code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __a ( _snake_case ): def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = 5 # Realm tok __SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""realm_tokenizer""" ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) __SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""realm_block_records""" ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""realm_tokenizer""" ) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] ,dtype=lowerCamelCase ,) return block_records def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RealmRetriever( block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,) return retriever def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = self.get_dummy_retriever() __SCREAMING_SNAKE_CASE = retriever.tokenizer __SCREAMING_SNAKE_CASE = np.array([0, 3] ,dtype="""long""" ) __SCREAMING_SNAKE_CASE = tokenizer(["""Test question"""] ).input_ids __SCREAMING_SNAKE_CASE = tokenizer( ["""the fourth"""] ,add_special_tokens=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,).input_ids __SCREAMING_SNAKE_CASE = config.reader_seq_len __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever( lowerCamelCase ,lowerCamelCase ,answer_ids=lowerCamelCase ,max_length=lowerCamelCase ,return_tensors="""np""" ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(concat_inputs.input_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] ,) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] ,) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = self.get_dummy_retriever() __SCREAMING_SNAKE_CASE = retriever.tokenizer __SCREAMING_SNAKE_CASE = np.array([0, 3, 5] ,dtype="""long""" ) __SCREAMING_SNAKE_CASE = tokenizer(["""Test question"""] ).input_ids __SCREAMING_SNAKE_CASE = tokenizer( ["""the fourth""", """longer longer"""] ,add_special_tokens=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,).input_ids __SCREAMING_SNAKE_CASE = config.reader_seq_len __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever( lowerCamelCase ,lowerCamelCase ,answer_ids=lowerCamelCase ,max_length=lowerCamelCase ,return_tensors="""np""" ) self.assertEqual([False, True, True] ,lowerCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,lowerCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname ,"""realm_block_records""" ) ) # Test local path __SCREAMING_SNAKE_CASE = retriever.from_pretrained(os.path.join(self.tmpdirname ,"""realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] ,b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __SCREAMING_SNAKE_CASE = os.path.join( os.path.join(self.tmpdirname ,"""realm_block_records""" ) ,_REALM_BLOCK_RECORDS_FILENAME ) __SCREAMING_SNAKE_CASE = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] ,b"""This is the first record""" )
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __magic_name__ ( ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase ) return parser.parse_args() def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. __SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __SCREAMING_SNAKE_CASE = script_fpath.stem __SCREAMING_SNAKE_CASE = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv __SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=__UpperCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=__UpperCAmelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=__UpperCAmelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=__UpperCAmelCase , default=0 , help="""cuda_id.""" , ) __SCREAMING_SNAKE_CASE = parser.parse_args() return args def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if not len(__UpperCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = imgs[0].size __SCREAMING_SNAKE_CASE = Image.new("""RGB""" , size=(cols * w, rows * h) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.size for i, img in enumerate(__UpperCAmelCase ): grid.paste(__UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase="robotic cat with wings" , __UpperCAmelCase=7.5 , __UpperCAmelCase=50 , __UpperCAmelCase=1 , __UpperCAmelCase=42 , ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.Generator(pipeline.device ).manual_seed(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = pipeline( __UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , ).images __SCREAMING_SNAKE_CASE = int(math.sqrt(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = image_grid(__UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images a = parse_args() # Load models and create wrapper for stable diffusion a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") a = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) a = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): a = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: a = unet.to(torch.device("cuda", args.cuda_id)) a = pipeline.to(unet.device) a , a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) a = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = f"""Input value of [number={number}] must be an integer""" raise TypeError(__UpperCAmelCase ) if number < 0: return False __SCREAMING_SNAKE_CASE = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' import argparse a = "docs/source/_static/js/custom.js" def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' with open(__UpperCAmelCase , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 __SCREAMING_SNAKE_CASE = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") a = parser.parse_args() update_custom_js(args.version)
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a = 250004 a = 250020 @require_sentencepiece @require_tokenizers class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = MBartaaTokenizer __UpperCamelCase : Optional[Any] = MBartaaTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Dict = True def UpperCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = MBartaaTokenizer(lowerCamelCase ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ,keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """<s>""" __SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) ,lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<s>""" ) self.assertEqual(vocab_keys[1] ,"""<pad>""" ) self.assertEqual(vocab_keys[-1] ,"""<mask>""" ) self.assertEqual(len(lowerCamelCase ) ,1054 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1054 ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MBartaaTokenizer(lowerCamelCase ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ,keep_accents=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] ,) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] ,) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {"""input_ids""": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase ,model_name="""facebook/mbart-large-50""" ,revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" ,) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase ,lowerCamelCase ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ,legacy_format=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase ,lowerCamelCase ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ,legacy_format=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): __UpperCamelCase : str = 'facebook/mbart-large-50-one-to-many-mmt' __UpperCamelCase : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __UpperCamelCase : Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __UpperCamelCase : Tuple = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def UpperCAmelCase__ ( cls : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ) __SCREAMING_SNAKE_CASE = 1 return cls def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] ,25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] ,25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] ,25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] ,25_0038 ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertIn(lowerCamelCase ,self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,max_length=lowerCamelCase ,truncation=lowerCamelCase ).input_ids[0] self.assertEqual(ids[0] ,lowerCamelCase ) self.assertEqual(ids[-1] ,2 ) self.assertEqual(len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[25_0053, 25_0001] ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained(lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase ,return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) __SCREAMING_SNAKE_CASE = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowerCamelCase ) self.assertEqual(2 ,batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=3 ,return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = self.tokenizer( text_target=self.tgt_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=10 ,return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = targets["""input_ids"""] __SCREAMING_SNAKE_CASE = shift_tokens_right(lowerCamelCase ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowerCamelCase ) ,{ # en_XX, A, test, EOS """input_ids""": [[25_0004, 62, 3034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_0001, } ,)
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
from __future__ import annotations from random import random from typing import Generic, TypeVar a = TypeVar("KT") a = TypeVar("VT") class __a ( Generic[KT, VT] ): def __init__( self : Any ,lowerCamelCase : KT | str = "root" ,lowerCamelCase : VT | None = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = key __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = [] def __repr__( self : int ): '''simple docstring''' return f"""Node({self.key}: {self.value})""" @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return len(self.forward ) class __a ( Generic[KT, VT] ): def __init__( self : int ,lowerCamelCase : float = 0.5 ,lowerCamelCase : int = 16 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Node[KT, VT]() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = p __SCREAMING_SNAKE_CASE = max_level def __str__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(self ) if len(lowerCamelCase ) == 0: return f"""SkipList(level={self.level})""" __SCREAMING_SNAKE_CASE = max((len(str(lowerCamelCase ) ) for item in items) ,default=4 ) __SCREAMING_SNAKE_CASE = max(lowerCamelCase ,4 ) + 4 __SCREAMING_SNAKE_CASE = self.head __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(lowerCamelCase ,"""-""" ) + """* """ * len(lowerCamelCase ) ) lines.append(""" """ * label_size + """| """ * len(lowerCamelCase ) ) while len(node.forward ) != 0: __SCREAMING_SNAKE_CASE = node.forward[0] lines.append( f"""[{node.key}]""".ljust(lowerCamelCase ,"""-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = node.forward lines.append("""None""".ljust(lowerCamelCase ) + """* """ * len(lowerCamelCase ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(lowerCamelCase ) def __iter__( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.head while len(node.forward ) != 0: yield node.forward[0].key __SCREAMING_SNAKE_CASE = node.forward[0] def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __SCREAMING_SNAKE_CASE = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : KT ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._locate_node(lowerCamelCase ) if node is not None: for i, update_node in enumerate(lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __SCREAMING_SNAKE_CASE = node.forward[i] else: __SCREAMING_SNAKE_CASE = update_node.forward[:i] def UpperCAmelCase__ ( self : Any ,lowerCamelCase : KT ,lowerCamelCase : VT ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._locate_node(lowerCamelCase ) if node is not None: __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 ,lowerCamelCase ): update_vector.append(self.head ) __SCREAMING_SNAKE_CASE = level __SCREAMING_SNAKE_CASE = Node(lowerCamelCase ,lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = new_node def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : VT ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._locate_node(lowerCamelCase ) if node is not None: return node.value return None def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) __SCREAMING_SNAKE_CASE = skip_list.head __SCREAMING_SNAKE_CASE = {} while node.level != 0: __SCREAMING_SNAKE_CASE = node.forward[0] __SCREAMING_SNAKE_CASE = node.value assert len(__UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __magic_name__ ( ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) __SCREAMING_SNAKE_CASE = skip_list.head __SCREAMING_SNAKE_CASE = {} while node.level != 0: __SCREAMING_SNAKE_CASE = node.forward[0] __SCREAMING_SNAKE_CASE = node.value if len(__UpperCAmelCase ) != 4: print() assert len(__UpperCAmelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __magic_name__ ( ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() assert skip_list.find("""Some key""" ) is None def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def __magic_name__ ( ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def __magic_name__ ( ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(__UpperCAmelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(__UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __magic_name__ ( ) -> Any: '''simple docstring''' def is_sorted(__UpperCAmelCase ): return all(next_item >= item for item, next_item in zip(__UpperCAmelCase , lst[1:] ) ) __SCREAMING_SNAKE_CASE = SkipList() for i in range(10 ): skip_list.insert(__UpperCAmelCase , __UpperCAmelCase ) assert is_sorted(list(__UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__UpperCAmelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(__UpperCAmelCase ) ) def __magic_name__ ( ) -> Tuple: '''simple docstring''' for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' _validate_point(__UpperCAmelCase ) _validate_point(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) def __magic_name__ ( __UpperCAmelCase ) -> None: '''simple docstring''' if point: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for item in point: if not isinstance(__UpperCAmelCase , (int, float) ): __SCREAMING_SNAKE_CASE = ( """Expected a list of numbers as input, found """ f"""{type(__UpperCAmelCase ).__name__}""" ) raise TypeError(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = f"""Expected a list of numbers as input, found {type(__UpperCAmelCase ).__name__}""" raise TypeError(__UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' _validate_point(__UpperCAmelCase ) _validate_point(__UpperCAmelCase ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a ( _snake_case ): @slow @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = bertabert.config.encoder.vocab_size __SCREAMING_SNAKE_CASE : List[str] = tokenizer.sep_token_id __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.cls_token_id __SCREAMING_SNAKE_CASE : Any = 128 __SCREAMING_SNAKE_CASE : Dict = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) __SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) __SCREAMING_SNAKE_CASE : Dict = train_dataset.select(range(32 ) ) __SCREAMING_SNAKE_CASE : Tuple = val_dataset.select(range(16 ) ) __SCREAMING_SNAKE_CASE : int = 4 def _map_to_encoder_decoder_inputs(lowerCamelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=lowerCamelCase ,max_length=512 ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=lowerCamelCase ,max_length=128 ) __SCREAMING_SNAKE_CASE : Dict = inputs.input_ids __SCREAMING_SNAKE_CASE : Dict = inputs.attention_mask __SCREAMING_SNAKE_CASE : List[Any] = outputs.input_ids __SCREAMING_SNAKE_CASE : List[Any] = outputs.input_ids.copy() __SCREAMING_SNAKE_CASE : Optional[int] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __SCREAMING_SNAKE_CASE : Tuple = outputs.attention_mask assert all(len(lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCamelCase : Tuple ): __SCREAMING_SNAKE_CASE : Union[str, Any] = pred.label_ids __SCREAMING_SNAKE_CASE : List[Any] = pred.predictions # all unnecessary tokens are removed __SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCamelCase ) )] ) / len(lowerCamelCase ) return {"accuracy": accuracy} # map train dataset __SCREAMING_SNAKE_CASE : Any = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=lowerCamelCase ,batch_size=lowerCamelCase ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset __SCREAMING_SNAKE_CASE : int = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=lowerCamelCase ,batch_size=lowerCamelCase ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) __SCREAMING_SNAKE_CASE : str = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Union[str, Any] = SeqaSeqTrainingArguments( output_dir=lowerCamelCase ,per_device_train_batch_size=lowerCamelCase ,per_device_eval_batch_size=lowerCamelCase ,predict_with_generate=lowerCamelCase ,evaluation_strategy="""steps""" ,do_train=lowerCamelCase ,do_eval=lowerCamelCase ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer __SCREAMING_SNAKE_CASE : Optional[int] = SeqaSeqTrainer( model=lowerCamelCase ,args=lowerCamelCase ,compute_metrics=_compute_metrics ,train_dataset=lowerCamelCase ,eval_dataset=lowerCamelCase ,tokenizer=lowerCamelCase ,) # start training trainer.train()
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=7 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = None if token is not None: __SCREAMING_SNAKE_CASE = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) __SCREAMING_SNAKE_CASE = """636036""" __SCREAMING_SNAKE_CASE = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" __SCREAMING_SNAKE_CASE = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() return result["workflow_runs"] def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_daily_ci_runs(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __SCREAMING_SNAKE_CASE = workflow_run["""id"""] break return workflow_run_id def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_last_daily_ci_runs(__UpperCAmelCase ) if workflow_run_id is not None: __SCREAMING_SNAKE_CASE = get_artifacts_links(worflow_run_id=__UpperCAmelCase , token=__UpperCAmelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __SCREAMING_SNAKE_CASE = artifacts_links[artifact_name] download_artifact( artifact_name=__UpperCAmelCase , artifact_url=__UpperCAmelCase , output_dir=__UpperCAmelCase , token=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' get_last_daily_ci_artifacts(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = {} for artifact_name in artifact_names: __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , f"""{artifact_name}.zip""" ) if os.path.isfile(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file with z.open(__UpperCAmelCase ) as f: __SCREAMING_SNAKE_CASE = f.read().decode("""UTF-8""" ) return results
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import sys from pathlib import Path a = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) a = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} a = "zero2" a = "zero3" a = [ZEROa, ZEROa] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = parameterized.to_safe_name("""_""".join(str(__UpperCAmelCase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test a = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __a ( _snake_case ): @parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ): '''simple docstring''' self.run_and_check( stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ): '''simple docstring''' self.run_and_check( stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,) @parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' self.run_and_check( stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' self.run_and_check( stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : int = 10 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = models[model] __SCREAMING_SNAKE_CASE = self.run_trainer( stage=lowerCamelCase ,model_name=lowerCamelCase ,eval_steps=lowerCamelCase ,num_train_epochs=1 ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,) self.do_checks(lowerCamelCase ) return output_dir def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : int = 10 ,lowerCamelCase : int = 1 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir("""./xxx""" ,after=lowerCamelCase ) __SCREAMING_SNAKE_CASE = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(lowerCamelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __SCREAMING_SNAKE_CASE = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __SCREAMING_SNAKE_CASE = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __SCREAMING_SNAKE_CASE = self.get_launcher(lowerCamelCase ) __SCREAMING_SNAKE_CASE = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase ,env=self.get_env() ) return output_dir def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any]=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = min(2 ,get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' import math from datetime import datetime, timedelta def __magic_name__ ( __UpperCAmelCase ) -> datetime: '''simple docstring''' __SCREAMING_SNAKE_CASE = year % 19 __SCREAMING_SNAKE_CASE = year % 4 __SCREAMING_SNAKE_CASE = year % 7 __SCREAMING_SNAKE_CASE = math.floor(year / 100 ) __SCREAMING_SNAKE_CASE = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __SCREAMING_SNAKE_CASE = leap_day_inhibits / 4 __SCREAMING_SNAKE_CASE = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __SCREAMING_SNAKE_CASE = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __SCREAMING_SNAKE_CASE = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __SCREAMING_SNAKE_CASE = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__UpperCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__UpperCAmelCase , 4 , 18 ) else: return datetime(__UpperCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): a = "will be" if year > datetime.now().year else "was" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> None: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __UpperCAmelCase , __UpperCAmelCase , ) def __magic_name__ ( __UpperCAmelCase ) -> None: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] depth_first_search([] , [] , [] , __UpperCAmelCase , __UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(__UpperCAmelCase ) print("""""" ) print(len(__UpperCAmelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=5 ) -> int: '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 __SCREAMING_SNAKE_CASE = torch.tensor(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ).unsqueeze(0 ) # Batch size 1 __SCREAMING_SNAKE_CASE = model(__UpperCAmelCase )[0] # The last hidden-state is the first element of the output tuple __SCREAMING_SNAKE_CASE = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __SCREAMING_SNAKE_CASE = logits[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = prob.topk(k=__UpperCAmelCase , dim=0 ) __SCREAMING_SNAKE_CASE = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCAmelCase ) )] ) __SCREAMING_SNAKE_CASE = tokenizer.mask_token __SCREAMING_SNAKE_CASE = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): __SCREAMING_SNAKE_CASE = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(__UpperCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(__UpperCAmelCase ) , __UpperCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCAmelCase , __UpperCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs a = CamembertTokenizer.from_pretrained("camembert-base") a = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() a = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' from collections.abc import Sequence def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 __SCREAMING_SNAKE_CASE = 0 if allow_empty_subarrays else float("""-inf""" ) __SCREAMING_SNAKE_CASE = 0.0 for num in arr: __SCREAMING_SNAKE_CASE = max(0 if allow_empty_subarrays else num , curr_sum + num ) __SCREAMING_SNAKE_CASE = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __SCREAMING_SNAKE_CASE = False if num < 0: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = -num __SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__UpperCAmelCase ) for e in binary ) return "0b" + "".join(str(__UpperCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES else: __SCREAMING_SNAKE_CASE = {tokenizer_name: getattr(__UpperCAmelCase , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES[tokenizer_name] __SCREAMING_SNAKE_CASE = True if checkpoint_name is None: __SCREAMING_SNAKE_CASE = list(tokenizer_class.max_model_input_sizes.keys() ) else: __SCREAMING_SNAKE_CASE = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(__UpperCAmelCase , force_download=__UpperCAmelCase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = checkpoint.split("""/""" ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) elif add_prefix: __SCREAMING_SNAKE_CASE = checkpoint __SCREAMING_SNAKE_CASE = dump_path else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __SCREAMING_SNAKE_CASE = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __SCREAMING_SNAKE_CASE = file_path.split(__UpperCAmelCase )[-1][0] if next_char == "/": __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __SCREAMING_SNAKE_CASE = tokenizer.save_pretrained( __UpperCAmelCase , legacy_format=__UpperCAmelCase , filename_prefix=__UpperCAmelCase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__UpperCAmelCase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) a = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = KandinskyVaaInpaintPipeline __UpperCamelCase : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] __UpperCamelCase : Any = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] __UpperCamelCase : List[str] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __UpperCamelCase : Optional[int] = False @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCamelCase ) return model @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00_085 ,beta_end=0.012 ,clip_sample=lowerCamelCase ,set_alpha_to_one=lowerCamelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Tuple=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCamelCase ) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 ,2 ,3 ,1 )[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask __SCREAMING_SNAKE_CASE = np.ones((64, 64) ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = 0 if str(lowerCamelCase ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCamelCase ) ,return_dict=lowerCamelCase ,)[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __SCREAMING_SNAKE_CASE = np.ones((768, 768) ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = """a hat""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" ,torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCamelCase ) pipeline.set_progress_bar_config(disable=lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pipe_prior( lowerCamelCase ,generator=lowerCamelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCamelCase ,mask_image=lowerCamelCase ,image_embeds=lowerCamelCase ,negative_image_embeds=lowerCamelCase ,generator=lowerCamelCase ,num_inference_steps=100 ,height=768 ,width=768 ,output_type="""np""" ,) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase ,lowerCamelCase )
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __a ( _snake_case ): '''simple docstring''' __UpperCamelCase : str = 'vit' def __init__( self : Dict ,lowerCamelCase : Tuple=768 ,lowerCamelCase : Any=12 ,lowerCamelCase : Optional[int]=12 ,lowerCamelCase : List[str]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : int=0.0 ,lowerCamelCase : Optional[int]=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : Optional[Any]=224 ,lowerCamelCase : int=16 ,lowerCamelCase : Optional[int]=3 ,lowerCamelCase : Tuple=True ,lowerCamelCase : List[Any]=16 ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = encoder_stride class __a ( _snake_case ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1E-4
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( _snake_case ): __UpperCamelCase : torch.FloatTensor __UpperCamelCase : Optional[torch.FloatTensor] = None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> str: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __SCREAMING_SNAKE_CASE = [] for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __a ( _snake_case, _snake_case ): @register_to_config def __init__( self : Optional[int] ,lowerCamelCase : int = 1000 ,lowerCamelCase : str = "fixed_small_log" ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[float] = 1.0 ,lowerCamelCase : str = "epsilon" ,lowerCamelCase : str = "squaredcos_cap_v2" ,): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase ) __SCREAMING_SNAKE_CASE = 1.0 - self.betas __SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas ,dim=0 ) __SCREAMING_SNAKE_CASE = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE = 1.0 # setable values __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.from_numpy(np.arange(0 ,lowerCamelCase )[::-1].copy() ) __SCREAMING_SNAKE_CASE = variance_type def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Optional[int] = None ): '''simple docstring''' return sample def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : int ,lowerCamelCase : Union[str, torch.device] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = num_inference_steps __SCREAMING_SNAKE_CASE = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __SCREAMING_SNAKE_CASE = (np.arange(0 ,lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Any ,lowerCamelCase : List[str]=None ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : Any=None ): '''simple docstring''' if prev_timestep is None: __SCREAMING_SNAKE_CASE = t - 1 __SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __SCREAMING_SNAKE_CASE = self.betas[t] else: __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __SCREAMING_SNAKE_CASE = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __SCREAMING_SNAKE_CASE = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __SCREAMING_SNAKE_CASE = torch.log(torch.clamp(lowerCamelCase ,min=1E-2_0 ) ) __SCREAMING_SNAKE_CASE = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __SCREAMING_SNAKE_CASE = variance.log() __SCREAMING_SNAKE_CASE = beta.log() __SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2 __SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : int ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : List[str]=None ,lowerCamelCase : bool = True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(lowerCamelCase ,sample.shape[1] ,dim=1 ) else: __SCREAMING_SNAKE_CASE = None # 1. compute alphas, betas if prev_timestep is None: __SCREAMING_SNAKE_CASE = t - 1 __SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __SCREAMING_SNAKE_CASE = self.betas[t] __SCREAMING_SNAKE_CASE = self.alphas[t] else: __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev __SCREAMING_SNAKE_CASE = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE = torch.clamp( lowerCamelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __SCREAMING_SNAKE_CASE = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __SCREAMING_SNAKE_CASE = 0 if t > 0: __SCREAMING_SNAKE_CASE = randn_tensor( model_output.shape ,dtype=model_output.dtype ,generator=lowerCamelCase ,device=model_output.device ) __SCREAMING_SNAKE_CASE = self._get_variance( lowerCamelCase ,predicted_variance=lowerCamelCase ,prev_timestep=lowerCamelCase ,) if self.variance_type == "fixed_small_log": __SCREAMING_SNAKE_CASE = variance elif self.variance_type == "learned_range": __SCREAMING_SNAKE_CASE = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""" ) __SCREAMING_SNAKE_CASE = variance * variance_noise __SCREAMING_SNAKE_CASE = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase ,pred_original_sample=lowerCamelCase ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.IntTensor ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype ) __SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE = alphas_cumprod[timesteps] ** 0.5 __SCREAMING_SNAKE_CASE = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sqrt_alpha_prod.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = (1 - alphas_cumprod[timesteps]) ** 0.5 __SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Union[str, Any] = FunnelTokenizer __UpperCamelCase : Dict = FunnelTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = True def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase__ ( self : List[Any] ,**lowerCamelCase : str ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ,**lowerCamelCase : Union[str, Any] ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" __SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) ,[7, 4, 5, 10, 8, 9] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: __SCREAMING_SNAKE_CASE = tokenizer("""UNwant\u00E9d,running""" ) __SCREAMING_SNAKE_CASE = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] ,[2] + [0] * sentence_len ) __SCREAMING_SNAKE_CASE = tokenizer("""UNwant\u00E9d,running""" ,"""UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] ,[2] + [0] * sentence_len + [1] * sentence_len )
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' return "".join(chr(ord(__UpperCAmelCase ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __a ( unittest.TestCase ): def __init__( self : str ,lowerCamelCase : List[str] ,lowerCamelCase : str=7 ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : Tuple=30 ,lowerCamelCase : int=400 ,lowerCamelCase : Union[str, Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : str=True ,lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] ,lowerCamelCase : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Any=1 / 255 ,lowerCamelCase : Any=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_pad def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ,lowerCamelCase : Tuple=False ): '''simple docstring''' if not batched: __SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(lowerCamelCase ,Image.Image ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: __SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] __SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: __SCREAMING_SNAKE_CASE = [] for image in image_inputs: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[0] )[0] __SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Union[str, Any] = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_rescale""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_pad""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase ) __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f: __SCREAMING_SNAKE_CASE = json.loads(f.read() ) __SCREAMING_SNAKE_CASE = {"""image_id""": 3_9769, """annotations""": target} # encode them __SCREAMING_SNAKE_CASE = DetaImageProcessor() __SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,return_tensors="""pt""" ) # verify pixel values __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) ) # verify area __SCREAMING_SNAKE_CASE = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) ) # verify boxes __SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) ) # verify is_crowd __SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) ) # verify class_labels __SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) ) # verify orig_size __SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) ) # verify size __SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f: __SCREAMING_SNAKE_CASE = json.loads(f.read() ) __SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __SCREAMING_SNAKE_CASE = DetaImageProcessor(format="""coco_panoptic""" ) __SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,masks_path=lowerCamelCase ,return_tensors="""pt""" ) # verify pixel values __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) ) # verify area __SCREAMING_SNAKE_CASE = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) ) # verify boxes __SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) ) # verify is_crowd __SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) ) # verify class_labels __SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) ) # verify masks __SCREAMING_SNAKE_CASE = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,lowerCamelCase ) # verify orig_size __SCREAMING_SNAKE_CASE = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) ) # verify size __SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) )
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = torch.device("cpu") def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = dct.pop(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = val def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for k in state_dict.keys(): __SCREAMING_SNAKE_CASE = k if ".pwconv" in k: __SCREAMING_SNAKE_CASE = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __SCREAMING_SNAKE_CASE = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __SCREAMING_SNAKE_CASE = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __SCREAMING_SNAKE_CASE = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __SCREAMING_SNAKE_CASE = k_new.split(""".""" ) if ls[2].isdigit(): __SCREAMING_SNAKE_CASE = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __SCREAMING_SNAKE_CASE = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __SCREAMING_SNAKE_CASE = 1000 __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __SCREAMING_SNAKE_CASE = [3, 3, 6, 4] __SCREAMING_SNAKE_CASE = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __SCREAMING_SNAKE_CASE = [3, 3, 9, 6] __SCREAMING_SNAKE_CASE = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __SCREAMING_SNAKE_CASE = [4, 3, 10, 5] __SCREAMING_SNAKE_CASE = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __SCREAMING_SNAKE_CASE = [4, 4, 12, 6] __SCREAMING_SNAKE_CASE = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location="""cpu""" , check_hash=__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = torch.load(__UpperCAmelCase , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = checkpoint __SCREAMING_SNAKE_CASE = create_rename_keys(__UpperCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model __SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__UpperCAmelCase ).eval() hf_model.load_state_dict(__UpperCAmelCase ) # prepare test inputs __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __SCREAMING_SNAKE_CASE = processor(images=__UpperCAmelCase , return_tensors="""pt""" ) # compare outputs from both models __SCREAMING_SNAKE_CASE = get_expected_output(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __UpperCAmelCase , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") a = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
from decimal import Decimal, getcontext from math import ceil, factorial def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __SCREAMING_SNAKE_CASE = precision __SCREAMING_SNAKE_CASE = ceil(precision / 14 ) __SCREAMING_SNAKE_CASE = 426880 * Decimal(10005 ).sqrt() __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 13591409 __SCREAMING_SNAKE_CASE = Decimal(__UpperCAmelCase ) for k in range(1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCAmelCase ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = 1 __SCREAMING_SNAKE_CASE : Tuple = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Dict = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE : str = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a = TaTokenizerFast a = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a = (3, 9, -11, 0, 7, 5, 1, -1) a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __a : __UpperCamelCase : int __UpperCamelCase : Node | None class __a : def __init__( self : Optional[Any] ,lowerCamelCase : Iterable[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None for i in sorted(lowerCamelCase ,reverse=lowerCamelCase ): __SCREAMING_SNAKE_CASE = Node(lowerCamelCase ,self.head ) def __iter__( self : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.head while node: yield node.data __SCREAMING_SNAKE_CASE = node.next_node def __len__( self : Optional[int] ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self : List[Any] ): '''simple docstring''' return " -> ".join([str(lowerCamelCase ) for node in self] ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(__UpperCAmelCase ) + list(__UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __a ( _snake_case ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = 8 # DPR tok __SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) __SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok __SCREAMING_SNAKE_CASE = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __SCREAMING_SNAKE_CASE = dict(zip(lowerCamelCase ,range(len(lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase ) __SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_dataset() __SCREAMING_SNAKE_CASE = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : bool ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_dataset() __SCREAMING_SNAKE_CASE = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""custom""" ,) if from_disk: __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""dataset""" ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname ,"""index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname ,"""dataset""" ) ) del dataset __SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: __SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,lowerCamelCase ) ,) return retriever def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" ,index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] ,open(index_file_name + """.index_meta.dpr""" ,"""wb""" ) ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""psgs_w100.tsv.pkl""" ) __SCREAMING_SNAKE_CASE = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(lowerCamelCase ,open(lowerCamelCase ,"""wb""" ) ) __SCREAMING_SNAKE_CASE = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""legacy""" ,index_path=self.tmpdirname ,) __SCREAMING_SNAKE_CASE = RagRetriever( lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever() __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCamelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: __SCREAMING_SNAKE_CASE = self.get_dummy_dataset() retriever.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCamelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCamelCase ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 ) self.assertTrue(out is not None ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_legacy_index_retriever() __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) ,lowerCamelCase ) self.assertEqual(doc_dicts[0]["""text"""][0] ,"""bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] ,"""foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self : int ): '''simple docstring''' import torch __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever() __SCREAMING_SNAKE_CASE = [[5, 7], [10, 11]] __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever(lowerCamelCase ,lowerCamelCase ,prefix=retriever.config.generator.prefix ,n_docs=lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,np.ndarray ) __SCREAMING_SNAKE_CASE = retriever( lowerCamelCase ,lowerCamelCase ,prefix=retriever.config.generator.prefix ,n_docs=lowerCamelCase ,return_tensors="""pt""" ,) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCamelCase ,torch.Tensor ) self.assertIsInstance(lowerCamelCase ,torch.Tensor ) self.assertIsInstance(lowerCamelCase ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_dpr_ctx_encoder_tokenizer() __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase ) retriever.set_ctx_encoder_tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = [[5, 7], [10, 11]] __SCREAMING_SNAKE_CASE = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) __SCREAMING_SNAKE_CASE = retriever(lowerCamelCase ,lowerCamelCase ,prefix=retriever.config.generator.prefix ,n_docs=lowerCamelCase ) self.assertEqual( len(lowerCamelCase ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) ,lowerCamelCase ) # check for doc token related keys in dictionary.
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
from __future__ import annotations from collections.abc import Iterator class __a : def __init__( self : Optional[int] ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None class __a : def __init__( self : int ,lowerCamelCase : Node ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tree def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[str] ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape __SCREAMING_SNAKE_CASE = jax.image.resize( lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,) __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase ) return hidden_states class __a ( nn.Module ): __UpperCamelCase : int __UpperCamelCase : int = None __UpperCamelCase : float = 0.0 __UpperCamelCase : bool = None __UpperCamelCase : jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype ) __SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 ) __SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob ) __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) __SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __SCREAMING_SNAKE_CASE = None if use_nin_shortcut: __SCREAMING_SNAKE_CASE = nn.Conv( lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,) def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hidden_states __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 ) __SCREAMING_SNAKE_CASE = hidden_states + temb __SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase ) __SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase ) if self.conv_shortcut is not None: __SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase ) return hidden_states + residual
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class __a( _snake_case ): __UpperCamelCase : List[str] = 'xlm-roberta' def __init__( self : Union[str, Any] ,lowerCamelCase : Dict=3_0522 ,lowerCamelCase : Optional[int]=768 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : List[Any]=12 ,lowerCamelCase : List[Any]=3072 ,lowerCamelCase : str="gelu" ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : int=512 ,lowerCamelCase : Optional[int]=2 ,lowerCamelCase : str=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : int=1 ,lowerCamelCase : Union[str, Any]=0 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Optional[int]="absolute" ,lowerCamelCase : Tuple=True ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : List[str] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a( _snake_case ): @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
701
'''simple docstring''' import sys from collections import defaultdict class __a : def __init__( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pos def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE = 2 * start + 1 else: __SCREAMING_SNAKE_CASE = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa __SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCamelCase ) self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = position[index] while index != 0: __SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE = heap[parent] __SCREAMING_SNAKE_CASE = position[parent] self.set_position(position[parent] ,lowerCamelCase ) else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,lowerCamelCase ) break __SCREAMING_SNAKE_CASE = parent else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = temp self.set_position(lowerCamelCase ,0 ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase ,-1 ,-1 ): self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = positions[0] __SCREAMING_SNAKE_CASE = sys.maxsize self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase ) return temp def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Heap() __SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE = [] for vertex in range(len(__UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__UpperCAmelCase ) heap.node_position.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = distance heap.heapify(__UpperCAmelCase , __UpperCAmelCase ) for _ in range(1 , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__UpperCAmelCase )] ): __SCREAMING_SNAKE_CASE = distance heap.bottom_to_top( __UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a = int(input("Enter number of edges: ").strip()) a = defaultdict(list) for _ in range(edges_number): a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
'''simple docstring''' import sys a = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 for digit in s: product *= int(__UpperCAmelCase ) return product def __magic_name__ ( __UpperCAmelCase = N ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = -sys.maxsize - 1 __SCREAMING_SNAKE_CASE = n[:13] __SCREAMING_SNAKE_CASE = 13 while cur_index < len(__UpperCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __SCREAMING_SNAKE_CASE = substr[1:] + n[cur_index] cur_index += 1 else: __SCREAMING_SNAKE_CASE = max(__UpperCAmelCase , str_eval(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
702
'''simple docstring''' import os import string import sys a = 1 << 8 a = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } a = KEYMAP["up"] a = KEYMAP["left"] if sys.platform == "win32": a = [] a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): a = ord(str(i)) def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": import msvcrt __SCREAMING_SNAKE_CASE = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCAmelCase ) == 0: # Read the keystroke __SCREAMING_SNAKE_CASE = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __SCREAMING_SNAKE_CASE = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__UpperCAmelCase ) if ord(__UpperCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] ) except KeyError: __SCREAMING_SNAKE_CASE = cha[1] else: __SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __SCREAMING_SNAKE_CASE = sys.stdin.fileno() __SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase ) try: tty.setraw(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase ) return ch def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCAmelCase ) == KEYMAP["esc"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]: __SCREAMING_SNAKE_CASE = get_raw_chars() if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
0
'''simple docstring''' from collections.abc import Generator from math import sin def __magic_name__ ( __UpperCAmelCase ) -> bytes: '''simple docstring''' if len(__UpperCAmelCase ) != 32: raise ValueError("""Input must be of length 32""" ) __SCREAMING_SNAKE_CASE = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __magic_name__ ( __UpperCAmelCase ) -> bytes: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) __SCREAMING_SNAKE_CASE = format(__UpperCAmelCase , """08x""" )[-8:] __SCREAMING_SNAKE_CASE = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def __magic_name__ ( __UpperCAmelCase ) -> bytes: '''simple docstring''' __SCREAMING_SNAKE_CASE = b"""""" for char in message: bit_string += format(__UpperCAmelCase , """08b""" ).encode("""utf-8""" ) __SCREAMING_SNAKE_CASE = format(len(__UpperCAmelCase ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __magic_name__ ( __UpperCAmelCase ) -> Generator[list[int], None, None]: '''simple docstring''' if len(__UpperCAmelCase ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__UpperCAmelCase ) , 512 ): __SCREAMING_SNAKE_CASE = bit_string[pos : pos + 512] __SCREAMING_SNAKE_CASE = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) __SCREAMING_SNAKE_CASE = format(__UpperCAmelCase , """032b""" ) __SCREAMING_SNAKE_CASE = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCAmelCase , 2 ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' return (a + b) % 2**32 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __magic_name__ ( __UpperCAmelCase ) -> bytes: '''simple docstring''' __SCREAMING_SNAKE_CASE = preprocess(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __SCREAMING_SNAKE_CASE = 0X6745_2301 __SCREAMING_SNAKE_CASE = 0XEFCD_AB89 __SCREAMING_SNAKE_CASE = 0X98BA_DCFE __SCREAMING_SNAKE_CASE = 0X1032_5476 __SCREAMING_SNAKE_CASE = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = aa __SCREAMING_SNAKE_CASE = ba __SCREAMING_SNAKE_CASE = ca __SCREAMING_SNAKE_CASE = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __SCREAMING_SNAKE_CASE = d ^ (b & (c ^ d)) __SCREAMING_SNAKE_CASE = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __SCREAMING_SNAKE_CASE = c ^ (d & (b ^ c)) __SCREAMING_SNAKE_CASE = (5 * i + 1) % 16 elif i <= 47: __SCREAMING_SNAKE_CASE = b ^ c ^ d __SCREAMING_SNAKE_CASE = (3 * i + 5) % 16 else: __SCREAMING_SNAKE_CASE = c ^ (b | not_aa(__UpperCAmelCase )) __SCREAMING_SNAKE_CASE = (7 * i) % 16 __SCREAMING_SNAKE_CASE = (f + a + added_consts[i] + block_words[g]) % 2**32 __SCREAMING_SNAKE_CASE = d __SCREAMING_SNAKE_CASE = c __SCREAMING_SNAKE_CASE = b __SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer a = ["bert-base-uncased", "bert-base-cased"] a = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class __a ( tf.keras.Model ): def __init__( self : Union[str, Any] ,lowerCamelCase : Tuple ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_config(lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.bert(**lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ BertTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __SCREAMING_SNAKE_CASE = [TFBertTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCamelCase ,use_fast_bert_tokenizer=lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __SCREAMING_SNAKE_CASE = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __SCREAMING_SNAKE_CASE = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase ,return_tensors="""tf""" ,padding="""longest""" ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf_tokenizer(self.paired_sentences ) __SCREAMING_SNAKE_CASE = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf.function(lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): __SCREAMING_SNAKE_CASE = tf.constant(lowerCamelCase ) __SCREAMING_SNAKE_CASE = compiled_tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = ModelToSave(tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor(self.test_sentences ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """saved.model""" model.save(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.keras.models.load_model(lowerCamelCase ) __SCREAMING_SNAKE_CASE = loaded_model(lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1E-5 )
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __a : '''simple docstring''' @staticmethod def UpperCAmelCase__ ( *lowerCamelCase : Optional[Any] ,**lowerCamelCase : str ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __a ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=lowerCamelCase ,image_processor=lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ,threshold=0.0 ) self.assertGreater(len(lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase ,{ """score""": ANY(lowerCamelCase ), """label""": ANY(lowerCamelCase ), """box""": {"""xmin""": ANY(lowerCamelCase ), """ymin""": ANY(lowerCamelCase ), """xmax""": ANY(lowerCamelCase ), """ymax""": ANY(lowerCamelCase )}, } ,) import datasets __SCREAMING_SNAKE_CASE = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" ) __SCREAMING_SNAKE_CASE = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __SCREAMING_SNAKE_CASE = object_detector(lowerCamelCase ,threshold=0.0 ) self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase ,{ """score""": ANY(lowerCamelCase ), """label""": ANY(lowerCamelCase ), """box""": {"""xmin""": ANY(lowerCamelCase ), """ymin""": ANY(lowerCamelCase ), """xmax""": ANY(lowerCamelCase ), """ymax""": ANY(lowerCamelCase )}, } ,) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass @require_torch def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-detr-mobilenetsv3""" __SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=lowerCamelCase ,feature_extractor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=0.0 ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] ,) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] ,) @require_torch @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=lowerCamelCase ,feature_extractor=lowerCamelCase ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] ,) @require_torch @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" ,model=lowerCamelCase ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) __SCREAMING_SNAKE_CASE = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] ,) @require_torch @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0.9_985 __SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50""" __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" ,model=lowerCamelCase ) __SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ {"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) @require_torch @require_pytesseract @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """Narsil/layoutlmv3-finetuned-funsd""" __SCREAMING_SNAKE_CASE = 0.9_993 __SCREAMING_SNAKE_CASE = pipeline("""object-detection""" ,model=lowerCamelCase ,threshold=lowerCamelCase ) __SCREAMING_SNAKE_CASE = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(lowerCamelCase ,decimals=4 ) ,[ {"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] ,)
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( _snake_case, _snake_case, _snake_case ): __UpperCamelCase : List[Any] = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = 5_0257 ,lowerCamelCase : int = 1024 ,lowerCamelCase : int = 768 ,lowerCamelCase : int = 12 ,lowerCamelCase : int = 12 ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : str = "gelu_new" ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 1E-5 ,lowerCamelCase : float = 0.02 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) __SCREAMING_SNAKE_CASE = prefix_inner_dim __SCREAMING_SNAKE_CASE = prefix_hidden_dim __SCREAMING_SNAKE_CASE = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __SCREAMING_SNAKE_CASE = ( nn.Linear(self.prefix_hidden_dim ,lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) __SCREAMING_SNAKE_CASE = GPTaConfig( vocab_size=lowerCamelCase ,n_positions=lowerCamelCase ,n_embd=lowerCamelCase ,n_layer=lowerCamelCase ,n_head=lowerCamelCase ,n_inner=lowerCamelCase ,activation_function=lowerCamelCase ,resid_pdrop=lowerCamelCase ,embd_pdrop=lowerCamelCase ,attn_pdrop=lowerCamelCase ,layer_norm_epsilon=lowerCamelCase ,initializer_range=lowerCamelCase ,scale_attn_weights=lowerCamelCase ,use_cache=lowerCamelCase ,scale_attn_by_inverse_layer_idx=lowerCamelCase ,reorder_and_upcast_attn=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = GPTaLMHeadModel(lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : torch.Tensor ,lowerCamelCase : torch.Tensor ,lowerCamelCase : Optional[torch.Tensor] = None ,lowerCamelCase : Optional[torch.Tensor] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.encode_prefix(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.decode_prefix(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: __SCREAMING_SNAKE_CASE = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) __SCREAMING_SNAKE_CASE = torch.cat((dummy_token, input_ids) ,dim=1 ) __SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=lowerCamelCase ,labels=lowerCamelCase ,attention_mask=lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase__ ( self : int ,lowerCamelCase : int ,lowerCamelCase : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase ,self.prefix_length ,dtype=torch.intaa ,device=lowerCamelCase ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase ) @torch.no_grad() def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.split(lowerCamelCase ,1 ,dim=0 ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for feature in features: __SCREAMING_SNAKE_CASE = self.decode_prefix(feature.to(lowerCamelCase ) ) # back to the clip feature # Only support beam search for now __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.generate_beam( input_embeds=lowerCamelCase ,device=lowerCamelCase ,eos_token_id=lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase__ ( self : str ,lowerCamelCase : int=None ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : int = 5 ,lowerCamelCase : int = 67 ,lowerCamelCase : float = 1.0 ,lowerCamelCase : Optional[int] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.ones(lowerCamelCase ,device=lowerCamelCase ,dtype=torch.int ) __SCREAMING_SNAKE_CASE = torch.zeros(lowerCamelCase ,device=lowerCamelCase ,dtype=torch.bool ) if input_embeds is not None: __SCREAMING_SNAKE_CASE = input_embeds else: __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(lowerCamelCase ) for i in range(lowerCamelCase ): __SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=lowerCamelCase ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __SCREAMING_SNAKE_CASE = logits.softmax(-1 ).log() if scores is None: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = logits.topk(lowerCamelCase ,-1 ) __SCREAMING_SNAKE_CASE = generated.expand(lowerCamelCase ,*generated.shape[1:] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: __SCREAMING_SNAKE_CASE = next_tokens else: __SCREAMING_SNAKE_CASE = tokens.expand(lowerCamelCase ,*tokens.shape[1:] ) __SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) ,dim=1 ) else: __SCREAMING_SNAKE_CASE = -float(np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __SCREAMING_SNAKE_CASE = scores_sum / seq_lengths[:, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = scores_sum_average.view(-1 ).topk(lowerCamelCase ,-1 ) __SCREAMING_SNAKE_CASE = next_tokens // scores_sum.shape[1] __SCREAMING_SNAKE_CASE = seq_lengths[next_tokens_source] __SCREAMING_SNAKE_CASE = next_tokens % scores_sum.shape[1] __SCREAMING_SNAKE_CASE = next_tokens.unsqueeze(1 ) __SCREAMING_SNAKE_CASE = tokens[next_tokens_source] __SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) ,dim=1 ) __SCREAMING_SNAKE_CASE = generated[next_tokens_source] __SCREAMING_SNAKE_CASE = scores_sum_average * seq_lengths __SCREAMING_SNAKE_CASE = is_stopped[next_tokens_source] __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) __SCREAMING_SNAKE_CASE = torch.cat((generated, next_token_embed) ,dim=1 ) __SCREAMING_SNAKE_CASE = is_stopped + next_tokens.eq(lowerCamelCase ).squeeze() if is_stopped.all(): break __SCREAMING_SNAKE_CASE = scores / seq_lengths __SCREAMING_SNAKE_CASE = scores.argsort(descending=lowerCamelCase ) # tokens tensors are already padded to max_seq_length __SCREAMING_SNAKE_CASE = [tokens[i] for i in order] __SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ,dim=0 ) __SCREAMING_SNAKE_CASE = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
706
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 0: return False __SCREAMING_SNAKE_CASE = num __SCREAMING_SNAKE_CASE = 0 while num > 0: __SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = downstream_dict["""projector.weight"""] __SCREAMING_SNAKE_CASE = downstream_dict["""projector.bias"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.weight"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.bias"""] return model def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.weight"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.bias"""] return model def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = downstream_dict["""connector.weight"""] __SCREAMING_SNAKE_CASE = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __SCREAMING_SNAKE_CASE = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __SCREAMING_SNAKE_CASE = downstream_dict["""objective.W"""] return model @torch.no_grad() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.load(__UpperCAmelCase , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = checkpoint["""Downstream"""] __SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( __UpperCAmelCase , return_attention_mask=__UpperCAmelCase , do_normalize=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __SCREAMING_SNAKE_CASE = convert_classification(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): __SCREAMING_SNAKE_CASE = convert_diarization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif arch.endswith("""ForXVector""" ): __SCREAMING_SNAKE_CASE = convert_xvector(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __SCREAMING_SNAKE_CASE = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") a = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
708
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for row in range(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = matrix[row][col] __SCREAMING_SNAKE_CASE = vector[row][0] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while row < size and col < size: # pivoting __SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col] __SCREAMING_SNAKE_CASE = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase ): for row in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase ) ] def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )] __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for x_val, y_val in enumerate(__UpperCAmelCase ): for col in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1) __SCREAMING_SNAKE_CASE = y_val __SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase ) def interpolated_func(__UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase ) ) return interpolated_func def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )] __SCREAMING_SNAKE_CASE = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 for poly in polynomials: __SCREAMING_SNAKE_CASE = 1 while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ): x_val += 1 ret += poly(__UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
13
0
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __a ( _snake_case ): __UpperCamelCase : Optional[Any] = 'EncodecFeatureExtractor' __UpperCamelCase : Dict = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Any ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Dict=None ,lowerCamelCase : int=None ,lowerCamelCase : str=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase ,language=lowerCamelCase ,no_timestamps=lowerCamelCase ) def __call__( self : Any ,*lowerCamelCase : Tuple ,**lowerCamelCase : List[str] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = kwargs.pop("""audio""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = kwargs.pop("""sampling_rate""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = kwargs.pop("""text""" ,lowerCamelCase ) if len(lowerCamelCase ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,**lowerCamelCase ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(lowerCamelCase ,*lowerCamelCase ,sampling_rate=lowerCamelCase ,**lowerCamelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: __SCREAMING_SNAKE_CASE = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __SCREAMING_SNAKE_CASE = audio_inputs["""padding_mask"""] return inputs def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : str ,**lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = kwargs.pop("""audio""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = kwargs.pop("""padding_mask""" ,lowerCamelCase ) if len(lowerCamelCase ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio_values is not None: return self._decode_audio(lowerCamelCase ,padding_mask=lowerCamelCase ) else: return self.tokenizer.batch_decode(*lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,*lowerCamelCase : Any ,**lowerCamelCase : Dict ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : Optional = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = to_numpy(lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = audio_values.shape if padding_mask is None: return list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = to_numpy(lowerCamelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __SCREAMING_SNAKE_CASE = seq_len - padding_mask.shape[-1] __SCREAMING_SNAKE_CASE = 1 - self.feature_extractor.padding_value __SCREAMING_SNAKE_CASE = np.pad(lowerCamelCase ,((0, 0), (0, difference)) ,"""constant""" ,constant_values=lowerCamelCase ) __SCREAMING_SNAKE_CASE = audio_values.tolist() for i in range(lowerCamelCase ): __SCREAMING_SNAKE_CASE = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __SCREAMING_SNAKE_CASE = sliced_audio.reshape(lowerCamelCase ,-1 ) return audio_values
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=1000 ) -> Any: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __SCREAMING_SNAKE_CASE = n - 1 __SCREAMING_SNAKE_CASE = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __SCREAMING_SNAKE_CASE = 0 while count < prec: __SCREAMING_SNAKE_CASE = random.randint(2 , n - 1 ) __SCREAMING_SNAKE_CASE = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if b != 1: __SCREAMING_SNAKE_CASE = True for _ in range(__UpperCAmelCase ): if b == n - 1: __SCREAMING_SNAKE_CASE = False break __SCREAMING_SNAKE_CASE = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
710
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' require_version(deps[pkg] , __UpperCAmelCase )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path a = "src/transformers" # Matches is_xxx_available() a = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} a = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available a = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") a = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", a = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], a = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo a = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: a = re.compile(r"^\s*try:") # Catches a line with else: a = re.compile(r"^\s*else:") def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if _re_test_backend.search(__UpperCAmelCase ) is None: return None __SCREAMING_SNAKE_CASE = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure __SCREAMING_SNAKE_CASE = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __SCREAMING_SNAKE_CASE = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] __SCREAMING_SNAKE_CASE = re.findall("""\[([^\]]+)\]""" , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __SCREAMING_SNAKE_CASE = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: __SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __SCREAMING_SNAKE_CASE = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __SCREAMING_SNAKE_CASE = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __SCREAMING_SNAKE_CASE = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __SCREAMING_SNAKE_CASE = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __SCREAMING_SNAKE_CASE = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: __SCREAMING_SNAKE_CASE = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(""", """ ) __SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: __SCREAMING_SNAKE_CASE = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(""", """ ) __SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __SCREAMING_SNAKE_CASE = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __SCREAMING_SNAKE_CASE = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __SCREAMING_SNAKE_CASE = lines[line_index] __SCREAMING_SNAKE_CASE = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __SCREAMING_SNAKE_CASE = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. __SCREAMING_SNAKE_CASE = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __SCREAMING_SNAKE_CASE = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __SCREAMING_SNAKE_CASE = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __SCREAMING_SNAKE_CASE = lines[line_index] __SCREAMING_SNAKE_CASE = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __SCREAMING_SNAKE_CASE = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' def find_duplicates(__UpperCAmelCase ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __SCREAMING_SNAKE_CASE = [] for key in import_dict_objects.keys(): __SCREAMING_SNAKE_CASE = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __SCREAMING_SNAKE_CASE = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __SCREAMING_SNAKE_CASE = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """__init__.py""" ) __SCREAMING_SNAKE_CASE = parse_init(__UpperCAmelCase ) if objects is not None: __SCREAMING_SNAKE_CASE = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: __SCREAMING_SNAKE_CASE = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError("""\n\n""".join(__UpperCAmelCase ) ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue __SCREAMING_SNAKE_CASE = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = short_path.replace(os.path.sep , """.""" ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue __SCREAMING_SNAKE_CASE = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules a = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def __magic_name__ ( ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location( """transformers""" , os.path.join(__UpperCAmelCase , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __SCREAMING_SNAKE_CASE = spec.loader.load_module() __SCREAMING_SNAKE_CASE = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCAmelCase ) > 0: __SCREAMING_SNAKE_CASE = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
712
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
13
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class __a : def __init__( self : str ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = start __SCREAMING_SNAKE_CASE = end __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = (start + end) // 2 __SCREAMING_SNAKE_CASE = left __SCREAMING_SNAKE_CASE = right def __repr__( self : List[str] ): '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class __a : def __init__( self : int ,lowerCamelCase : Sequence ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = collection __SCREAMING_SNAKE_CASE = function if self.collection: __SCREAMING_SNAKE_CASE = self._build_tree(0 ,len(lowerCamelCase ) - 1 ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : int ): '''simple docstring''' self._update_tree(self.root ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' return self._query_range(self.root ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : str ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any] ): '''simple docstring''' if start == end: return SegmentTreeNode(lowerCamelCase ,lowerCamelCase ,self.collection[start] ) __SCREAMING_SNAKE_CASE = (start + end) // 2 __SCREAMING_SNAKE_CASE = self._build_tree(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._build_tree(mid + 1 ,lowerCamelCase ) return SegmentTreeNode(lowerCamelCase ,lowerCamelCase ,self.fn(left.val ,right.val ) ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : str ): '''simple docstring''' if node.start == i and node.end == i: __SCREAMING_SNAKE_CASE = val return if i <= node.mid: self._update_tree(node.left ,lowerCamelCase ,lowerCamelCase ) else: self._update_tree(node.right ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.fn(node.left.val ,node.right.val ) def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : str ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,lowerCamelCase ,lowerCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,lowerCamelCase ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,lowerCamelCase ) ,) else: # range in right child tree return self._query_range(node.right ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.root is not None: __SCREAMING_SNAKE_CASE = Queue() queue.put(self.root ) while not queue.empty(): __SCREAMING_SNAKE_CASE = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) a = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
713
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" ) __SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} ) __SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" ) return anchors[2].get_text() if __name__ == "__main__": a = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
13
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a = logging.get_logger(__name__) a = {"vocab_file": "vocab.txt"} a = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } a = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } a = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class __a ( _snake_case ): __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = ConvBertTokenizer def __init__( self : List[Any] ,lowerCamelCase : Dict=None ,lowerCamelCase : str=None ,lowerCamelCase : str=True ,lowerCamelCase : Any="[UNK]" ,lowerCamelCase : List[str]="[SEP]" ,lowerCamelCase : Union[str, Any]="[PAD]" ,lowerCamelCase : List[str]="[CLS]" ,lowerCamelCase : Union[str, Any]="[MASK]" ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Dict=None ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__( lowerCamelCase ,tokenizer_file=lowerCamelCase ,do_lower_case=lowerCamelCase ,unk_token=lowerCamelCase ,sep_token=lowerCamelCase ,pad_token=lowerCamelCase ,cls_token=lowerCamelCase ,mask_token=lowerCamelCase ,tokenize_chinese_chars=lowerCamelCase ,strip_accents=lowerCamelCase ,**lowerCamelCase ,) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" ,lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,lowerCamelCase ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE = getattr(lowerCamelCase ,normalizer_state.pop("""type""" ) ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = strip_accents __SCREAMING_SNAKE_CASE = tokenize_chinese_chars __SCREAMING_SNAKE_CASE = normalizer_class(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = do_lower_case def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : List[Any]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : List[int] ,lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Any ,lowerCamelCase : str ,lowerCamelCase : Optional[str] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCamelCase ,name=lowerCamelCase ) return tuple(lowerCamelCase )
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
13
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'camembert' def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : List[str] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache __SCREAMING_SNAKE_CASE : List[str] = classifier_dropout class __a ( _snake_case ): @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
716
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _snake_case ): __UpperCamelCase : Tuple = 'sew' def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = list(lowerCamelCase ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
13
0
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping a = tuple[int, int] class __a : def __init__( self : List[Any] ,lowerCamelCase : set[int] ,lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = vertices __SCREAMING_SNAKE_CASE = { (min(lowerCamelCase ), max(lowerCamelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : EdgeT ,lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __SCREAMING_SNAKE_CASE = weight def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Graph({min(self.vertices )} ,{} ) __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 while len(subgraph.vertices ) < len(self.vertices ): __SCREAMING_SNAKE_CASE = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __SCREAMING_SNAKE_CASE = edge __SCREAMING_SNAKE_CASE = weight subgraph.add_edge(lowerCamelCase ,lowerCamelCase ) return subgraph def __magic_name__ ( __UpperCAmelCase = "p107_network.txt" ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 with open(__UpperCAmelCase ) as f: __SCREAMING_SNAKE_CASE = f.read().strip().split("""\n""" ) __SCREAMING_SNAKE_CASE = [line.split(""",""" ) for line in data] for edgea in range(1 , len(__UpperCAmelCase ) ): for edgea in range(__UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": __SCREAMING_SNAKE_CASE = int(adjaceny_matrix[edgea][edgea] ) __SCREAMING_SNAKE_CASE = Graph(set(range(len(__UpperCAmelCase ) ) ) , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = graph.prims_algorithm() __SCREAMING_SNAKE_CASE = sum(graph.edges.values() ) __SCREAMING_SNAKE_CASE = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
717
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' from math import pi, sqrt, tan def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) __SCREAMING_SNAKE_CASE = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(__UpperCAmelCase , 2 ) * torus_radius * tube_radius def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) __SCREAMING_SNAKE_CASE = (sidea + sidea + sidea) / 2 __SCREAMING_SNAKE_CASE = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __a ( unittest.TestCase ): def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std __SCREAMING_SNAKE_CASE = do_convert_rgb def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) ) else: __SCREAMING_SNAKE_CASE = [] for i in range(self.batch_size ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 ) image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] if torchify: __SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase ) @property def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) @require_torch @require_vision class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase ) __SCREAMING_SNAKE_CASE = 3 @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
13
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a = 8 def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=BITS ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = x.device __SCREAMING_SNAKE_CASE = (x * 255).int().clamp(0 , 255 ) __SCREAMING_SNAKE_CASE = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """d -> d 1 1""" ) __SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """b c h w -> b c 1 h w""" ) __SCREAMING_SNAKE_CASE = ((x & mask) != 0).float() __SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """b c d h w -> b (c d) h w""" ) __SCREAMING_SNAKE_CASE = bits * 2 - 1 return bits def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=BITS ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = x.device __SCREAMING_SNAKE_CASE = (x > 0).int() __SCREAMING_SNAKE_CASE = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__UpperCAmelCase , dtype=torch.intaa ) __SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """d -> d 1 1""" ) __SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """b (c d) h w -> b c d h w""" , d=8 ) __SCREAMING_SNAKE_CASE = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 , __UpperCAmelCase = True , __UpperCAmelCase=None , __UpperCAmelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __SCREAMING_SNAKE_CASE = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __SCREAMING_SNAKE_CASE = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __SCREAMING_SNAKE_CASE = self.bit_scale if self.config.clip_sample: __SCREAMING_SNAKE_CASE = torch.clamp(__UpperCAmelCase , -scale , __UpperCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __SCREAMING_SNAKE_CASE = self._get_variance(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __SCREAMING_SNAKE_CASE = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __SCREAMING_SNAKE_CASE = model_output.device if torch.is_tensor(__UpperCAmelCase ) else """cpu""" __SCREAMING_SNAKE_CASE = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = self._get_variance(__UpperCAmelCase , __UpperCAmelCase ) ** 0.5 * eta * noise __SCREAMING_SNAKE_CASE = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="epsilon" , __UpperCAmelCase=None , __UpperCAmelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' __SCREAMING_SNAKE_CASE = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 ) else: __SCREAMING_SNAKE_CASE = None # 1. compute alphas, betas __SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] __SCREAMING_SNAKE_CASE = self.alphas_cumprod[t - 1] if t > 0 else self.one __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t __SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __SCREAMING_SNAKE_CASE = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __SCREAMING_SNAKE_CASE = self.bit_scale if self.config.clip_sample: __SCREAMING_SNAKE_CASE = torch.clamp(__UpperCAmelCase , -scale , __UpperCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __SCREAMING_SNAKE_CASE = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __SCREAMING_SNAKE_CASE = 0 if t > 0: __SCREAMING_SNAKE_CASE = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__UpperCAmelCase ).to(model_output.device ) __SCREAMING_SNAKE_CASE = (self._get_variance(__UpperCAmelCase , predicted_variance=__UpperCAmelCase ) ** 0.5) * noise __SCREAMING_SNAKE_CASE = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) class __a ( _snake_case ): def __init__( self : Optional[Any] ,lowerCamelCase : UNetaDConditionModel ,lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] ,lowerCamelCase : Optional[float] = 1.0 ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = bit_scale __SCREAMING_SNAKE_CASE = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase ,lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase ,scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[Any] ,lowerCamelCase : Optional[int] = 256 ,lowerCamelCase : Optional[int] = 256 ,lowerCamelCase : Optional[int] = 50 ,lowerCamelCase : Optional[torch.Generator] = None ,lowerCamelCase : Optional[int] = 1 ,lowerCamelCase : Optional[str] = "pil" ,lowerCamelCase : bool = True ,**lowerCamelCase : List[Any] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = decimal_to_bits(lowerCamelCase ) * self.bit_scale __SCREAMING_SNAKE_CASE = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(lowerCamelCase ,lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ).prev_sample __SCREAMING_SNAKE_CASE = bits_to_decimal(lowerCamelCase ) if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
719
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = timeit.default_timer() __SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime return delta __SCREAMING_SNAKE_CASE = func.__name__ return wrapper def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = seq_shapes or {} for i in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__UpperCAmelCase , _ArrayXD ): __SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__UpperCAmelCase , datasets.Value ): if v.dtype == "string": __SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged.""" else: __SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__UpperCAmelCase , datasets.Sequence ): while isinstance(__UpperCAmelCase , datasets.Sequence ): __SCREAMING_SNAKE_CASE = v.feature __SCREAMING_SNAKE_CASE = seq_shapes[k] __SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype ) __SCREAMING_SNAKE_CASE = data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase ) with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer: for key, record in dummy_data: __SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase ) writer.write(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) ) return dataset
13
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __magic_name__ ( __UpperCAmelCase = 1000000 , __UpperCAmelCase = 10 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = defaultdict(__UpperCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __SCREAMING_SNAKE_CASE = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __SCREAMING_SNAKE_CASE = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__UpperCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
720
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder a = "__DUMMY_TRANSFORMERS_USER__" a = "Dummy User" a = "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" a = "https://hub-ci.huggingface.co" a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" a = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" __SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
1
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase = """Usage of script: script_name <size_of_canvas:int>""" lowerCamelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [[False for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] return canvas def a__ ( lowerCAmelCase__ ): for i, row in enumerate(lowerCAmelCase__ ): for j, _ in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ = bool(random.getrandbits(1 ) ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = np.array(lowerCAmelCase__ ) UpperCAmelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase__ ): for c, pt in enumerate(lowerCAmelCase__ ): UpperCAmelCase_ = __judge_point( lowerCAmelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase_ = current_canvas.tolist() return return_canvas def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase_ = pt if pt: if alive < 2: UpperCAmelCase_ = False elif alive == 2 or alive == 3: UpperCAmelCase_ = True elif alive > 3: UpperCAmelCase_ = False else: if alive == 3: UpperCAmelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase = int(sys.argv[1]) # main working structure of this module. lowerCamelCase = create_canvas(canvas_size) seed(c) lowerCamelCase , lowerCamelCase = plt.subplots() fig.show() lowerCamelCase = ListedColormap(["""w""", """k"""]) try: while True: lowerCamelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCamelCase = """.""" if __name__ == "__main__": lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") lowerCamelCase = [] lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: lowerCamelCase = line.strip() lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCamelCase = """\n""".join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase__ : '''simple docstring''' UpperCamelCase = LEDConfig UpperCamelCase = {} UpperCamelCase = '''gelu''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=99 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=20 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[int]=4 , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase_ = prepare_led_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = tf.concat( [tf.zeros_like(_UpperCAmelCase )[:, :-1], tf.ones_like(_UpperCAmelCase )[:, -1:]] , axis=-1 , ) UpperCAmelCase_ = global_attention_mask return config, inputs_dict def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> str: '''simple docstring''' UpperCAmelCase_ = TFLEDModel(config=_UpperCAmelCase ).get_decoder() UpperCAmelCase_ = inputs_dict["input_ids"] UpperCAmelCase_ = input_ids[:1, :] UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :] UpperCAmelCase_ = 1 # first forward pass UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): if attention_mask is None: UpperCAmelCase_ = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TFLEDModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = tf.zeros_like(inputs_dict["attention_mask"] ) UpperCAmelCase_ = 2 UpperCAmelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) UpperCAmelCase_ = True UpperCAmelCase_ = self.model_tester.seq_length UpperCAmelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_UpperCAmelCase : Optional[int] ): UpperCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : List[str] ): UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def a__ ( lowerCAmelCase__ ): return tf.constant(lowerCAmelCase__ , dtype=tf.intaa ) lowerCamelCase = 1e-4 @slow @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase )[0] UpperCAmelCase_ = (1, 1024, 768) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-3 ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase_ = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase )[0] UpperCAmelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here UpperCAmelCase_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-3 , rtol=1e-3 )
14
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) UpperCAmelCase_ = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowerCAmelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCamelCase = numpy.array([0, 0]) lowerCamelCase = numpy.array([0.5, 0.8_660_254]) lowerCamelCase = numpy.array([1, 0]) lowerCamelCase = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = initial_vectors for _ in range(lowerCAmelCase__ ): UpperCAmelCase_ = iteration_step(lowerCAmelCase__ ) return vectors def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase_ = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) UpperCAmelCase_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = numpy.radians(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) UpperCAmelCase_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase_ , UpperCAmelCase_ = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
14
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''blip_text_model''' def __init__( self : Optional[int] , _UpperCAmelCase : Dict=30524 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : int=30522 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : str=102 , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=True , **_UpperCAmelCase : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , sep_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = encoder_hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = is_decoder UpperCAmelCase_ = use_cache @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''blip_vision_model''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : List[str]=384 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Union[str, Any]=1e-10 , **_UpperCAmelCase : Optional[Any] , ) -> List[str]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = patch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = hidden_act @classmethod def lowercase__ ( cls : str , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''blip''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=512 , _UpperCAmelCase : Dict=2.6592 , _UpperCAmelCase : int=256 , **_UpperCAmelCase : str , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCAmelCase_ = BlipTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = BlipVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = self.vision_config.hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.02 UpperCAmelCase_ = image_text_hidden_size @classmethod def lowercase__ ( cls : List[Any] , _UpperCAmelCase : BlipTextConfig , _UpperCAmelCase : BlipVisionConfig , **_UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCamelCase = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str = None , _UpperCAmelCase : list = None ) -> str: '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCAmelCase_ = os.path.abspath("examples" ) for item in os.listdir(_UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase_ = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_UpperCAmelCase , feature_script=_UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ): UpperCAmelCase_ = compare_against_test( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = "\n".join(_UpperCAmelCase ) if special_strings is not None: for string in special_strings: UpperCAmelCase_ = diff.replace(_UpperCAmelCase , "" ) self.assertEqual(_UpperCAmelCase , "" ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.one_complete_example("complete_nlp_example.py" , _UpperCAmelCase ) self.one_complete_example("complete_nlp_example.py" , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCAmelCase_ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.one_complete_example("complete_cv_example.py" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = False @classmethod def lowercase__ ( cls : Tuple ) -> str: '''simple docstring''' super().setUpClass() UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase_ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowercase__ ( cls : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) self.assertNotIn("epoch 0:" , _UpperCAmelCase ) self.assertIn("epoch 1:" , _UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) if torch.cuda.is_available(): UpperCAmelCase_ = torch.cuda.device_count() else: UpperCAmelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _UpperCAmelCase ) self.assertIn("epoch 1:" , _UpperCAmelCase ) else: self.assertIn("epoch 0:" , _UpperCAmelCase ) self.assertIn("epoch 1:" , _UpperCAmelCase ) @slow def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase ) UpperCAmelCase_ = re.findall("({.+})" , _UpperCAmelCase ) UpperCAmelCase_ = [r for r in results if "accuracy" in r][-1] UpperCAmelCase_ = ast.literal_eval(_UpperCAmelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase_ = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "tracking" ) ) ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
14
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def a__ ( lowerCAmelCase__ = 3 ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(lowerCAmelCase__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) UpperCAmelCase_ = QuantumRegister(lowerCAmelCase__ , "qr" ) UpperCAmelCase_ = ClassicalRegister(lowerCAmelCase__ , "cr" ) UpperCAmelCase_ = QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = number_of_qubits for i in range(lowerCAmelCase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCAmelCase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase__ , lowerCAmelCase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCAmelCase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCAmelCase__ , lowerCAmelCase__ ) # simulate with 10000 shots UpperCAmelCase_ = Aer.get_backend("qasm_simulator" ) UpperCAmelCase_ = execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10000 ) return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = KandinskyInpaintPipeline UpperCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] UpperCamelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' return 32 @property def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' return 32 @property def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return 100 @property def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCAmelCase_ = MultilingualCLIP(_UpperCAmelCase ) UpperCAmelCase_ = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCAmelCase , ) UpperCAmelCase_ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : int=0 ) -> str: '''simple docstring''' UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCAmelCase ) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ = 0 if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase_ = 0 UpperCAmelCase_ = "a hat" UpperCAmelCase_ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) UpperCAmelCase_ = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ = pipeline( _UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
14
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" import os import sys import unittest lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase = os.path.join(git_repo_path, """src""", """diffusers""") class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = find_backend(" if not is_torch_available():" ) self.assertEqual(_UpperCAmelCase , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase_ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(_UpperCAmelCase , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase_ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(_UpperCAmelCase , "torch_and_transformers_and_onnx" ) def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _UpperCAmelCase ) self.assertIn("torch_and_transformers" , _UpperCAmelCase ) self.assertIn("flax_and_transformers" , _UpperCAmelCase ) self.assertIn("torch_and_transformers_and_onnx" , _UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(_UpperCAmelCase , "\nCONSTANT = None\n" ) UpperCAmelCase_ = create_dummy_object("function" , "'torch'" ) self.assertEqual( _UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCAmelCase_ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCAmelCase_ = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCAmelCase_ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _UpperCAmelCase )
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''detr''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Optional[Any] , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : List[str]=100 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : List[str]=2048 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : List[Any]=2048 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : str="relu" , _UpperCAmelCase : Union[str, Any]=256 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any="sine" , _UpperCAmelCase : Union[str, Any]="resnet50" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=5 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Dict=0.1 , **_UpperCAmelCase : int , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = backbone_config.get("model_type" ) UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None, None, None UpperCAmelCase_ = use_timm_backbone UpperCAmelCase_ = backbone_config UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_queries UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = auxiliary_loss UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = backbone UpperCAmelCase_ = use_pretrained_backbone UpperCAmelCase_ = dilation # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = mask_loss_coefficient UpperCAmelCase_ = dice_loss_coefficient UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return self.d_model @classmethod def lowercase__ ( cls : Optional[int] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> Dict[str, any]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowercase__ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' return 12
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = f"""{sampling_rate}""" UpperCAmelCase_ = "1" UpperCAmelCase_ = "f32le" UpperCAmelCase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowerCAmelCase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: UpperCAmelCase_ = ffmpeg_process.communicate(lowerCAmelCase__ ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error UpperCAmelCase_ = output_stream[0] UpperCAmelCase_ = np.frombuffer(lowerCAmelCase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = "f32le" , ): UpperCAmelCase_ = f"""{sampling_rate}""" UpperCAmelCase_ = "1" if format_for_conversion == "s16le": UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) UpperCAmelCase_ = platform.system() if system == "Linux": UpperCAmelCase_ = "alsa" UpperCAmelCase_ = "default" elif system == "Darwin": UpperCAmelCase_ = "avfoundation" UpperCAmelCase_ = ":0" elif system == "Windows": UpperCAmelCase_ = "dshow" UpperCAmelCase_ = "default" UpperCAmelCase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample UpperCAmelCase_ = _ffmpeg_stream(lowerCAmelCase__ , lowerCAmelCase__ ) for item in iterator: yield item def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "f32le" , ): if stream_chunk_s is not None: UpperCAmelCase_ = stream_chunk_s else: UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = ffmpeg_microphone(lowerCAmelCase__ , lowerCAmelCase__ , format_for_conversion=lowerCAmelCase__ ) if format_for_conversion == "s16le": UpperCAmelCase_ = np.intaa UpperCAmelCase_ = 2 elif format_for_conversion == "f32le": UpperCAmelCase_ = np.floataa UpperCAmelCase_ = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: UpperCAmelCase_ = chunk_length_s / 6 UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCAmelCase__ , (int, float) ): UpperCAmelCase_ = [stride_length_s, stride_length_s] UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample UpperCAmelCase_ = datetime.datetime.now() UpperCAmelCase_ = datetime.timedelta(seconds=lowerCAmelCase__ ) for item in chunk_bytes_iter(lowerCAmelCase__ , lowerCAmelCase__ , stride=(stride_left, stride_right) , stream=lowerCAmelCase__ ): # Put everything back in numpy scale UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) UpperCAmelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = b"" UpperCAmelCase_ , UpperCAmelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) UpperCAmelCase_ = 0 for raw in iterator: acc += raw if stream and len(lowerCAmelCase__ ) < chunk_len: UpperCAmelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCAmelCase__ ) >= chunk_len: # We are flushing the accumulator UpperCAmelCase_ = (_stride_left, stride_right) UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: UpperCAmelCase_ = False yield item UpperCAmelCase_ = stride_left UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCAmelCase__ ) > stride_left: UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: UpperCAmelCase_ = False yield item def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = 2**24 # 16Mo try: with subprocess.Popen(lowerCAmelCase__ , stdout=subprocess.PIPE , bufsize=lowerCAmelCase__ ) as ffmpeg_process: while True: UpperCAmelCase_ = ffmpeg_process.stdout.read(lowerCAmelCase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
14
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
"""simple docstring""" import colorsys from PIL import Image # type: ignore def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = x UpperCAmelCase_ = y for step in range(lowerCAmelCase__ ): # noqa: B007 UpperCAmelCase_ = a * a - b * b + x UpperCAmelCase_ = 2 * a * b + y UpperCAmelCase_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def a__ ( lowerCAmelCase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) ) def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ): UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase_ = img.load() # loop through the image-coordinates for image_x in range(lowerCAmelCase__ ): for image_y in range(lowerCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ = figure_width / image_width * image_height UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ ) else: UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
14
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase = logging.get_logger(__name__) # TODO: upload to AWS lowerCamelCase = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''retribert''' def __init__( self : Union[str, Any] , _UpperCAmelCase : int=30522 , _UpperCAmelCase : int=768 , _UpperCAmelCase : int=8 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : int=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : List[Any] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = share_encoders UpperCAmelCase_ = projection_dim
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="attention" ): UpperCAmelCase_ = UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCAmelCase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCAmelCase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCAmelCase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCAmelCase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): if split_mlp_wi: UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCAmelCase_ = (wi_a, wi_a) else: UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def a__ ( lowerCAmelCase__ , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = traverse_util.flatten_dict(variables["target"] ) UpperCAmelCase_ = {"/".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , lowerCAmelCase__ ) UpperCAmelCase_ = collections.OrderedDict() # Shared embeddings. UpperCAmelCase_ = old["token_embedder/embedding"] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , "pre_attention_layer_norm" ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , "attention" ) UpperCAmelCase_ = layer_norm UpperCAmelCase_ = k.T UpperCAmelCase_ = o.T UpperCAmelCase_ = q.T UpperCAmelCase_ = v.T # Block i, layer 1 (MLP). UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , "pre_mlp_layer_norm" ) UpperCAmelCase_ , UpperCAmelCase_ = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , lowerCAmelCase__ ) UpperCAmelCase_ = layer_norm if split_mlp_wi: UpperCAmelCase_ = wi[0].T UpperCAmelCase_ = wi[1].T else: UpperCAmelCase_ = wi.T UpperCAmelCase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , "encoder" ).T UpperCAmelCase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: UpperCAmelCase_ = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , "encoder" ).T UpperCAmelCase_ = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "pre_self_attention_layer_norm" ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "self_attention" ) UpperCAmelCase_ = layer_norm UpperCAmelCase_ = k.T UpperCAmelCase_ = o.T UpperCAmelCase_ = q.T UpperCAmelCase_ = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "pre_cross_attention_layer_norm" ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "encoder_decoder_attention" ) UpperCAmelCase_ = layer_norm UpperCAmelCase_ = k.T UpperCAmelCase_ = o.T UpperCAmelCase_ = q.T UpperCAmelCase_ = v.T # Block i, layer 2 (MLP). UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "pre_mlp_layer_norm" ) UpperCAmelCase_ , UpperCAmelCase_ = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , lowerCAmelCase__ ) UpperCAmelCase_ = layer_norm if split_mlp_wi: UpperCAmelCase_ = wi[0].T UpperCAmelCase_ = wi[1].T else: UpperCAmelCase_ = wi.T UpperCAmelCase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" ).T UpperCAmelCase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase_ = old["decoder/logits_dense/kernel"].T return new def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) UpperCAmelCase_ = state_dict["shared.weight"] return state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) UpperCAmelCase_ = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) UpperCAmelCase_ = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ): UpperCAmelCase_ = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase_ = UMTaEncoderModel(lowerCAmelCase__ ) else: UpperCAmelCase_ = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("Done" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
14
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) UpperCAmelCase_ = [] for num in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = 0 while 2 * i * i <= odd_composites[num]: UpperCAmelCase_ = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase__ ) == n: return list_nums return [] def a__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
14
1
"""simple docstring""" from __future__ import annotations from cmath import sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) UpperCAmelCase_ = b * b - 4 * a * c UpperCAmelCase_ = (-b + sqrt(lowerCAmelCase__ )) / (2 * a) UpperCAmelCase_ = (-b - sqrt(lowerCAmelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): UpperCAmelCase_ , UpperCAmelCase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''convbert''' def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = embedding_size UpperCAmelCase_ = head_ratio UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = num_groups UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
14
1
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCamelCase = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} state_dict.pop("pixel_mean" , lowerCAmelCase__ ) state_dict.pop("pixel_std" , lowerCAmelCase__ ) UpperCAmelCase_ = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(2 ) ) if layer_nb == 0: UpperCAmelCase_ = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: UpperCAmelCase_ = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: UpperCAmelCase_ = key.replace("layers.2" , "proj_out" ) UpperCAmelCase_ = value UpperCAmelCase_ = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="ybelkada/segment-anything" ): UpperCAmelCase_ = hf_hub_download(lowerCAmelCase__ , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: UpperCAmelCase_ = SamConfig() elif "sam_vit_l" in model_name: UpperCAmelCase_ = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCAmelCase_ = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: UpperCAmelCase_ = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCAmelCase_ = SamConfig( vision_config=lowerCAmelCase__ , ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" ) UpperCAmelCase_ = replace_keys(lowerCAmelCase__ ) UpperCAmelCase_ = SamImageProcessor() UpperCAmelCase_ = SamProcessor(image_processor=lowerCAmelCase__ ) UpperCAmelCase_ = SamModel(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = hf_model.to("cuda" ) UpperCAmelCase_ = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) UpperCAmelCase_ = [[[400, 650]]] UpperCAmelCase_ = [[1]] UpperCAmelCase_ = processor(images=np.array(lowerCAmelCase__ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 UpperCAmelCase_ = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 UpperCAmelCase_ = ((75, 275, 1725, 850),) UpperCAmelCase_ = processor(images=np.array(lowerCAmelCase__ ) , input_boxes=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. UpperCAmelCase_ = [[[400, 650], [800, 650]]] UpperCAmelCase_ = [[1, 1]] UpperCAmelCase_ = processor( images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ = hf_model(**lowerCAmelCase__ ) UpperCAmelCase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() lowerCamelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) lowerCamelCase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
14
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''mobilenet_v1''' def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = depth_multiplier UpperCAmelCase_ = min_depth UpperCAmelCase_ = hidden_act UpperCAmelCase_ = tf_padding UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase__ ( self : Tuple ) -> float: '''simple docstring''' return 1e-4
14
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = LDMTextToImagePipeline UpperCamelCase = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } UpperCamelCase = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase = False def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any]=0 ) -> List[Any]: '''simple docstring''' if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = LDMTextToImagePipeline(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) UpperCAmelCase_ = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str=torch.floataa , _UpperCAmelCase : str=0 ) -> Any: '''simple docstring''' UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = np.random.RandomState(_UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) UpperCAmelCase_ = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_inputs(_UpperCAmelCase ) UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] ) UpperCAmelCase_ = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=torch.floataa , _UpperCAmelCase : Dict=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = np.random.RandomState(_UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) UpperCAmelCase_ = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_inputs(_UpperCAmelCase ) UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images[0] UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) UpperCAmelCase_ = np.abs(expected_image - image ).max() assert max_diff < 1e-3
14
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = (DPMSolverSinglestepScheduler,) UpperCamelCase = (('''num_inference_steps''', 25),) def lowercase__ ( self : int , **_UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**_UpperCAmelCase ) return config def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = dict(self.forward_default_kwargs ) UpperCAmelCase_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase_ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase_ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : Any ) -> Any: '''simple docstring''' pass def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any]=0 , **_UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = dict(self.forward_default_kwargs ) UpperCAmelCase_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase ) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase_ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase_ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : str , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : int ) -> Dict: '''simple docstring''' if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCAmelCase_ = self.full_loop(scheduler=_UpperCAmelCase ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase_ = self.full_loop(scheduler=_UpperCAmelCase ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , algorithm_type="dpmsolver++" , solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , ) UpperCAmelCase_ = self.full_loop( solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , ) assert not torch.isnan(_UpperCAmelCase ).any(), "Samples have nan numbers" def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCAmelCase ) self.check_over_configs(lower_order_final=_UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' self.check_over_configs(variance_type=_UpperCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=0 ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_UpperCAmelCase ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_UpperCAmelCase ) UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0 ) UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''LayoutLMv2ImageProcessor''' UpperCamelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : Any , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor UpperCAmelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ = features["words"] UpperCAmelCase_ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values UpperCAmelCase_ = features.pop("pixel_values" ) if return_overflowing_tokens is True: UpperCAmelCase_ = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) UpperCAmelCase_ = images return encoded_inputs def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def lowercase__ ( self : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , ) return self.image_processor_class @property def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , ) return self.image_processor
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""PerceiverFeatureExtractor"""] lowerCamelCase = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCamelCase = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = SavedModel() UpperCAmelCase_ = [] with open(os.path.join(lowerCAmelCase__ , "utils" , "tf_ops" , "onnx.json" ) ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowerCAmelCase__ )] ) with open(lowerCAmelCase__ , "rb" ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase_ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase_ = sorted(lowerCAmelCase__ ) UpperCAmelCase_ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowerCAmelCase__ ) if strict and len(lowerCAmelCase__ ) > 0: raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(lowerCAmelCase__ ) > 0: print(f"""Found the following incompatible ops for the opset {opset}:""" ) print(*lowerCAmelCase__ , sep="\n" ) else: print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowerCamelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
14
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = create_model( "HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = r".*sequential.(\d+).*" UpperCAmelCase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase_ = 1 if projecton_layer == 0 else 2 UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase_ = value UpperCAmelCase_ = mixed_qkv.size(0 ) // 3 UpperCAmelCase_ = mixed_qkv[:qkv_dim] UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase_ = query_layer UpperCAmelCase_ = key_layer UpperCAmelCase_ = value_layer else: UpperCAmelCase_ = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase_ = clap_model.state_dict() UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase_ = ClapConfig() UpperCAmelCase_ = enable_fusion UpperCAmelCase_ = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
14
1
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=1 ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = tokenizer UpperCAmelCase_ = dataset UpperCAmelCase_ = len(_UpperCAmelCase ) if n_tasks is None else n_tasks UpperCAmelCase_ = n_copies def __iter__( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = start_length UpperCAmelCase_ = eof_strings UpperCAmelCase_ = tokenizer def __call__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(_UpperCAmelCase ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = re.split("(%s)" % "|".join(lowerCAmelCase__ ) , lowerCAmelCase__ ) # last string should be "" return "".join(string_list[:-2] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=20 , **lowerCAmelCase__ ): UpperCAmelCase_ = defaultdict(lowerCAmelCase__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCAmelCase__ ) ): with torch.no_grad(): UpperCAmelCase_ = batch["ids"].shape[-1] UpperCAmelCase_ = accelerator.unwrap_model(lowerCAmelCase__ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=lowerCAmelCase__ , **lowerCAmelCase__ ) # each task is generated batch_size times UpperCAmelCase_ = batch["task_id"].repeat(lowerCAmelCase__ ) UpperCAmelCase_ = accelerator.pad_across_processes( lowerCAmelCase__ , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase_ = generated_tokens.cpu().numpy() UpperCAmelCase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCAmelCase__ , lowerCAmelCase__ ): gen_token_dict[task].append(lowerCAmelCase__ ) UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase_ = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) code_gens[task].append(remove_last_block(lowerCAmelCase__ ) ) return code_gens def a__ ( ): # Setup configuration UpperCAmelCase_ = HfArgumentParser(lowerCAmelCase__ ) UpperCAmelCase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase_ = "false" if args.num_workers is None: UpperCAmelCase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase_ = Accelerator() set_seed(args.seed , device_specific=lowerCAmelCase__ ) # Load model and tokenizer UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase_ = tokenizer.eos_token UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase_ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCAmelCase__ , lowerCAmelCase__ )] ), } # Load evaluation dataset and metric UpperCAmelCase_ = load_dataset("openai_humaneval" ) UpperCAmelCase_ = load_metric("code_eval" ) UpperCAmelCase_ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) UpperCAmelCase_ = args.n_samples // args.batch_size UpperCAmelCase_ = TokenizedDataset(lowerCAmelCase__ , human_eval["test"] , n_copies=lowerCAmelCase__ , n_tasks=lowerCAmelCase__ ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase_ = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = complete_code( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , n_tasks=lowerCAmelCase__ , batch_size=args.batch_size , **lowerCAmelCase__ , ) if accelerator.is_main_process: UpperCAmelCase_ = [] for task in tqdm(range(lowerCAmelCase__ ) ): UpperCAmelCase_ = human_eval["test"][task]["test"] UpperCAmelCase_ = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase_ , UpperCAmelCase_ = code_eval_metric.compute( references=lowerCAmelCase__ , predictions=lowerCAmelCase__ , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
14
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def a__ ( lowerCAmelCase__ ): if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ ): if n_term == "": return [] UpperCAmelCase_ = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f"""1/{temp + 1}""" if series else "1" ) return series if __name__ == "__main__": lowerCamelCase = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
14
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 847 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 171 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 133 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # fmt: off UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ ) # load original state_dict with open(lowerCAmelCase__ , "rb" ) as f: UpperCAmelCase_ = pickle.load(lowerCAmelCase__ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase__ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 65535 else: UpperCAmelCase_ = 255 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ ) UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = model(**lowerCAmelCase__ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=_UpperCAmelCase , ) assert hasattr(self , "env" ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = { "enabled": True, "processes_per_host": 8, } UpperCAmelCase_ = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } UpperCAmelCase_ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} UpperCAmelCase_ = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version="py36" , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : Any ) -> str: '''simple docstring''' TrainingJobAnalytics(_UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.create_estimator(_UpperCAmelCase ) # run training estimator.fit() # result dataframe UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _UpperCAmelCase )
14
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 50_003 lowerCamelCase = 50_002 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = PLBartTokenizer UpperCamelCase = None UpperCamelCase = False def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )] self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )] self.assertListEqual( _UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''uclanlp/plbart-python-en_XX''' UpperCamelCase = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCamelCase = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCamelCase = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : int ) -> str: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Return True if there is node that has not iterated. UpperCAmelCase_ = [False] * len(lowerCAmelCase__ ) UpperCAmelCase_ = [] queue.append(lowerCAmelCase__ ) UpperCAmelCase_ = True while queue: UpperCAmelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCAmelCase__ ) UpperCAmelCase_ = True UpperCAmelCase_ = u return visited[t] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # This array is filled by BFS and to store path UpperCAmelCase_ = [-1] * (len(lowerCAmelCase__ )) UpperCAmelCase_ = 0 while bfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = float("Inf" ) UpperCAmelCase_ = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ = min(lowerCAmelCase__ , graph[parent[s]][s] ) UpperCAmelCase_ = parent[s] max_flow += path_flow UpperCAmelCase_ = sink while v != source: UpperCAmelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ = parent[v] return max_flow lowerCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase , lowerCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
14
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCAmelCase_ = "segformer.encoder." + key if key.startswith("backbone" ): UpperCAmelCase_ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_ = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCAmelCase_ = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(lowerCAmelCase__ )-1}""" ) if "norm" in key: UpperCAmelCase_ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCAmelCase_ = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(lowerCAmelCase__ )-1}""" ) if "layer_norm1" in key: UpperCAmelCase_ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCAmelCase_ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_ = key[key.find("block" ) + len("block" )] UpperCAmelCase_ = key.replace(f"""block{idx}""" , f"""block.{int(lowerCAmelCase__ )-1}""" ) if "attn.q" in key: UpperCAmelCase_ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCAmelCase_ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCAmelCase_ = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCAmelCase_ = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCAmelCase_ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCAmelCase_ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCAmelCase_ = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCAmelCase_ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_ = key[key.find("linear_c" ) + len("linear_c" )] UpperCAmelCase_ = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(lowerCAmelCase__ )-1}""" ) if key.startswith("head" ): UpperCAmelCase_ = key.replace("head" , "classifier" ) UpperCAmelCase_ = value return new_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_ = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_ = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_ = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_ = kv_bias[ config.hidden_sizes[i] : ] def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = SegformerConfig() UpperCAmelCase_ = False # set attributes based on model_name UpperCAmelCase_ = "huggingface/label-files" if "segformer" in model_name: UpperCAmelCase_ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCAmelCase_ = 150 UpperCAmelCase_ = "ade20k-id2label.json" UpperCAmelCase_ = (1, 150, 128, 128) elif "city" in model_name: UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" UpperCAmelCase_ = (1, 19, 128, 128) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = model_name[4:6] UpperCAmelCase_ = 1000 UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = (1, 1000) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCAmelCase_ = [64, 128, 320, 512] UpperCAmelCase_ = 256 elif size == "b2": UpperCAmelCase_ = [64, 128, 320, 512] UpperCAmelCase_ = 768 UpperCAmelCase_ = [3, 4, 6, 3] elif size == "b3": UpperCAmelCase_ = [64, 128, 320, 512] UpperCAmelCase_ = 768 UpperCAmelCase_ = [3, 4, 18, 3] elif size == "b4": UpperCAmelCase_ = [64, 128, 320, 512] UpperCAmelCase_ = 768 UpperCAmelCase_ = [3, 8, 27, 3] elif size == "b5": UpperCAmelCase_ = [64, 128, 320, 512] UpperCAmelCase_ = 768 UpperCAmelCase_ = [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) UpperCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=torch.device("cpu" ) ) else: UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCAmelCase_ = rename_keys(lowerCAmelCase__ , encoder_only=lowerCAmelCase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict if encoder_only: UpperCAmelCase_ = False UpperCAmelCase_ = SegformerForImageClassification(lowerCAmelCase__ ) else: UpperCAmelCase_ = SegformerForSemanticSegmentation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCAmelCase_ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCAmelCase_ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCAmelCase_ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCAmelCase_ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCAmelCase_ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCAmelCase_ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCAmelCase_ = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCAmelCase_ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: UpperCAmelCase_ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) lowerCamelCase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
14
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XLMProphetNetTokenizer UpperCamelCase = False UpperCamelCase = True def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = "[PAD]" UpperCAmelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 1012 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [35389, 6672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
14
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for attribute in key.split("." ): UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "inv_freq": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ ) if "pos_bias_u" in name: UpperCAmelCase_ = None elif "pos_bias_v" in name: UpperCAmelCase_ = None elif "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ = "weight" elif "running_mean" in name: UpperCAmelCase_ = "running_mean" elif "inv_freq" in name: UpperCAmelCase_ = "inv_freq" elif "running_var" in name: UpperCAmelCase_ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ = "num_batches_tracked" else: UpperCAmelCase_ = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): if config_path is not None: UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" ) else: UpperCAmelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) UpperCAmelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ = 0 UpperCAmelCase_ = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ ) else: UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) UpperCAmelCase_ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ = int(shortest_edge / crop_pct ) UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase = logging.getLogger() def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ = parser.parse_args() return args.f def a__ ( lowerCAmelCase__ , lowerCAmelCase__="eval" ): UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""{split}_results.json""" ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , "r" ) as f: return json.load(lowerCAmelCase__ ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() UpperCAmelCase_ = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() UpperCAmelCase_ = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
14
"""simple docstring""" import string def a__ ( lowerCAmelCase__ ): for key in range(len(string.ascii_uppercase ) ): UpperCAmelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ ) UpperCAmelCase_ = num - key if num < 0: UpperCAmelCase_ = num + len(string.ascii_uppercase ) UpperCAmelCase_ = translated + string.ascii_uppercase[num] else: UpperCAmelCase_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def a__ ( ): UpperCAmelCase_ = input("Encrypted message: " ) UpperCAmelCase_ = message.upper() decrypt(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def a__ ( ): UpperCAmelCase_ = 9 UpperCAmelCase_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase_ = kruskal(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ )
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : Optional[int]=30 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=2 , ) -> Any: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = ViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> str: '''simple docstring''' UpperCAmelCase_ = ViTForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = ViTForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = ViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = ViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = ViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowercase__ ( self : str ) -> str: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(_UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(_UpperCAmelCase ) UpperCAmelCase_ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = inputs.pixel_values.to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = inputs.pixel_values.to(_UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase_ = model(_UpperCAmelCase )
14
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
1
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [] UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) <= 1: return input_list UpperCAmelCase_ = list(lowerCAmelCase__ ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(lowerCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase = [] else: lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
14
"""simple docstring""" lowerCamelCase = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
14
1
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = abs(lowerCAmelCase__ ) UpperCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = abs(lowerCAmelCase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def a__ ( lowerCAmelCase__ ): return sum(int(lowerCAmelCase__ ) for c in str(abs(lowerCAmelCase__ ) ) ) def a__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) -> None: UpperCAmelCase_ = f"""{func.__name__}({value})""" UpperCAmelCase_ = timeit(f"""__main__.{call}""" , setup="import __main__" ) print(f"""{call:56} = {func(lowerCAmelCase__ )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
14
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase__ ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]: '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ = image_std if image_std is not None else self.image_std UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase_ = make_batched(_UpperCAmelCase ) UpperCAmelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
14
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCamelCase = """bert-base-cased""" lowerCamelCase = """fp16""" lowerCamelCase = """bf16""" lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Any ) -> str: '''simple docstring''' super().setUp() UpperCAmelCase_ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = F"""{i + 1}""" UpperCAmelCase_ = strategy with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = prefetch_policy with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = state_dict_type with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = AutoModel.from_pretrained(_UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCAmelCase_ = "BertLayer" elif policy == "SIZE_BASED_WRAP": UpperCAmelCase_ = "2000" with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = "TRANSFORMER_BASED_WRAP" UpperCAmelCase_ = "T5Layer" with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() with self.assertRaises(_UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = "SIZE_BASED_WRAP" UpperCAmelCase_ = "0" with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = mp_dtype with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = Accelerator() if mp_dtype == "fp16": UpperCAmelCase_ = torch.floataa elif mp_dtype == "bf16": UpperCAmelCase_ = torch.bfloataa UpperCAmelCase_ = MixedPrecision(param_dtype=_UpperCAmelCase , reduce_dtype=_UpperCAmelCase , buffer_dtype=_UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCAmelCase_ = self.dist_env.copy() UpperCAmelCase_ = str(_UpperCAmelCase ).lower() with mockenv_context(**_UpperCAmelCase ): UpperCAmelCase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' super().setUp() UpperCAmelCase_ = 0.82 UpperCAmelCase_ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] UpperCAmelCase_ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCAmelCase_ = 160 UpperCAmelCase_ = 160 UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = os.path.join(self.test_scripts_folder , "test_performance.py" ) UpperCAmelCase_ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: UpperCAmelCase_ = cmd.copy() for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) UpperCAmelCase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(_UpperCAmelCase ): UpperCAmelCase_ = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue UpperCAmelCase_ = len(_UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCAmelCase_ = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) UpperCAmelCase_ = cmd_config[:-1] UpperCAmelCase_ = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) UpperCAmelCase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCAmelCase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(_UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
14
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a__ ( lowerCAmelCase__ ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCamelCase = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def lowercase__ ( _UpperCAmelCase : ArgumentParser ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_UpperCAmelCase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , *_UpperCAmelCase : str , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"""Loading model {model_type}""" ) UpperCAmelCase_ = model_type UpperCAmelCase_ = tf_checkpoint UpperCAmelCase_ = pytorch_dump_output UpperCAmelCase_ = config UpperCAmelCase_ = finetuning_task_name def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = "" else: UpperCAmelCase_ = self._tf_checkpoint UpperCAmelCase_ = "" convert_transfo_xl_checkpoint_to_pytorch( _UpperCAmelCase , self._config , self._pytorch_dump_output , _UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
14
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): UpperCAmelCase_ , UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) UpperCAmelCase_ = None while queue: ((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
14
1