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase_ = rename_state_dict_key(lowerCAmelCase__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase__ ) m.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) m.half() m.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
14
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , _UpperCAmelCase : str = 1 , _UpperCAmelCase : List[Any] = 50 , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Optional[Any] = "pil" , _UpperCAmelCase : Optional[int] = True , **_UpperCAmelCase : Dict , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' UpperCAmelCase_ = self.unet.config.sample_size UpperCAmelCase_ = (batch_size, 3, img_size, img_size) UpperCAmelCase_ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) UpperCAmelCase_ = randn_tensor(A__ , generator=A__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper UpperCAmelCase_ = self.scheduler.schedule[t] UpperCAmelCase_ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat UpperCAmelCase_ , UpperCAmelCase_ = self.scheduler.add_noise_to_input(A__ , A__ , generator=A__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase_ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev UpperCAmelCase_ = self.scheduler.step(A__ , A__ , A__ , A__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase_ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample UpperCAmelCase_ = self.scheduler.step_correct( A__ , A__ , A__ , A__ , step_output.prev_sample , step_output["derivative"] , ) UpperCAmelCase_ = step_output.prev_sample UpperCAmelCase_ = (sample / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
0
"""simple docstring""" from math import pi def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
701
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
0
"""simple docstring""" import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowerCamelCase = getLogger(__name__) lowerCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 8 , lowerCAmelCase__ = DEFAULT_DEVICE , lowerCAmelCase__=False , lowerCAmelCase__="summarization" , lowerCAmelCase__=None , **lowerCAmelCase__ , ): UpperCAmelCase_ = Path(_SCREAMING_SNAKE_CASE ).open("w" , encoding="utf-8" ) UpperCAmelCase_ = str(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if fpaa: UpperCAmelCase_ = model.half() UpperCAmelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. UpperCAmelCase_ = time.time() # update config with task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if prefix is None: UpperCAmelCase_ = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ): UpperCAmelCase_ = [prefix + text for text in examples_chunk] UpperCAmelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt" , truncation=_SCREAMING_SNAKE_CASE , padding="longest" ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() UpperCAmelCase_ = int(time.time() - start_time ) # seconds UpperCAmelCase_ = len(_SCREAMING_SNAKE_CASE ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def a__ ( ): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def a__ ( lowerCAmelCase__=True ): UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("model_name" , type=_SCREAMING_SNAKE_CASE , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=_SCREAMING_SNAKE_CASE , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=_SCREAMING_SNAKE_CASE , help="where to save summaries" ) parser.add_argument("--reference_path" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=_SCREAMING_SNAKE_CASE , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=_SCREAMING_SNAKE_CASE , default=8 , required=_SCREAMING_SNAKE_CASE , help="batch size" ) parser.add_argument( "--n_obs" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=_SCREAMING_SNAKE_CASE , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args() UpperCAmelCase_ = parse_numeric_n_bool_cl_kwargs(_SCREAMING_SNAKE_CASE ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) UpperCAmelCase_ = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCAmelCase_ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) UpperCAmelCase_ = generate_summaries_or_translations( _SCREAMING_SNAKE_CASE , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_SCREAMING_SNAKE_CASE , ) if args.reference_path is None: return {} # Compute scores UpperCAmelCase_ = calculate_bleu if "translation" in args.task else calculate_rouge UpperCAmelCase_ = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCAmelCase_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_SCREAMING_SNAKE_CASE )] UpperCAmelCase_ = score_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) scores.update(_SCREAMING_SNAKE_CASE ) if args.dump_args: scores.update(_SCREAMING_SNAKE_CASE ) if args.info: UpperCAmelCase_ = args.info if verbose: print(_SCREAMING_SNAKE_CASE ) if args.score_path is not None: json.dump(_SCREAMING_SNAKE_CASE , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
702
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
0
"""simple docstring""" class lowercase__ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = graph self._normalize_graph(A_ , A_ ) UpperCAmelCase_ = len(A_ ) UpperCAmelCase_ = None def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' if sources is int: UpperCAmelCase_ = [sources] if sinks is int: UpperCAmelCase_ = [sinks] if len(A_ ) == 0 or len(A_ ) == 0: return UpperCAmelCase_ = sources[0] UpperCAmelCase_ = sinks[0] # make fake vertex if there are more # than one source or sink if len(A_ ) > 1 or len(A_ ) > 1: UpperCAmelCase_ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) UpperCAmelCase_ = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: UpperCAmelCase_ = max_input_flow UpperCAmelCase_ = 0 UpperCAmelCase_ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: UpperCAmelCase_ = max_input_flow UpperCAmelCase_ = size - 1 def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowercase__ ( self : Any , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = algorithm(self ) class lowercase__ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = flow_network UpperCAmelCase_ = flow_network.verticesCount UpperCAmelCase_ = flow_network.sourceIndex UpperCAmelCase_ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCAmelCase_ = flow_network.graph UpperCAmelCase_ = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' if not self.executed: self._algorithm() UpperCAmelCase_ = True def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' pass class lowercase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' super().__init__(A_ ) # use this to save your result UpperCAmelCase_ = -1 def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowercase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : int ) -> List[str]: '''simple docstring''' super().__init__(A_ ) UpperCAmelCase_ = [[0] * self.verticies_count for i in range(self.verticies_count )] UpperCAmelCase_ = [0] * self.verticies_count UpperCAmelCase_ = [0] * self.verticies_count def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCAmelCase_ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list UpperCAmelCase_ = 0 while i < len(A_ ): UpperCAmelCase_ = vertices_list[i] UpperCAmelCase_ = self.heights[vertex_index] self.process_vertex(A_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A_ ) ) UpperCAmelCase_ = 0 else: i += 1 UpperCAmelCase_ = sum(self.preflow[self.source_index] ) def lowercase__ ( self : str , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A_ , A_ ) self.relabel(A_ ) def lowercase__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowercase__ ( self : Any , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCAmelCase_ = self.heights[to_index] if min_height is not None: UpperCAmelCase_ = min_height + 1 if __name__ == "__main__": lowerCamelCase = [0] lowerCamelCase = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCamelCase = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCamelCase = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCamelCase = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str = None , _UpperCAmelCase : list = None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase_ = os.path.abspath("examples" ) for item in os.listdir(UpperCamelCase_ ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase_ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ) and ".py" in item_path: with self.subTest( tested_script=UpperCamelCase_ , feature_script=UpperCamelCase_ , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase_ = compare_against_test( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase_ = '\n'.join(UpperCamelCase_ ) if special_strings is not None: for string in special_strings: UpperCAmelCase_ = diff.replace(UpperCamelCase_ , "" ) self.assertEqual(UpperCamelCase_ , "" ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' self.one_complete_example("complete_nlp_example.py" , UpperCamelCase_ ) self.one_complete_example("complete_nlp_example.py" , UpperCamelCase_ ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase_ = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example("complete_cv_example.py" , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.one_complete_example("complete_cv_example.py" , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = False @classmethod def lowercase__ ( cls : Optional[int] ) -> Tuple: '''simple docstring''' super().setUpClass() UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowercase__ ( cls : List[Any] ) -> Any: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) self.assertNotIn("epoch 0:" , UpperCamelCase_ ) self.assertIn("epoch 1:" , UpperCamelCase_ ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) if torch.cuda.is_available(): UpperCAmelCase_ = torch.cuda.device_count() else: UpperCAmelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , UpperCamelCase_ ) self.assertIn("epoch 1:" , UpperCamelCase_ ) else: self.assertIn("epoch 0:" , UpperCamelCase_ ) self.assertIn("epoch 1:" , UpperCamelCase_ ) @slow def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) UpperCAmelCase_ = re.findall("({.+})" , UpperCamelCase_ ) UpperCAmelCase_ = [r for r in results if 'accuracy' in r][-1] UpperCAmelCase_ = ast.literal_eval(UpperCamelCase_ ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase_ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , "tracking" ) ) ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
704
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = ["model.decoder.embed_positions.weights"] def a__ ( lowerCAmelCase__ ): if "emb" in name: UpperCAmelCase_ = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase_ = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCAmelCase_ = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCAmelCase_ = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCAmelCase_ = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase_ = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase_ = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase_ = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase_ = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase_ = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = list(state_dict.keys() ) UpperCAmelCase_ = {} for key in keys: UpperCAmelCase_ = state_dict.pop(_A ) UpperCAmelCase_ = rename_keys(_A ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase_ = val[:hidden_size, :] UpperCAmelCase_ = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase_ = val else: UpperCAmelCase_ = val return state_dict, enc_dec_proj_state_dict def a__ ( lowerCAmelCase__ ): if checkpoint == "small": # default config values UpperCAmelCase_ = 1024 UpperCAmelCase_ = 24 UpperCAmelCase_ = 16 elif checkpoint == "medium": UpperCAmelCase_ = 1536 UpperCAmelCase_ = 48 UpperCAmelCase_ = 24 elif checkpoint == "large": UpperCAmelCase_ = 2048 UpperCAmelCase_ = 48 UpperCAmelCase_ = 32 else: raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) UpperCAmelCase_ = MusicgenDecoderConfig( hidden_size=_A , ffn_dim=hidden_size * 4 , num_hidden_layers=_A , num_attention_heads=_A , ) return config @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="cpu" ): UpperCAmelCase_ = MusicGen.get_pretrained(_A , device=_A ) UpperCAmelCase_ = decoder_config_from_checkpoint(_A ) UpperCAmelCase_ = fairseq_model.lm.state_dict() UpperCAmelCase_ = rename_state_dict( _A , hidden_size=decoder_config.hidden_size ) UpperCAmelCase_ = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase_ = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase_ = MusicgenForCausalLM(_A ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase_ = decoder.load_state_dict(_A , strict=_A ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_A ) if len(_A ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(_A ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model UpperCAmelCase_ = MusicgenForConditionalGeneration(text_encoder=_A , audio_encoder=_A , decoder=_A ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_A ) # check we can do a forward pass UpperCAmelCase_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase_ = model(input_ids=_A , decoder_input_ids=_A ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase_ = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCAmelCase_ = MusicgenProcessor(feature_extractor=_A , tokenizer=_A ) # set the appropriate bos/pad token ids UpperCAmelCase_ = 2048 UpperCAmelCase_ = 2048 # set other default generation config params UpperCAmelCase_ = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase_ = True UpperCAmelCase_ = 3.0 if pytorch_dump_folder is not None: Path(_A ).mkdir(exist_ok=_A ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(_A ) processor.push_to_hub(_A ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) lowerCamelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
705
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' UpperCamelCase = '''linear''' UpperCamelCase = '''cosine''' UpperCamelCase = '''cosine_with_restarts''' UpperCamelCase = '''polynomial''' UpperCamelCase = '''constant''' UpperCamelCase = '''constant_with_warmup''' UpperCamelCase = '''piecewise_constant''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = -1 ): return LambdaLR(lowerCamelCase_ , lambda lowerCAmelCase__ : 1 , last_epoch=lowerCamelCase_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1.0 , lowerCamelCase_ ) ) return 1.0 return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = -1 ): UpperCAmelCase_ = {} UpperCAmelCase_ = step_rules.split("," ) for rule_str in rule_list[:-1]: UpperCAmelCase_ = rule_str.split(":" ) UpperCAmelCase_ = int(lowerCamelCase_ ) UpperCAmelCase_ = float(lowerCamelCase_ ) UpperCAmelCase_ = value UpperCAmelCase_ = float(rule_list[-1] ) def create_rules_function(lowerCAmelCase__ , lowerCAmelCase__ ): def rule_func(lowerCAmelCase__ ) -> float: UpperCAmelCase_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase_ = create_rules_function(lowerCamelCase_ , lowerCamelCase_ ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , last_epoch=lowerCamelCase_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=-1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 0.5 , lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) UpperCAmelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase_ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = -1 ): def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) UpperCAmelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase_ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1e-7 , lowerCAmelCase__=1.0 , lowerCAmelCase__=-1 ): UpperCAmelCase_ = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(lowerCAmelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase_ ) / float(max(1 , lowerCamelCase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase_ = lr_init - lr_end UpperCAmelCase_ = num_training_steps - num_warmup_steps UpperCAmelCase_ = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = -1 , ): UpperCAmelCase_ = SchedulerType(lowerCamelCase_ ) UpperCAmelCase_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase_ , last_epoch=lowerCamelCase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase_ , step_rules=lowerCamelCase_ , last_epoch=lowerCamelCase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , num_cycles=lowerCamelCase_ , last_epoch=lowerCamelCase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , power=lowerCamelCase_ , last_epoch=lowerCamelCase_ , ) return schedule_func( lowerCamelCase_ , num_warmup_steps=lowerCamelCase_ , num_training_steps=lowerCamelCase_ , last_epoch=lowerCamelCase_ )
706
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow A = False class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : str , _UpperCAmelCase : Optional[Any]=32 ) -> List[str]: '''simple docstring''' set_seed(0 ) UpperCAmelCase_ = UNetaDModel(sample_size=_UpperCAmelCase , in_channels=3 , out_channels=3 ) UpperCAmelCase_ = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def lowercase__ ( self : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable UpperCAmelCase_ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=_UpperCAmelCase , ) UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=_UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) UpperCAmelCase_ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_UpperCAmelCase ) for _ in range(4 )] UpperCAmelCase_ = [torch.randn((4, 3, 32, 32) ).to(_UpperCAmelCase ) for _ in range(4 )] UpperCAmelCase_ = [torch.randint(0 , 1000 , (4,) ).long().to(_UpperCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler UpperCAmelCase_ = self.get_model_optimizer(resolution=32 ) model.train().to(_UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase_ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase_ = model(_UpperCAmelCase , timesteps[i] ).sample UpperCAmelCase_ = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM UpperCAmelCase_ = self.get_model_optimizer(resolution=32 ) model.train().to(_UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase_ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase_ = model(_UpperCAmelCase , timesteps[i] ).sample UpperCAmelCase_ = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) )
708
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = r"\w+[.]\d+" UpperCAmelCase_ = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: UpperCAmelCase_ = key.replace(__lowerCAmelCase , "_".join(pat.split("." ) ) ) return key def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=42 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) UpperCAmelCase_ = flatten_dict(__lowerCAmelCase ) UpperCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ = rename_key(__lowerCAmelCase ) UpperCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
709
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
0
"""simple docstring""" from __future__ import annotations class lowercase__ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(UpperCamelCase_ ) != 0: UpperCAmelCase_ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCamelCase_ ) != cols: raise error for value in row: if not isinstance(UpperCamelCase_ , (int, float) ): raise error UpperCAmelCase_ = rows else: UpperCAmelCase_ = [] def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.rows ) @property def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return len(self.rows[0] ) @property def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return (self.num_rows, self.num_columns) @property def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.order[0] == self.order[1] def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCamelCase_ ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return bool(self.determinant() ) def lowercase__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCamelCase_ ).determinant() def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> str: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(UpperCamelCase_ , UpperCamelCase_ ) return -1 * self.get_minor(UpperCamelCase_ , UpperCamelCase_ ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' return Matrix( [ [self.get_minor(UpperCamelCase_ , UpperCamelCase_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCamelCase_ ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[int] ) -> str: '''simple docstring''' return str(self.rows ) def __str__( self : Tuple ) -> Optional[int]: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(UpperCamelCase_ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] = None ) -> str: '''simple docstring''' UpperCAmelCase_ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise type_error for value in row: if not isinstance(UpperCamelCase_ , (int, float) ): raise type_error if len(UpperCamelCase_ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(UpperCamelCase_ ) else: UpperCAmelCase_ = self.rows[0:position] + [row] + self.rows[position:] def lowercase__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any = None ) -> str: '''simple docstring''' UpperCAmelCase_ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise type_error for value in column: if not isinstance(UpperCamelCase_ , (int, float) ): raise type_error if len(UpperCamelCase_ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: UpperCAmelCase_ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase_ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : List[str] , _UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): return NotImplemented return self.rows == other.rows def __ne__( self : Tuple , _UpperCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' return not self == other def __neg__( self : Optional[int] ) -> Dict: '''simple docstring''' return self * -1 def __add__( self : Tuple , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Dict , _UpperCAmelCase : Tuple ) -> List[str]: '''simple docstring''' if isinstance(UpperCamelCase_ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(UpperCamelCase_ , UpperCamelCase_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) UpperCAmelCase_ = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase__ ( cls : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="attention" ): UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): if split_mlp_wi: UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] UpperCAmelCase_ = (wi_a, wi_a) else: UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] UpperCAmelCase_ = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def a__ ( lowerCAmelCase__ , *, lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = traverse_util.flatten_dict(variables["target"] ) UpperCAmelCase_ = {"/".join(_lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase_ = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , _lowerCAmelCase ) UpperCAmelCase_ = collections.OrderedDict() # Shared embeddings. UpperCAmelCase_ = old["token_embedder/embedding"] # Encoder. for i in range(_lowerCAmelCase ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "pre_attention_layer_norm" ) UpperCAmelCase_ = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "attention" ) UpperCAmelCase_ = layer_norm UpperCAmelCase_ = k.T UpperCAmelCase_ = o.T UpperCAmelCase_ = q.T UpperCAmelCase_ = v.T # Block i, layer 1 (MLP). UpperCAmelCase_ = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "pre_mlp_layer_norm" ) UpperCAmelCase_ = tax_mlp_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , _lowerCAmelCase ) UpperCAmelCase_ = layer_norm if split_mlp_wi: UpperCAmelCase_ = wi[0].T UpperCAmelCase_ = wi[1].T else: UpperCAmelCase_ = wi.T UpperCAmelCase_ = wo.T UpperCAmelCase_ = old[ "encoder/relpos_bias/rel_embedding" ].T UpperCAmelCase_ = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(_lowerCAmelCase ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) UpperCAmelCase_ = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "self_attention" ) UpperCAmelCase_ = layer_norm UpperCAmelCase_ = k.T UpperCAmelCase_ = o.T UpperCAmelCase_ = q.T UpperCAmelCase_ = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase_ = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) UpperCAmelCase_ = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "encoder_decoder_attention" ) UpperCAmelCase_ = layer_norm UpperCAmelCase_ = k.T UpperCAmelCase_ = o.T UpperCAmelCase_ = q.T UpperCAmelCase_ = v.T # Block i, layer 2 (MLP). UpperCAmelCase_ = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_mlp_layer_norm" ) UpperCAmelCase_ = tax_mlp_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , _lowerCAmelCase ) UpperCAmelCase_ = layer_norm if split_mlp_wi: UpperCAmelCase_ = wi[0].T UpperCAmelCase_ = wi[1].T else: UpperCAmelCase_ = wi.T UpperCAmelCase_ = wo.T UpperCAmelCase_ = old["decoder/decoder_norm/scale"] UpperCAmelCase_ = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase_ = old["decoder/logits_dense/kernel"].T return new def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) UpperCAmelCase_ = state_dict["shared.weight"] return state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) UpperCAmelCase_ = convert_tax_to_pytorch(_lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=_lowerCAmelCase ) UpperCAmelCase_ = make_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = TaConfig.from_json_file(_lowerCAmelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase_ = TaEncoderModel(_lowerCAmelCase ) else: UpperCAmelCase_ = TaForConditionalGeneration(_lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowerCAmelCase ) print("Done" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
711
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
from ...configuration_utils import PretrainedConfig class lowercase__ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase = """bert-generation""" def __init__( self : str , _UpperCAmelCase : int=50358 , _UpperCAmelCase : Union[str, Any]=1024 , _UpperCAmelCase : Dict=24 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=4096 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : int=True , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache
712
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1000 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase_ = n - 1 UpperCAmelCase_ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase_ = 0 while count < prec: UpperCAmelCase_ = random.randint(2 , n - 1 ) UpperCAmelCase_ = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if b != 1: UpperCAmelCase_ = True for _ in range(__UpperCAmelCase ): if b == n - 1: UpperCAmelCase_ = False break UpperCAmelCase_ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
713
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' return 32 @property def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return 32 @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return self.time_input_dim @property def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> str: '''simple docstring''' return 100 @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase_ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase_ = DDIMScheduler(**_UpperCamelCase ) UpperCAmelCase_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=0 ) -> str: '''simple docstring''' UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create hint UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) if str(_UpperCamelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCamelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) UpperCAmelCase_ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = """cpu""" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_UpperCamelCase ) UpperCAmelCase_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ = init_image.resize((512, 512) ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCAmelCase_ = torch.from_numpy(np.array(_UpperCamelCase ) ).float() / 255.0 UpperCAmelCase_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase_ = """A robot, 4k photo""" UpperCAmelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) UpperCAmelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipe_prior( _UpperCamelCase , image=_UpperCamelCase , strength=0.85 , generator=_UpperCamelCase , negative_prompt="" , ).to_tuple() UpperCAmelCase_ = pipeline( image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , hint=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
714
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""ConvNextFeatureExtractor"""] lowerCamelCase = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
715
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( _A ): UpperCamelCase = '''encoder-decoder''' UpperCamelCase = True def __init__( self : Dict , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ = kwargs.pop("encoder" ) UpperCAmelCase_ = encoder_config.pop("model_type" ) UpperCAmelCase_ = kwargs.pop("decoder" ) UpperCAmelCase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase_ = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase_ = True @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : PretrainedConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : List[Any] ) -> PretrainedConfig: '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) UpperCAmelCase_ = True UpperCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCamelCase ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.encoder.to_dict() UpperCAmelCase_ = self.decoder.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
716
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCamelCase = get_logger(__name__) lowerCamelCase = Path(__file__).parent / "model_card_template.md" lowerCamelCase = uuida().hex lowerCamelCase = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def a__ ( lowerCAmelCase__ = None ) -> str: UpperCAmelCase_ = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(a_ , a_ ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(a_ , a_ ): ua += "; " + user_agent return ua def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> str: if token is None: UpperCAmelCase_ = HfFolder.get_token() if organization is None: UpperCAmelCase_ = whoami(a_ )['''name'''] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(a_ , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase_ = args.hub_token if hasattr(a_ , "hub_token" ) else None UpperCAmelCase_ = get_full_repo_name(a_ , token=a_ ) UpperCAmelCase_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=a_ , model_name=a_ , repo_name=a_ , dataset_name=args.dataset_name if hasattr(a_ , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(a_ , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(a_ , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(a_ , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(a_ , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(a_ , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(a_ , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(a_ , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(a_ , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(a_ , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(a_ , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase_ = os.path.join(args.output_dir , "README.md" ) model_card.save(a_ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None ) -> int: if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase_ = str(Path(a_ ).as_posix() ) UpperCAmelCase_ = re.search(r"snapshots/([^/]+)/" , a_ ) if search is None: return None UpperCAmelCase_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(a_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCamelCase = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowerCamelCase = os.path.join(hf_cache_home, """diffusers""") def a__ ( lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> None: if new_cache_dir is None: UpperCAmelCase_ = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase_ = old_diffusers_cache UpperCAmelCase_ = Path(a_ ).expanduser() UpperCAmelCase_ = Path(a_ ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase_ = new_cache_dir / old_blob_path.relative_to(a_ ) new_blob_path.parent.mkdir(parents=a_ , exist_ok=a_ ) os.replace(a_ , a_ ) try: os.symlink(a_ , a_ ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCamelCase = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowerCamelCase = 0 else: with open(cache_version_file) as f: try: lowerCamelCase = int(f.read()) except ValueError: lowerCamelCase = 0 if cache_version < 1: lowerCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowerCamelCase = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " """the directory exists and can be written to.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None ) -> str: if variant is not None: UpperCAmelCase_ = weights_name.split("." ) UpperCAmelCase_ = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase_ = '''.'''.join(a_ ) return weights_name def a__ ( lowerCAmelCase__ , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , ) -> List[str]: UpperCAmelCase_ = str(a_ ) if os.path.isfile(a_ ): return pretrained_model_name_or_path elif os.path.isdir(a_ ): if os.path.isfile(os.path.join(a_ , a_ ) ): # Load from a PyTorch checkpoint UpperCAmelCase_ = os.path.join(a_ , a_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(a_ , a_ , a_ ) ): UpperCAmelCase_ = os.path.join(a_ , a_ , a_ ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(a_ ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase_ = hf_hub_download( a_ , filename=_add_variant(a_ , a_ ) , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , a_ , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(a_ , a_ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(a_ , a_ )}' so that the correct variant file can be added.""" , a_ , ) try: # 2. Load model file as usual UpperCAmelCase_ = hf_hub_download( a_ , filename=a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , user_agent=a_ , subfolder=a_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'." ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ "\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. " f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {'''vocab_file''': '''spiece.model'''} lowerCamelCase = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowercase__ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int=False , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : List[Any]="<sep>" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : List[str]="<cls>" , _UpperCAmelCase : Optional[int]="<mask>" , _UpperCAmelCase : List[Any]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' UpperCAmelCase_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) UpperCAmelCase_ = jieba UpperCAmelCase_ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' return len(self.sp_model ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> int: '''simple docstring''' if self.remove_space: UpperCAmelCase_ = " ".join(inputs.strip().split() ) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize("NFKD" , __UpperCamelCase ) UpperCAmelCase_ = "".join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] ) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.preprocess_text(__UpperCamelCase ) UpperCAmelCase_ = self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) UpperCAmelCase_ = [] for piece in pieces: if len(__UpperCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCamelCase ) else: new_pieces.append(__UpperCamelCase ) return new_pieces def lowercase__ ( self : int , _UpperCAmelCase : str ) -> str: '''simple docstring''' return self.sp_model.PieceToId(__UpperCamelCase ) def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.sp_model.IdToPiece(__UpperCamelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def lowercase__ ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1, 1] return ([0] * len(__UpperCamelCase )) + [1, 1] def lowercase__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def lowercase__ ( self : Union[str, Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = super()._decode(*__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
718
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
0
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( lowerCAmelCase__ ): warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , lowerCAmelCase__ , ) if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): UpperCAmelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = image[0].size UpperCAmelCase_ , UpperCAmelCase_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] UpperCAmelCase_ = np.concatenate(lowerCAmelCase__ , axis=0 ) UpperCAmelCase_ = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 UpperCAmelCase_ = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ = 2.0 * image - 1.0 UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ = torch.cat(lowerCAmelCase__ , dim=0 ) return image def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , torch.Tensor ): return mask elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): UpperCAmelCase_ = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase_ , UpperCAmelCase_ = mask[0].size UpperCAmelCase_ , UpperCAmelCase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase_ = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] UpperCAmelCase_ = np.concatenate(lowerCAmelCase__ , axis=0 ) UpperCAmelCase_ = mask.astype(np.floataa ) / 255.0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase_ = torch.cat(lowerCAmelCase__ , dim=0 ) return mask class lowercase__ ( _a ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple = 250 , _UpperCAmelCase : Dict = 0.0 , _UpperCAmelCase : List[str] = 10 , _UpperCAmelCase : Optional[int] = 10 , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Union[str, Any] = "pil" , _UpperCAmelCase : List[str] = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ = image UpperCAmelCase_ = _preprocess_image(snake_case_ ) UpperCAmelCase_ = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase_ = _preprocess_mask(snake_case_ ) UpperCAmelCase_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case_ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_ = original_image.shape UpperCAmelCase_ = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case_ , snake_case_ , snake_case_ , self.device ) UpperCAmelCase_ = eta UpperCAmelCase_ = self.scheduler.timesteps[0] + 1 UpperCAmelCase_ = generator[0] if isinstance(snake_case_ , snake_case_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase_ = self.unet(snake_case_ , snake_case_ ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase_ = self.scheduler.undo_step(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = t UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
719
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 1.5 UpperCAmelCase_ = int(factor * num_class_images ) UpperCAmelCase_ = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=__UpperCamelCase ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase_ = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1e4: break else: UpperCAmelCase_ = int(factor * num_images ) UpperCAmelCase_ = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = tqdm(desc="downloading real regularization images" , total=__UpperCamelCase ) with open(f"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(f"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( f"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: UpperCAmelCase_ = class_images[count] count += 1 try: UpperCAmelCase_ = requests.get(images["url"] ) if img.status_code == 200: UpperCAmelCase_ = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser("" , add_help=__UpperCamelCase ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("--class_data_dir" , help="path to save images" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0