code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __a ( _snake_case ):
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = 5
# Realm tok
__SCREAMING_SNAKE_CASE = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""test""",
"""question""",
"""this""",
"""is""",
"""the""",
"""first""",
"""second""",
"""third""",
"""fourth""",
"""fifth""",
"""record""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""realm_tokenizer""" )
os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase )
__SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""realm_block_records""" )
os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase )
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""realm_tokenizer""" ) )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = RealmConfig(num_block_records=self.num_block_records )
return config
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""question""": ["""foo""", """bar"""],
"""answers""": [["""Foo""", """Bar"""], ["""Bar"""]],
} )
return dataset
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = np.array(
[
b"""This is the first record""",
b"""This is the second record""",
b"""This is the third record""",
b"""This is the fourth record""",
b"""This is the fifth record""",
b"""This is a longer longer longer record""",
] ,dtype=lowerCamelCase ,)
return block_records
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = RealmRetriever(
block_records=self.get_dummy_block_records() ,tokenizer=self.get_tokenizer() ,)
return retriever
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_config()
__SCREAMING_SNAKE_CASE = self.get_dummy_retriever()
__SCREAMING_SNAKE_CASE = retriever.tokenizer
__SCREAMING_SNAKE_CASE = np.array([0, 3] ,dtype="""long""" )
__SCREAMING_SNAKE_CASE = tokenizer(["""Test question"""] ).input_ids
__SCREAMING_SNAKE_CASE = tokenizer(
["""the fourth"""] ,add_special_tokens=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,).input_ids
__SCREAMING_SNAKE_CASE = config.reader_seq_len
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever(
lowerCamelCase ,lowerCamelCase ,answer_ids=lowerCamelCase ,max_length=lowerCamelCase ,return_tensors="""np""" )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(concat_inputs.input_ids.shape ,(2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape ,(2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape ,(2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape ,(2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) ,["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] ,)
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) ,["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] ,)
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_config()
__SCREAMING_SNAKE_CASE = self.get_dummy_retriever()
__SCREAMING_SNAKE_CASE = retriever.tokenizer
__SCREAMING_SNAKE_CASE = np.array([0, 3, 5] ,dtype="""long""" )
__SCREAMING_SNAKE_CASE = tokenizer(["""Test question"""] ).input_ids
__SCREAMING_SNAKE_CASE = tokenizer(
["""the fourth""", """longer longer"""] ,add_special_tokens=lowerCamelCase ,return_token_type_ids=lowerCamelCase ,return_attention_mask=lowerCamelCase ,).input_ids
__SCREAMING_SNAKE_CASE = config.reader_seq_len
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever(
lowerCamelCase ,lowerCamelCase ,answer_ids=lowerCamelCase ,max_length=lowerCamelCase ,return_tensors="""np""" )
self.assertEqual([False, True, True] ,lowerCamelCase )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] ,lowerCamelCase )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] ,lowerCamelCase )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname ,"""realm_block_records""" ) )
# Test local path
__SCREAMING_SNAKE_CASE = retriever.from_pretrained(os.path.join(self.tmpdirname ,"""realm_block_records""" ) )
self.assertEqual(retriever.block_records[0] ,b"""This is the first record""" )
# Test mocked remote path
with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download:
__SCREAMING_SNAKE_CASE = os.path.join(
os.path.join(self.tmpdirname ,"""realm_block_records""" ) ,_REALM_BLOCK_RECORDS_FILENAME )
__SCREAMING_SNAKE_CASE = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" )
self.assertEqual(retriever.block_records[0] ,b"""This is the first record""" )
| 707 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> bool:
'''simple docstring'''
if num < 0:
return False
__SCREAMING_SNAKE_CASE = num
__SCREAMING_SNAKE_CASE = 0
while num > 0:
__SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __magic_name__ ( ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch """
"""helper utility that will spawn up """
"""multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__UpperCAmelCase , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase )
return parser.parse_args()
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parse_args()
# Import training_script as a module.
__SCREAMING_SNAKE_CASE = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__SCREAMING_SNAKE_CASE = script_fpath.stem
__SCREAMING_SNAKE_CASE = importlib.import_module(__UpperCAmelCase )
# Patch sys.argv
__SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 708 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
a = list[list[float | int]]
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __UpperCAmelCase ):
for row in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(__UpperCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase )
]
def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase )
def interpolated_func(__UpperCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__UpperCAmelCase ) )
return interpolated_func
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ):
x_val += 1
ret += poly(__UpperCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 13 | 0 |
'''simple docstring'''
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def __magic_name__ ( ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = argparse.ArgumentParser()
parser.add_argument(
"""-m""" , """--pretrained_model_name_or_path""" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , )
parser.add_argument(
"""-c""" , """--caption""" , type=__UpperCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , )
parser.add_argument(
"""-n""" , """--images_num""" , type=__UpperCAmelCase , default=4 , help="""How much images to generate.""" , )
parser.add_argument(
"""-s""" , """--seed""" , type=__UpperCAmelCase , default=42 , help="""Seed for random process.""" , )
parser.add_argument(
"""-ci""" , """--cuda_id""" , type=__UpperCAmelCase , default=0 , help="""cuda_id.""" , )
__SCREAMING_SNAKE_CASE = parser.parse_args()
return args
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if not len(__UpperCAmelCase ) == rows * cols:
raise ValueError("""The specified number of rows and columns are not correct.""" )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = imgs[0].size
__SCREAMING_SNAKE_CASE = Image.new("""RGB""" , size=(cols * w, rows * h) )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = grid.size
for i, img in enumerate(__UpperCAmelCase ):
grid.paste(__UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase="robotic cat with wings" , __UpperCAmelCase=7.5 , __UpperCAmelCase=50 , __UpperCAmelCase=1 , __UpperCAmelCase=42 , ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch.Generator(pipeline.device ).manual_seed(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = pipeline(
__UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , ).images
__SCREAMING_SNAKE_CASE = int(math.sqrt(__UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = image_grid(__UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
a = parse_args()
# Load models and create wrapper for stable diffusion
a = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
a = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
a = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
a = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
a = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
a = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")):
a = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, "unet", unet)
else:
a = unet.to(torch.device("cuda", args.cuda_id))
a = pipeline.to(unet.device)
a , a = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split()))))
a = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
| 709 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a = logging.get_logger(__name__)
@add_end_docstrings(_snake_case )
class __a ( _snake_case ):
def __init__( self : Union[str, Any] ,**lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
requires_backends(self ,"""vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return super().__call__(lowerCamelCase ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_image(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] )
]
return result
| 13 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> bool:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__UpperCAmelCase )
if number < 0:
return False
__SCREAMING_SNAKE_CASE = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
a = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
require_version(deps[pkg] , __UpperCAmelCase )
| 13 | 0 |
'''simple docstring'''
import argparse
a = "docs/source/_static/js/custom.js"
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
with open(__UpperCAmelCase , encoding="""utf-8""" , newline="""\n""" ) as f:
__SCREAMING_SNAKE_CASE = f.readlines()
__SCREAMING_SNAKE_CASE = 0
# First let's put the right version
while not lines[index].startswith("""const stableVersion =""" ):
index += 1
__SCREAMING_SNAKE_CASE = f"""const stableVersion = \"v{version}\"\n"""
# Then update the dictionary
while not lines[index].startswith("""const versionMapping = {""" ):
index += 1
# We go until the end
while not lines[index].startswith("""}""" ):
index += 1
# We add the new version at the end
lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n"""
with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(__UpperCAmelCase )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument("--version", help="Release version.")
a = parser.parse_args()
update_custom_js(args.version)
| 711 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a = logging.getLogger(__name__)
@dataclass
class __a :
__UpperCamelCase : Optional[str] = field(
default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
__UpperCamelCase : Optional[str] = field(
default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, )
__UpperCamelCase : int = field(
default=1024, metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} )
__UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __a :
__UpperCamelCase : str = field(
default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, )
__UpperCamelCase : str = field(
default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
}, )
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__SCREAMING_SNAKE_CASE = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1]
__SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__SCREAMING_SNAKE_CASE = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , )
__SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__SCREAMING_SNAKE_CASE = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__SCREAMING_SNAKE_CASE = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1}
__SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__UpperCAmelCase ):
# Tokenize the texts
def _convert_table_text_to_pandas(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__SCREAMING_SNAKE_CASE = examples["""statement"""]
__SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__SCREAMING_SNAKE_CASE = raw_datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions
__SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__SCREAMING_SNAKE_CASE = default_data_collator
elif training_args.fpaa:
__SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 )
else:
__SCREAMING_SNAKE_CASE = None
# Initialize our Trainer
__SCREAMING_SNAKE_CASE = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , )
# Training
if training_args.do_train:
__SCREAMING_SNAKE_CASE = None
if training_args.resume_from_checkpoint is not None:
__SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__SCREAMING_SNAKE_CASE = last_checkpoint
__SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = train_result.metrics
__SCREAMING_SNAKE_CASE = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __UpperCAmelCase )
trainer.save_metrics("""train""" , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics("""eval""" , __UpperCAmelCase )
trainer.save_metrics("""eval""" , __UpperCAmelCase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" )
__SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions
__SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 )
__SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(__UpperCAmelCase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
__SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> Any:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
a = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
a = 250004
a = 250020
@require_sentencepiece
@require_tokenizers
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Optional[int] = MBartaaTokenizer
__UpperCamelCase : Optional[Any] = MBartaaTokenizerFast
__UpperCamelCase : Optional[Any] = True
__UpperCamelCase : Dict = True
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__SCREAMING_SNAKE_CASE = MBartaaTokenizer(lowerCamelCase ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ,keep_accents=lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """<s>"""
__SCREAMING_SNAKE_CASE = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) ,lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) ,lowerCamelCase )
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"""<s>""" )
self.assertEqual(vocab_keys[1] ,"""<pad>""" )
self.assertEqual(vocab_keys[-1] ,"""<mask>""" )
self.assertEqual(len(lowerCamelCase ) ,1054 )
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,1054 )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MBartaaTokenizer(lowerCamelCase ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ,keep_accents=lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCamelCase ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,)
__SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCamelCase ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] ,)
__SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCamelCase )
self.assertListEqual(
lowerCamelCase ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] ,)
__SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowerCamelCase )
self.assertListEqual(
lowerCamelCase ,[SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] ,)
@slow
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {"""input_ids""": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase ,model_name="""facebook/mbart-large-50""" ,revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" ,)
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
__SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(lowerCamelCase ,lowerCamelCase )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCamelCase )
# Save tokenizer rust, legacy_format=True
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ,legacy_format=lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase )
# Checks it save with the same files
self.assertSequenceEqual(lowerCamelCase ,lowerCamelCase )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) )
shutil.rmtree(lowerCamelCase )
# Save tokenizer rust, legacy_format=False
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(lowerCamelCase ,legacy_format=lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(lowerCamelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCamelCase ,lowerCamelCase ) )
shutil.rmtree(lowerCamelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class __a ( unittest.TestCase ):
__UpperCamelCase : str = 'facebook/mbart-large-50-one-to-many-mmt'
__UpperCamelCase : Optional[Any] = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
__UpperCamelCase : Union[str, Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
__UpperCamelCase : Tuple = [EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2]
@classmethod
def UpperCAmelCase__ ( cls : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" )
__SCREAMING_SNAKE_CASE = 1
return cls
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] ,25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] ,25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] ,25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] ,25_0038 )
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens ,lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
self.assertIn(lowerCamelCase ,self.tokenizer.all_special_ids )
__SCREAMING_SNAKE_CASE = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
__SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowerCamelCase )
self.assertEqual(lowerCamelCase ,lowerCamelCase )
self.assertNotIn(self.tokenizer.eos_token ,lowerCamelCase )
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ["""this is gunna be a long sentence """ * 20]
assert isinstance(src_text[0] ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = 10
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,max_length=lowerCamelCase ,truncation=lowerCamelCase ).input_ids[0]
self.assertEqual(ids[0] ,lowerCamelCase )
self.assertEqual(ids[-1] ,2 )
self.assertEqual(len(lowerCamelCase ) ,lowerCamelCase )
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[25_0053, 25_0001] )
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained(lowerCamelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowerCamelCase )
@require_torch
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase ,return_tensors="""pt""" )
__SCREAMING_SNAKE_CASE = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer(
self.src_text ,text_target=self.tgt_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,)
__SCREAMING_SNAKE_CASE = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
self.assertEqual((2, 14) ,batch.input_ids.shape )
self.assertEqual((2, 14) ,batch.attention_mask.shape )
__SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens ,lowerCamelCase )
self.assertEqual(2 ,batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens ,[EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=3 ,return_tensors="""pt""" )
__SCREAMING_SNAKE_CASE = self.tokenizer(
text_target=self.tgt_text ,padding=lowerCamelCase ,truncation=lowerCamelCase ,max_length=10 ,return_tensors="""pt""" )
__SCREAMING_SNAKE_CASE = targets["""input_ids"""]
__SCREAMING_SNAKE_CASE = shift_tokens_right(lowerCamelCase ,self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.decoder_input_ids.shape[1] ,10 )
@require_torch
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs(
"""A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(lowerCamelCase ) ,{
# en_XX, A, test, EOS
"""input_ids""": [[25_0004, 62, 3034, 2]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 25_0001,
} ,)
| 712 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 13 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224}
__SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_center_crop
__SCREAMING_SNAKE_CASE = crop_size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_convert_rgb
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) )
else:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 )
image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs]
if torchify:
__SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase )
__SCREAMING_SNAKE_CASE = 3
@property
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 713 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" )
__SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
__SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
a = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 13 | 0 |
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
a = TypeVar("KT")
a = TypeVar("VT")
class __a ( Generic[KT, VT] ):
def __init__( self : Any ,lowerCamelCase : KT | str = "root" ,lowerCamelCase : VT | None = None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = key
__SCREAMING_SNAKE_CASE = value
__SCREAMING_SNAKE_CASE = []
def __repr__( self : int ):
'''simple docstring'''
return f"""Node({self.key}: {self.value})"""
@property
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return len(self.forward )
class __a ( Generic[KT, VT] ):
def __init__( self : int ,lowerCamelCase : float = 0.5 ,lowerCamelCase : int = 16 ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Node[KT, VT]()
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = p
__SCREAMING_SNAKE_CASE = max_level
def __str__( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = list(self )
if len(lowerCamelCase ) == 0:
return f"""SkipList(level={self.level})"""
__SCREAMING_SNAKE_CASE = max((len(str(lowerCamelCase ) ) for item in items) ,default=4 )
__SCREAMING_SNAKE_CASE = max(lowerCamelCase ,4 ) + 4
__SCREAMING_SNAKE_CASE = self.head
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = node.forward.copy()
lines.append(f"""[{node.key}]""".ljust(lowerCamelCase ,"""-""" ) + """* """ * len(lowerCamelCase ) )
lines.append(""" """ * label_size + """| """ * len(lowerCamelCase ) )
while len(node.forward ) != 0:
__SCREAMING_SNAKE_CASE = node.forward[0]
lines.append(
f"""[{node.key}]""".ljust(lowerCamelCase ,"""-""" )
+ """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) )
lines.append(""" """ * label_size + """| """ * len(lowerCamelCase ) )
__SCREAMING_SNAKE_CASE = node.forward
lines.append("""None""".ljust(lowerCamelCase ) + """* """ * len(lowerCamelCase ) )
return f"""SkipList(level={self.level})\n""" + "\n".join(lowerCamelCase )
def __iter__( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
__SCREAMING_SNAKE_CASE = node.forward[0]
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
__SCREAMING_SNAKE_CASE = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(lowerCamelCase )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : KT ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._locate_node(lowerCamelCase )
if node is not None:
for i, update_node in enumerate(lowerCamelCase ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
__SCREAMING_SNAKE_CASE = node.forward[i]
else:
__SCREAMING_SNAKE_CASE = update_node.forward[:i]
def UpperCAmelCase__ ( self : Any ,lowerCamelCase : KT ,lowerCamelCase : VT ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._locate_node(lowerCamelCase )
if node is not None:
__SCREAMING_SNAKE_CASE = value
else:
__SCREAMING_SNAKE_CASE = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 ,lowerCamelCase ):
update_vector.append(self.head )
__SCREAMING_SNAKE_CASE = level
__SCREAMING_SNAKE_CASE = Node(lowerCamelCase ,lowerCamelCase )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE = new_node
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : VT ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._locate_node(lowerCamelCase )
if node is not None:
return node.value
return None
def __magic_name__ ( ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("""Key1""" , 3 )
skip_list.insert("""Key2""" , 12 )
skip_list.insert("""Key3""" , 41 )
skip_list.insert("""Key4""" , -19 )
__SCREAMING_SNAKE_CASE = skip_list.head
__SCREAMING_SNAKE_CASE = {}
while node.level != 0:
__SCREAMING_SNAKE_CASE = node.forward[0]
__SCREAMING_SNAKE_CASE = node.value
assert len(__UpperCAmelCase ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def __magic_name__ ( ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("""Key1""" , 10 )
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""Key5""" , 7 )
skip_list.insert("""Key7""" , 10 )
skip_list.insert("""Key10""" , 5 )
skip_list.insert("""Key7""" , 7 )
skip_list.insert("""Key5""" , 5 )
skip_list.insert("""Key10""" , 10 )
__SCREAMING_SNAKE_CASE = skip_list.head
__SCREAMING_SNAKE_CASE = {}
while node.level != 0:
__SCREAMING_SNAKE_CASE = node.forward[0]
__SCREAMING_SNAKE_CASE = node.value
if len(__UpperCAmelCase ) != 4:
print()
assert len(__UpperCAmelCase ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def __magic_name__ ( ) -> Any:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
assert skip_list.find("""Some key""" ) is None
def __magic_name__ ( ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("""Key2""" , 20 )
assert skip_list.find("""Key2""" ) == 20
skip_list.insert("""Some Key""" , 10 )
skip_list.insert("""Key2""" , 8 )
skip_list.insert("""V""" , 13 )
assert skip_list.find("""Y""" ) is None
assert skip_list.find("""Key2""" ) == 8
assert skip_list.find("""Some Key""" ) == 10
assert skip_list.find("""V""" ) == 13
def __magic_name__ ( ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.delete("""Some key""" )
assert len(skip_list.head.forward ) == 0
def __magic_name__ ( ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""V""" , 13 )
skip_list.insert("""X""" , 14 )
skip_list.insert("""Key2""" , 15 )
skip_list.delete("""V""" )
skip_list.delete("""Key2""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""Key2""" ) is None
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""V""" , 13 )
skip_list.insert("""X""" , 14 )
skip_list.insert("""Key2""" , 15 )
skip_list.delete("""V""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) == 14
assert skip_list.find("""Key1""" ) == 12
assert skip_list.find("""Key2""" ) == 15
skip_list.delete("""X""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) == 12
assert skip_list.find("""Key2""" ) == 15
skip_list.delete("""Key1""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) is None
assert skip_list.find("""Key2""" ) == 15
skip_list.delete("""Key2""" )
assert skip_list.find("""V""" ) is None
assert skip_list.find("""X""" ) is None
assert skip_list.find("""Key1""" ) is None
assert skip_list.find("""Key2""" ) is None
def __magic_name__ ( ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert("""Key1""" , 12 )
skip_list.insert("""V""" , 13 )
skip_list.insert("""X""" , 142 )
skip_list.insert("""Key2""" , 15 )
skip_list.delete("""X""" )
def traverse_keys(__UpperCAmelCase ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(__UpperCAmelCase )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def __magic_name__ ( ) -> Any:
'''simple docstring'''
def is_sorted(__UpperCAmelCase ):
return all(next_item >= item for item, next_item in zip(__UpperCAmelCase , lst[1:] ) )
__SCREAMING_SNAKE_CASE = SkipList()
for i in range(10 ):
skip_list.insert(__UpperCAmelCase , __UpperCAmelCase )
assert is_sorted(list(__UpperCAmelCase ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(__UpperCAmelCase ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(__UpperCAmelCase ) )
def __magic_name__ ( ) -> Tuple:
'''simple docstring'''
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def __magic_name__ ( ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SkipList()
skip_list.insert(2 , """2""" )
skip_list.insert(4 , """4""" )
skip_list.insert(6 , """4""" )
skip_list.insert(4 , """5""" )
skip_list.insert(8 , """4""" )
skip_list.insert(9 , """4""" )
skip_list.delete(4 )
print(__UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 714 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json",
"umberto-commoncrawl-cased-v1": (
"https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"
),
"umberto-wikipedia-uncased-v1": (
"https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"
),
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'camembert'
def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = position_embedding_type
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = classifier_dropout
class __a ( _snake_case ):
@property
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 13 | 0 |
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
_validate_point(__UpperCAmelCase )
_validate_point(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) )
def __magic_name__ ( __UpperCAmelCase ) -> None:
'''simple docstring'''
if point:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
for item in point:
if not isinstance(__UpperCAmelCase , (int, float) ):
__SCREAMING_SNAKE_CASE = (
"""Expected a list of numbers as input, found """
f"""{type(__UpperCAmelCase ).__name__}"""
)
raise TypeError(__UpperCAmelCase )
else:
__SCREAMING_SNAKE_CASE = f"""Expected a list of numbers as input, found {type(__UpperCAmelCase ).__name__}"""
raise TypeError(__UpperCAmelCase )
else:
raise ValueError("""Missing an input""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
_validate_point(__UpperCAmelCase )
_validate_point(__UpperCAmelCase )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(__UpperCAmelCase , __UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 715 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __a ( unittest.TestCase ):
def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE = num_patches + 1
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,)
return config, pixel_values
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
__SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size)
__SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) )
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.type_sequence_label_size
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase )
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
__SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
@jax.jit
def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ):
return model(pixel_values=lowerCamelCase ,**lowerCamelCase )
with self.subTest("""JIT Enabled""" ):
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ):
self.assertEqual(jitted_output.shape ,output.shape )
@slow
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
__SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase )
| 13 | 0 |
'''simple docstring'''
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class __a ( _snake_case ):
@slow
@require_torch
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" )
__SCREAMING_SNAKE_CASE : Optional[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__SCREAMING_SNAKE_CASE : Optional[Any] = bertabert.config.encoder.vocab_size
__SCREAMING_SNAKE_CASE : List[str] = tokenizer.sep_token_id
__SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.cls_token_id
__SCREAMING_SNAKE_CASE : Any = 128
__SCREAMING_SNAKE_CASE : Dict = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" )
__SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" )
__SCREAMING_SNAKE_CASE : Dict = train_dataset.select(range(32 ) )
__SCREAMING_SNAKE_CASE : Tuple = val_dataset.select(range(16 ) )
__SCREAMING_SNAKE_CASE : int = 4
def _map_to_encoder_decoder_inputs(lowerCamelCase : Any ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=lowerCamelCase ,max_length=512 )
__SCREAMING_SNAKE_CASE : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=lowerCamelCase ,max_length=128 )
__SCREAMING_SNAKE_CASE : Dict = inputs.input_ids
__SCREAMING_SNAKE_CASE : Dict = inputs.attention_mask
__SCREAMING_SNAKE_CASE : List[Any] = outputs.input_ids
__SCREAMING_SNAKE_CASE : List[Any] = outputs.input_ids.copy()
__SCREAMING_SNAKE_CASE : Optional[int] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
__SCREAMING_SNAKE_CASE : Tuple = outputs.attention_mask
assert all(len(lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(lowerCamelCase : Tuple ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = pred.label_ids
__SCREAMING_SNAKE_CASE : List[Any] = pred.predictions
# all unnecessary tokens are removed
__SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase )
__SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(lowerCamelCase ,skip_special_tokens=lowerCamelCase )
__SCREAMING_SNAKE_CASE : List[str] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCamelCase ) )] ) / len(lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
__SCREAMING_SNAKE_CASE : Any = train_dataset.map(
_map_to_encoder_decoder_inputs ,batched=lowerCamelCase ,batch_size=lowerCamelCase ,remove_columns=["""article""", """highlights"""] ,)
train_dataset.set_format(
type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,)
# same for validation dataset
__SCREAMING_SNAKE_CASE : int = val_dataset.map(
_map_to_encoder_decoder_inputs ,batched=lowerCamelCase ,batch_size=lowerCamelCase ,remove_columns=["""article""", """highlights"""] ,)
val_dataset.set_format(
type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,)
__SCREAMING_SNAKE_CASE : str = self.get_auto_remove_tmp_dir()
__SCREAMING_SNAKE_CASE : Union[str, Any] = SeqaSeqTrainingArguments(
output_dir=lowerCamelCase ,per_device_train_batch_size=lowerCamelCase ,per_device_eval_batch_size=lowerCamelCase ,predict_with_generate=lowerCamelCase ,evaluation_strategy="""steps""" ,do_train=lowerCamelCase ,do_eval=lowerCamelCase ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,)
# instantiate trainer
__SCREAMING_SNAKE_CASE : Optional[int] = SeqaSeqTrainer(
model=lowerCamelCase ,args=lowerCamelCase ,compute_metrics=_compute_metrics ,train_dataset=lowerCamelCase ,eval_dataset=lowerCamelCase ,tokenizer=lowerCamelCase ,)
# start training
trainer.train()
| 716 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'sew'
def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,):
'''simple docstring'''
super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase )
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = feat_extract_norm
__SCREAMING_SNAKE_CASE = feat_extract_activation
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = conv_bias
__SCREAMING_SNAKE_CASE = num_conv_pos_embeddings
__SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups
__SCREAMING_SNAKE_CASE = len(self.conv_dim )
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = squeeze_factor
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = feat_proj_dropout
__SCREAMING_SNAKE_CASE = final_dropout
__SCREAMING_SNAKE_CASE = layerdrop
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__SCREAMING_SNAKE_CASE = apply_spec_augment
__SCREAMING_SNAKE_CASE = mask_time_prob
__SCREAMING_SNAKE_CASE = mask_time_length
__SCREAMING_SNAKE_CASE = mask_time_min_masks
__SCREAMING_SNAKE_CASE = mask_feature_prob
__SCREAMING_SNAKE_CASE = mask_feature_length
__SCREAMING_SNAKE_CASE = mask_feature_min_masks
# ctc loss
__SCREAMING_SNAKE_CASE = ctc_loss_reduction
__SCREAMING_SNAKE_CASE = ctc_zero_infinity
# sequence classification
__SCREAMING_SNAKE_CASE = use_weighted_layer_sum
__SCREAMING_SNAKE_CASE = classifier_proj_size
@property
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul ,self.conv_stride ,1 )
| 13 | 0 |
'''simple docstring'''
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=7 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
if token is not None:
__SCREAMING_SNAKE_CASE = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""}
# The id of a workflow (not of a workflow run)
__SCREAMING_SNAKE_CASE = """636036"""
__SCREAMING_SNAKE_CASE = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"""
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"""
__SCREAMING_SNAKE_CASE = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json()
return result["workflow_runs"]
def __magic_name__ ( __UpperCAmelCase ) -> Any:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = get_daily_ci_runs(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
__SCREAMING_SNAKE_CASE = workflow_run["""id"""]
break
return workflow_run_id
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = get_last_daily_ci_runs(__UpperCAmelCase )
if workflow_run_id is not None:
__SCREAMING_SNAKE_CASE = get_artifacts_links(worflow_run_id=__UpperCAmelCase , token=__UpperCAmelCase )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
__SCREAMING_SNAKE_CASE = artifacts_links[artifact_name]
download_artifact(
artifact_name=__UpperCAmelCase , artifact_url=__UpperCAmelCase , output_dir=__UpperCAmelCase , token=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
get_last_daily_ci_artifacts(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = {}
for artifact_name in artifact_names:
__SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , f"""{artifact_name}.zip""" )
if os.path.isfile(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = {}
with zipfile.ZipFile(__UpperCAmelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(__UpperCAmelCase ):
# read the file
with z.open(__UpperCAmelCase ) as f:
__SCREAMING_SNAKE_CASE = f.read().decode("""UTF-8""" )
return results
| 717 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 0
for divide_by_number in range(__UpperCAmelCase , digit + 1 ):
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = divide_by_number
else:
has_been_divided.append(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
'''simple docstring'''
import sys
from pathlib import Path
a = Path(__file__).resolve().parents[3] / "src"
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
a = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"}
a = "zero2"
a = "zero3"
a = [ZEROa, ZEROa]
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parameterized.to_safe_name("""_""".join(str(__UpperCAmelCase ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
a = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __a ( _snake_case ):
@parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ):
'''simple docstring'''
self.run_and_check(
stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,)
@require_torch_multi_gpu
@parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[Any] ,lowerCamelCase : Dict ):
'''simple docstring'''
self.run_and_check(
stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,)
@parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ):
'''simple docstring'''
self.run_and_check(
stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,)
@require_torch_multi_gpu
@parameterized.expand(lowerCamelCase ,name_func=lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
self.run_and_check(
stage=lowerCamelCase ,model=lowerCamelCase ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,)
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Dict ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : int = 10 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = models[model]
__SCREAMING_SNAKE_CASE = self.run_trainer(
stage=lowerCamelCase ,model_name=lowerCamelCase ,eval_steps=lowerCamelCase ,num_train_epochs=1 ,distributed=lowerCamelCase ,fpaa=lowerCamelCase ,)
self.do_checks(lowerCamelCase )
return output_dir
def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : int = 10 ,lowerCamelCase : int = 1 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir("""./xxx""" ,after=lowerCamelCase )
__SCREAMING_SNAKE_CASE = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(lowerCamelCase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__SCREAMING_SNAKE_CASE = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
__SCREAMING_SNAKE_CASE = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
__SCREAMING_SNAKE_CASE = self.get_launcher(lowerCamelCase )
__SCREAMING_SNAKE_CASE = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowerCamelCase ,env=self.get_env() )
return output_dir
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any]=False ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = min(2 ,get_gpu_count() ) if distributed else 1
return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 718 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224}
__SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_center_crop
__SCREAMING_SNAKE_CASE = crop_size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_convert_rgb
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) )
else:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 )
image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs]
if torchify:
__SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase )
__SCREAMING_SNAKE_CASE = 3
@property
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 13 | 0 |
'''simple docstring'''
import math
from datetime import datetime, timedelta
def __magic_name__ ( __UpperCAmelCase ) -> datetime:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = year % 19
__SCREAMING_SNAKE_CASE = year % 4
__SCREAMING_SNAKE_CASE = year % 7
__SCREAMING_SNAKE_CASE = math.floor(year / 100 )
__SCREAMING_SNAKE_CASE = math.floor((13 + 8 * leap_day_inhibits) / 25 )
__SCREAMING_SNAKE_CASE = leap_day_inhibits / 4
__SCREAMING_SNAKE_CASE = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
__SCREAMING_SNAKE_CASE = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
__SCREAMING_SNAKE_CASE = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
__SCREAMING_SNAKE_CASE = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(__UpperCAmelCase , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(__UpperCAmelCase , 4 , 18 )
else:
return datetime(__UpperCAmelCase , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
a = "will be" if year > datetime.now().year else "was"
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 719 |
'''simple docstring'''
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = timeit.default_timer()
__SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime
return delta
__SCREAMING_SNAKE_CASE = func.__name__
return wrapper
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = seq_shapes or {}
for i in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(__UpperCAmelCase , _ArrayXD ):
__SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(__UpperCAmelCase , datasets.Value ):
if v.dtype == "string":
__SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged."""
else:
__SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(__UpperCAmelCase , datasets.Sequence ):
while isinstance(__UpperCAmelCase , datasets.Sequence ):
__SCREAMING_SNAKE_CASE = v.feature
__SCREAMING_SNAKE_CASE = seq_shapes[k]
__SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype )
__SCREAMING_SNAKE_CASE = data
dummy_data.append((i, example) )
return dummy_data
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase )
with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer:
for key, record in dummy_data:
__SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase )
writer.write(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
__SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) )
return dataset
| 13 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> bool:
'''simple docstring'''
if num < 0:
return False
__SCREAMING_SNAKE_CASE = num
__SCREAMING_SNAKE_CASE = 0
while num > 0:
__SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 720 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
a = "__DUMMY_TRANSFORMERS_USER__"
a = "Dummy User"
a = "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"
a = "https://hub-ci.huggingface.co"
a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
a = Path("~/.huggingface/hub_ci_token").expanduser()
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(__UpperCAmelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def __magic_name__ ( ) -> Optional[Any]:
'''simple docstring'''
return HfApi(endpoint=__UpperCAmelCase )
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = HfFolder.get_token()
HfFolder.save_token(__UpperCAmelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(__UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
def _cleanup_repo(__UpperCAmelCase ):
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
@contextmanager
def _temporary_repo(__UpperCAmelCase ):
try:
yield repo_id
finally:
cleanup_repo(__UpperCAmelCase )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> None:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(__UpperCAmelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __UpperCAmelCase , __UpperCAmelCase , )
def __magic_name__ ( __UpperCAmelCase ) -> None:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
depth_first_search([] , [] , [] , __UpperCAmelCase , __UpperCAmelCase )
# Print all the boards
for board in boards:
for column in board:
print(__UpperCAmelCase )
print("""""" )
print(len(__UpperCAmelCase ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 721 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a = logging.get_logger(__name__)
a = {
"ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json",
}
class __a ( _snake_case ):
__UpperCamelCase : Dict = 'deta'
__UpperCamelCase : List[str] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,):
'''simple docstring'''
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
__SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] )
else:
if isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" )
__SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type]
__SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase )
__SCREAMING_SNAKE_CASE = backbone_config
__SCREAMING_SNAKE_CASE = num_queries
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = d_model
__SCREAMING_SNAKE_CASE = encoder_ffn_dim
__SCREAMING_SNAKE_CASE = encoder_layers
__SCREAMING_SNAKE_CASE = encoder_attention_heads
__SCREAMING_SNAKE_CASE = decoder_ffn_dim
__SCREAMING_SNAKE_CASE = decoder_layers
__SCREAMING_SNAKE_CASE = decoder_attention_heads
__SCREAMING_SNAKE_CASE = dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = init_std
__SCREAMING_SNAKE_CASE = init_xavier_std
__SCREAMING_SNAKE_CASE = encoder_layerdrop
__SCREAMING_SNAKE_CASE = auxiliary_loss
__SCREAMING_SNAKE_CASE = position_embedding_type
# deformable attributes
__SCREAMING_SNAKE_CASE = num_feature_levels
__SCREAMING_SNAKE_CASE = encoder_n_points
__SCREAMING_SNAKE_CASE = decoder_n_points
__SCREAMING_SNAKE_CASE = two_stage
__SCREAMING_SNAKE_CASE = two_stage_num_proposals
__SCREAMING_SNAKE_CASE = with_box_refine
__SCREAMING_SNAKE_CASE = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
__SCREAMING_SNAKE_CASE = class_cost
__SCREAMING_SNAKE_CASE = bbox_cost
__SCREAMING_SNAKE_CASE = giou_cost
# Loss coefficients
__SCREAMING_SNAKE_CASE = mask_loss_coefficient
__SCREAMING_SNAKE_CASE = dice_loss_coefficient
__SCREAMING_SNAKE_CASE = bbox_loss_coefficient
__SCREAMING_SNAKE_CASE = giou_loss_coefficient
__SCREAMING_SNAKE_CASE = eos_coefficient
__SCREAMING_SNAKE_CASE = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.d_model
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
__SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
__SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
| 13 | 0 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=5 ) -> int:
'''simple docstring'''
assert masked_input.count("""<mask>""" ) == 1
__SCREAMING_SNAKE_CASE = torch.tensor(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ).unsqueeze(0 ) # Batch size 1
__SCREAMING_SNAKE_CASE = model(__UpperCAmelCase )[0] # The last hidden-state is the first element of the output tuple
__SCREAMING_SNAKE_CASE = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__SCREAMING_SNAKE_CASE = logits[0, masked_index, :]
__SCREAMING_SNAKE_CASE = logits.softmax(dim=0 )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = prob.topk(k=__UpperCAmelCase , dim=0 )
__SCREAMING_SNAKE_CASE = """ """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCAmelCase ) )] )
__SCREAMING_SNAKE_CASE = tokenizer.mask_token
__SCREAMING_SNAKE_CASE = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ):
__SCREAMING_SNAKE_CASE = predicted_token_bpe.replace("""\u2581""" , """ """ )
if " {0}".format(__UpperCAmelCase ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(""" {0}""".format(__UpperCAmelCase ) , __UpperCAmelCase ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(__UpperCAmelCase , __UpperCAmelCase ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
a = CamembertTokenizer.from_pretrained("camembert-base")
a = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
a = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 700 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class __a ( nn.Module ):
__UpperCamelCase : int
__UpperCamelCase : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self : List[Any] ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape
__SCREAMING_SNAKE_CASE = jax.image.resize(
lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,)
__SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase )
return hidden_states
class __a ( nn.Module ):
__UpperCamelCase : int
__UpperCamelCase : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase )
return hidden_states
class __a ( nn.Module ):
__UpperCamelCase : int
__UpperCamelCase : int = None
__UpperCamelCase : float = 0.0
__UpperCamelCase : bool = None
__UpperCamelCase : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels
__SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
__SCREAMING_SNAKE_CASE = nn.Conv(
lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype )
__SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
__SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob )
__SCREAMING_SNAKE_CASE = nn.Conv(
lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__SCREAMING_SNAKE_CASE = None
if use_nin_shortcut:
__SCREAMING_SNAKE_CASE = nn.Conv(
lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = hidden_states
__SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase )
__SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) )
__SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 )
__SCREAMING_SNAKE_CASE = hidden_states + temb
__SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase )
__SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase )
if self.conv_shortcut is not None:
__SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase )
return hidden_states + residual
| 13 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = False ) -> float:
'''simple docstring'''
if not arr:
return 0
__SCREAMING_SNAKE_CASE = 0 if allow_empty_subarrays else float("""-inf""" )
__SCREAMING_SNAKE_CASE = 0.0
for num in arr:
__SCREAMING_SNAKE_CASE = max(0 if allow_empty_subarrays else num , curr_sum + num )
__SCREAMING_SNAKE_CASE = max(__UpperCAmelCase , __UpperCAmelCase )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
a = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F'''{max_subarray_sum(nums) = }''')
| 701 |
'''simple docstring'''
import sys
from collections import defaultdict
class __a :
def __init__( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.node_position[vertex]
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = pos
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ):
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__SCREAMING_SNAKE_CASE = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__SCREAMING_SNAKE_CASE = 2 * start + 1
else:
__SCREAMING_SNAKE_CASE = 2 * start + 2
if heap[smallest_child] < heap[start]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
heap[start],
positions[start],
)
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa
__SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] ,self.get_position(positions[start] ) )
self.set_position(positions[start] ,lowerCamelCase )
self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = position[index]
while index != 0:
__SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__SCREAMING_SNAKE_CASE = heap[parent]
__SCREAMING_SNAKE_CASE = position[parent]
self.set_position(position[parent] ,lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE = val
__SCREAMING_SNAKE_CASE = temp
self.set_position(lowerCamelCase ,lowerCamelCase )
break
__SCREAMING_SNAKE_CASE = parent
else:
__SCREAMING_SNAKE_CASE = val
__SCREAMING_SNAKE_CASE = temp
self.set_position(lowerCamelCase ,0 )
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1
for i in range(lowerCamelCase ,-1 ,-1 ):
self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase )
def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = positions[0]
__SCREAMING_SNAKE_CASE = sys.maxsize
self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase )
return temp
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Heap()
__SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex
__SCREAMING_SNAKE_CASE = []
for vertex in range(len(__UpperCAmelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(__UpperCAmelCase )
heap.node_position.append(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = distance
heap.heapify(__UpperCAmelCase , __UpperCAmelCase )
for _ in range(1 , len(__UpperCAmelCase ) ):
__SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__SCREAMING_SNAKE_CASE = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__UpperCAmelCase )]
):
__SCREAMING_SNAKE_CASE = distance
heap.bottom_to_top(
__UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
a = int(input("Enter number of edges: ").strip())
a = defaultdict(list)
for _ in range(edges_number):
a = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError("""'float' object cannot be interpreted as an integer""" )
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError("""'str' object cannot be interpreted as an integer""" )
if num == 0:
return "0b0"
__SCREAMING_SNAKE_CASE = False
if num < 0:
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = -num
__SCREAMING_SNAKE_CASE = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(__UpperCAmelCase ) for e in binary )
return "0b" + "".join(str(__UpperCAmelCase ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 |
'''simple docstring'''
import os
import string
import sys
a = 1 << 8
a = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
a = KEYMAP["up"]
a = KEYMAP["left"]
if sys.platform == "win32":
a = []
a = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
a = ord(str(i))
def __magic_name__ ( ) -> Union[str, Any]:
'''simple docstring'''
if os.name == "nt":
import msvcrt
__SCREAMING_SNAKE_CASE = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__UpperCAmelCase ) == 0:
# Read the keystroke
__SCREAMING_SNAKE_CASE = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
__SCREAMING_SNAKE_CASE = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
__SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(__UpperCAmelCase )
if ord(__UpperCAmelCase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
__SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] )
except KeyError:
__SCREAMING_SNAKE_CASE = cha[1]
else:
__SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase )
else:
__SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
__SCREAMING_SNAKE_CASE = sys.stdin.fileno()
__SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase )
try:
tty.setraw(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = sys.stdin.read(1 )
finally:
termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase )
return ch
def __magic_name__ ( ) -> List[str]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = get_raw_chars()
if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__UpperCAmelCase ) == KEYMAP["esc"]:
__SCREAMING_SNAKE_CASE = get_raw_chars()
if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]:
__SCREAMING_SNAKE_CASE = get_raw_chars()
if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 13 | 0 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES
else:
__SCREAMING_SNAKE_CASE = {tokenizer_name: getattr(__UpperCAmelCase , tokenizer_name + """Fast""" )}
logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES[tokenizer_name]
__SCREAMING_SNAKE_CASE = True
if checkpoint_name is None:
__SCREAMING_SNAKE_CASE = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__SCREAMING_SNAKE_CASE = [checkpoint_name]
logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(__UpperCAmelCase , force_download=__UpperCAmelCase )
# Save fast tokenizer
logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = checkpoint.split("""/""" )
__SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase )
elif add_prefix:
__SCREAMING_SNAKE_CASE = checkpoint
__SCREAMING_SNAKE_CASE = dump_path
else:
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = dump_path
logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__SCREAMING_SNAKE_CASE = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__SCREAMING_SNAKE_CASE = file_path.split(__UpperCAmelCase )[-1][0]
if next_char == "/":
__SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = None
logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__SCREAMING_SNAKE_CASE = tokenizer.save_pretrained(
__UpperCAmelCase , legacy_format=__UpperCAmelCase , filename_prefix=__UpperCAmelCase )
logger.info(f"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith("""tokenizer.json""" ):
os.remove(__UpperCAmelCase )
logger.info(f"""=> removing {file_name}""" )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--checkpoint_name",
default=None,
type=str,
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
)
parser.add_argument(
"--force_download",
action="store_true",
help="Re-download checkpoints.",
)
a = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 703 |
'''simple docstring'''
from __future__ import annotations
import bisect
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
if hi < 0:
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
while lo < hi:
__SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__SCREAMING_SNAKE_CASE = mid + 1
else:
__SCREAMING_SNAKE_CASE = mid
return lo
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
if hi < 0:
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
while lo < hi:
__SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__SCREAMING_SNAKE_CASE = mid + 1
else:
__SCREAMING_SNAKE_CASE = mid
return lo
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1
while left <= right:
__SCREAMING_SNAKE_CASE = left + (right - left) // 2
__SCREAMING_SNAKE_CASE = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__SCREAMING_SNAKE_CASE = midpoint - 1
else:
__SCREAMING_SNAKE_CASE = midpoint + 1
return None
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase )
if index != len(__UpperCAmelCase ) and sorted_collection[index] == item:
return index
return None
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
'''simple docstring'''
if right < left:
return None
__SCREAMING_SNAKE_CASE = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 )
else:
return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase )
if __name__ == "__main__":
a = input("Enter numbers separated by comma:\n").strip()
a = sorted(int(item) for item in user_input.split(","))
a = int(input("Enter a single number to be found in the list:\n"))
a = binary_search(collection, target)
if result is None:
print(F'''{target} was not found in {collection}.''')
else:
print(F'''{target} was found at position {result} in {collection}.''')
| 13 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : int = KandinskyVaaInpaintPipeline
__UpperCamelCase : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image']
__UpperCamelCase : Any = [
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
__UpperCamelCase : List[str] = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
__UpperCamelCase : Optional[int] = False
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return 32
@property
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return 32
@property
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
return 100
@property
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCamelCase )
return model
@property
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.dummy_unet
__SCREAMING_SNAKE_CASE = self.dummy_movq
__SCREAMING_SNAKE_CASE = DDIMScheduler(
num_train_timesteps=1000 ,beta_schedule="""linear""" ,beta_start=0.00_085 ,beta_end=0.012 ,clip_sample=lowerCamelCase ,set_alpha_to_one=lowerCamelCase ,steps_offset=1 ,prediction_type="""epsilon""" ,thresholding=lowerCamelCase ,)
__SCREAMING_SNAKE_CASE = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Tuple=0 ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
__SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to(
lowerCamelCase )
# create init_image
__SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase )
__SCREAMING_SNAKE_CASE = image.cpu().permute(0 ,2 ,3 ,1 )[0]
__SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
__SCREAMING_SNAKE_CASE = np.ones((64, 64) ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = 0
if str(lowerCamelCase ).startswith("""mps""" ):
__SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """cpu"""
__SCREAMING_SNAKE_CASE = self.get_dummy_components()
__SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCamelCase )
__SCREAMING_SNAKE_CASE = pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
__SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCamelCase ) )
__SCREAMING_SNAKE_CASE = output.images
__SCREAMING_SNAKE_CASE = pipe(
**self.get_dummy_inputs(lowerCamelCase ) ,return_dict=lowerCamelCase ,)[0]
__SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
__SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
print(f"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
__SCREAMING_SNAKE_CASE = np.array(
[0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" )
__SCREAMING_SNAKE_CASE = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__SCREAMING_SNAKE_CASE = np.ones((768, 768) ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = """a hat"""
__SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" ,torch_dtype=torch.floataa )
pipe_prior.to(lowerCamelCase )
__SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder-inpaint""" ,torch_dtype=torch.floataa )
__SCREAMING_SNAKE_CASE = pipeline.to(lowerCamelCase )
pipeline.set_progress_bar_config(disable=lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pipe_prior(
lowerCamelCase ,generator=lowerCamelCase ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple()
__SCREAMING_SNAKE_CASE = pipeline(
image=lowerCamelCase ,mask_image=lowerCamelCase ,image_embeds=lowerCamelCase ,negative_image_embeds=lowerCamelCase ,generator=lowerCamelCase ,num_inference_steps=100 ,height=768 ,width=768 ,output_type="""np""" ,)
__SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowerCamelCase ,lowerCamelCase )
| 704 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
a = logging.get_logger(__name__)
class __a ( _snake_case ):
__UpperCamelCase : int = 'linear'
__UpperCamelCase : Tuple = 'cosine'
__UpperCamelCase : Tuple = 'cosine_with_restarts'
__UpperCamelCase : List[Any] = 'polynomial'
__UpperCamelCase : Optional[Any] = 'constant'
__UpperCamelCase : Optional[int] = 'constant_with_warmup'
__UpperCamelCase : List[Any] = 'piecewise_constant'
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) )
return 1.0
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" )
__SCREAMING_SNAKE_CASE = int(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = float(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = value
__SCREAMING_SNAKE_CASE = float(rule_list[-1] )
def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ):
def rule_func(__UpperCAmelCase ) -> float:
__SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__UpperCAmelCase ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__SCREAMING_SNAKE_CASE = lr_init - lr_end
__SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps
__SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps
__SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , )
return schedule_func(
__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
| 13 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class __a ( _snake_case ):
'''simple docstring'''
__UpperCamelCase : str = 'vit'
def __init__( self : Dict ,lowerCamelCase : Tuple=768 ,lowerCamelCase : Any=12 ,lowerCamelCase : Optional[int]=12 ,lowerCamelCase : List[str]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : int=0.0 ,lowerCamelCase : Optional[int]=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : Optional[Any]=224 ,lowerCamelCase : int=16 ,lowerCamelCase : Optional[int]=3 ,lowerCamelCase : Tuple=True ,lowerCamelCase : List[Any]=16 ,**lowerCamelCase : Any ,):
'''simple docstring'''
super().__init__(**lowerCamelCase )
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = qkv_bias
__SCREAMING_SNAKE_CASE = encoder_stride
class __a ( _snake_case ):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = version.parse('1.11' )
@property
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return 1E-4
| 705 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
"SEWForCTC",
"SEWForSequenceClassification",
"SEWModel",
"SEWPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 0 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __a ( unittest.TestCase ):
def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE = num_patches + 1
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,)
return config, pixel_values
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
__SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size)
__SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) )
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.type_sequence_label_size
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase )
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
__SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
@jax.jit
def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ):
return model(pixel_values=lowerCamelCase ,**lowerCamelCase )
with self.subTest("""JIT Enabled""" ):
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ):
self.assertEqual(jitted_output.shape ,output.shape )
@slow
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
__SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase )
| 706 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" )
__SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""" , class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 13 | 0 |
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class __a ( _snake_case ):
__UpperCamelCase : torch.FloatTensor
__UpperCamelCase : Optional[torch.FloatTensor] = None
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ) -> str:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCAmelCase ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCAmelCase ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
__SCREAMING_SNAKE_CASE = []
for i in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps
__SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) )
return torch.tensor(__UpperCAmelCase , dtype=torch.floataa )
class __a ( _snake_case, _snake_case ):
@register_to_config
def __init__( self : Optional[int] ,lowerCamelCase : int = 1000 ,lowerCamelCase : str = "fixed_small_log" ,lowerCamelCase : bool = True ,lowerCamelCase : Optional[float] = 1.0 ,lowerCamelCase : str = "epsilon" ,lowerCamelCase : str = "squaredcos_cap_v2" ,):
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
__SCREAMING_SNAKE_CASE = betas_for_alpha_bar(lowerCamelCase )
__SCREAMING_SNAKE_CASE = 1.0 - self.betas
__SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas ,dim=0 )
__SCREAMING_SNAKE_CASE = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
__SCREAMING_SNAKE_CASE = 1.0
# setable values
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = torch.from_numpy(np.arange(0 ,lowerCamelCase )[::-1].copy() )
__SCREAMING_SNAKE_CASE = variance_type
def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : int ,lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = num_inference_steps
__SCREAMING_SNAKE_CASE = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
__SCREAMING_SNAKE_CASE = (np.arange(0 ,lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
__SCREAMING_SNAKE_CASE = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Any ,lowerCamelCase : List[str]=None ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : Any=None ):
'''simple docstring'''
if prev_timestep is None:
__SCREAMING_SNAKE_CASE = t - 1
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[t]
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__SCREAMING_SNAKE_CASE = self.betas[t]
else:
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__SCREAMING_SNAKE_CASE = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
__SCREAMING_SNAKE_CASE = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
__SCREAMING_SNAKE_CASE = torch.log(torch.clamp(lowerCamelCase ,min=1E-2_0 ) )
__SCREAMING_SNAKE_CASE = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
__SCREAMING_SNAKE_CASE = variance.log()
__SCREAMING_SNAKE_CASE = beta.log()
__SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2
__SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log
return variance
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : int ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : List[str]=None ,lowerCamelCase : bool = True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(lowerCamelCase ,sample.shape[1] ,dim=1 )
else:
__SCREAMING_SNAKE_CASE = None
# 1. compute alphas, betas
if prev_timestep is None:
__SCREAMING_SNAKE_CASE = t - 1
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[t]
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__SCREAMING_SNAKE_CASE = self.betas[t]
__SCREAMING_SNAKE_CASE = self.alphas[t]
else:
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev
__SCREAMING_SNAKE_CASE = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__SCREAMING_SNAKE_CASE = model_output
else:
raise ValueError(
f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__SCREAMING_SNAKE_CASE = torch.clamp(
lowerCamelCase ,-self.config.clip_sample_range ,self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
__SCREAMING_SNAKE_CASE = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__SCREAMING_SNAKE_CASE = 0
if t > 0:
__SCREAMING_SNAKE_CASE = randn_tensor(
model_output.shape ,dtype=model_output.dtype ,generator=lowerCamelCase ,device=model_output.device )
__SCREAMING_SNAKE_CASE = self._get_variance(
lowerCamelCase ,predicted_variance=lowerCamelCase ,prev_timestep=lowerCamelCase ,)
if self.variance_type == "fixed_small_log":
__SCREAMING_SNAKE_CASE = variance
elif self.variance_type == "learned_range":
__SCREAMING_SNAKE_CASE = (0.5 * variance).exp()
else:
raise ValueError(
f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
""" for the UnCLIPScheduler.""" )
__SCREAMING_SNAKE_CASE = variance * variance_noise
__SCREAMING_SNAKE_CASE = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase ,pred_original_sample=lowerCamelCase )
def UpperCAmelCase__ ( self : str ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.FloatTensor ,lowerCamelCase : torch.IntTensor ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.alphas_cumprod.to(device=original_samples.device ,dtype=original_samples.dtype )
__SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device )
__SCREAMING_SNAKE_CASE = alphas_cumprod[timesteps] ** 0.5
__SCREAMING_SNAKE_CASE = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
__SCREAMING_SNAKE_CASE = sqrt_alpha_prod.unsqueeze(-1 )
__SCREAMING_SNAKE_CASE = (1 - alphas_cumprod[timesteps]) ** 0.5
__SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
__SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
__SCREAMING_SNAKE_CASE = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 707 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> bool:
'''simple docstring'''
if num < 0:
return False
__SCREAMING_SNAKE_CASE = num
__SCREAMING_SNAKE_CASE = 0
while num > 0:
__SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a = {
"configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"GraphormerForGraphClassification",
"GraphormerModel",
"GraphormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 708 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
a = list[list[float | int]]
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __UpperCAmelCase ):
for row in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(__UpperCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase )
]
def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase )
def interpolated_func(__UpperCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__UpperCAmelCase ) )
return interpolated_func
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ):
x_val += 1
ret += poly(__UpperCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 13 | 0 |
'''simple docstring'''
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = FunnelTokenizer
__UpperCamelCase : Dict = FunnelTokenizerFast
__UpperCamelCase : List[str] = True
__UpperCamelCase : Optional[Any] = True
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
super().setUp()
__SCREAMING_SNAKE_CASE = [
"""<unk>""",
"""<cls>""",
"""<sep>""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def UpperCAmelCase__ ( self : List[Any] ,**lowerCamelCase : str ):
'''simple docstring'''
return FunnelTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase )
def UpperCAmelCase__ ( self : List[str] ,**lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return FunnelTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running"""
__SCREAMING_SNAKE_CASE = """unwanted, running"""
return input_text, output_text
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file )
__SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(lowerCamelCase ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) ,[7, 4, 5, 10, 8, 9] )
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=lowerCamelCase )
for tokenizer in tokenizers:
__SCREAMING_SNAKE_CASE = tokenizer("""UNwant\u00E9d,running""" )
__SCREAMING_SNAKE_CASE = len(inputs["""input_ids"""] ) - 1
self.assertListEqual(inputs["""token_type_ids"""] ,[2] + [0] * sentence_len )
__SCREAMING_SNAKE_CASE = tokenizer("""UNwant\u00E9d,running""" ,"""UNwant\u00E9d,running""" )
self.assertListEqual(inputs["""token_type_ids"""] ,[2] + [0] * sentence_len + [1] * sentence_len )
| 709 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a = logging.get_logger(__name__)
@add_end_docstrings(_snake_case )
class __a ( _snake_case ):
def __init__( self : Union[str, Any] ,**lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
requires_backends(self ,"""vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return super().__call__(lowerCamelCase ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_image(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] )
]
return result
| 13 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
return "".join(chr(ord(__UpperCAmelCase ) - 32 ) if """a""" <= char <= """z""" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 710 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
a = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
require_version(deps[pkg] , __UpperCAmelCase )
| 13 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : str ,lowerCamelCase : List[str] ,lowerCamelCase : str=7 ,lowerCamelCase : Optional[Any]=3 ,lowerCamelCase : Tuple=30 ,lowerCamelCase : int=400 ,lowerCamelCase : Union[str, Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : str=True ,lowerCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] ,lowerCamelCase : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : Any=1 / 255 ,lowerCamelCase : Any=True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_rescale
__SCREAMING_SNAKE_CASE = rescale_factor
__SCREAMING_SNAKE_CASE = do_pad
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ,lowerCamelCase : Tuple=False ):
'''simple docstring'''
if not batched:
__SCREAMING_SNAKE_CASE = image_inputs[0]
if isinstance(lowerCamelCase ,Image.Image ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.size
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2]
if w < h:
__SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w )
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
elif w > h:
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
__SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h )
else:
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
__SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""]
else:
__SCREAMING_SNAKE_CASE = []
for image in image_inputs:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[0] )[0]
__SCREAMING_SNAKE_CASE = max(lowerCamelCase ,key=lambda lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Union[str, Any] = DetaImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_rescale""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_pad""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad ,lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase )
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase ,torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(lowerCamelCase ,batched=lowerCamelCase )
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) ,)
@slow
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" ,"""r""" ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {"""image_id""": 3_9769, """annotations""": target}
# encode them
__SCREAMING_SNAKE_CASE = DetaImageProcessor()
__SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,return_tensors="""pt""" )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) )
@slow
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" ,"""r""" ) as f:
__SCREAMING_SNAKE_CASE = json.loads(f.read() )
__SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
__SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
__SCREAMING_SNAKE_CASE = DetaImageProcessor(format="""coco_panoptic""" )
__SCREAMING_SNAKE_CASE = image_processing(images=lowerCamelCase ,annotations=lowerCamelCase ,masks_path=lowerCamelCase ,return_tensors="""pt""" )
# verify pixel values
__SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] ,lowerCamelCase ,atol=1E-4 ) )
# verify area
__SCREAMING_SNAKE_CASE = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] ,lowerCamelCase ) )
# verify boxes
__SCREAMING_SNAKE_CASE = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] ,lowerCamelCase ,atol=1E-3 ) )
# verify image_id
__SCREAMING_SNAKE_CASE = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] ,lowerCamelCase ) )
# verify is_crowd
__SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] ,lowerCamelCase ) )
# verify class_labels
__SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] ,lowerCamelCase ) )
# verify masks
__SCREAMING_SNAKE_CASE = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() ,lowerCamelCase )
# verify orig_size
__SCREAMING_SNAKE_CASE = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] ,lowerCamelCase ) )
# verify size
__SCREAMING_SNAKE_CASE = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] ,lowerCamelCase ) )
| 711 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a = logging.getLogger(__name__)
@dataclass
class __a :
__UpperCamelCase : Optional[str] = field(
default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
__UpperCamelCase : Optional[str] = field(
default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, )
__UpperCamelCase : int = field(
default=1024, metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} )
__UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __a :
__UpperCamelCase : str = field(
default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, )
__UpperCamelCase : str = field(
default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
}, )
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__SCREAMING_SNAKE_CASE = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1]
__SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__SCREAMING_SNAKE_CASE = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , )
__SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__SCREAMING_SNAKE_CASE = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__SCREAMING_SNAKE_CASE = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1}
__SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__UpperCAmelCase ):
# Tokenize the texts
def _convert_table_text_to_pandas(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__SCREAMING_SNAKE_CASE = examples["""statement"""]
__SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__SCREAMING_SNAKE_CASE = raw_datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions
__SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__SCREAMING_SNAKE_CASE = default_data_collator
elif training_args.fpaa:
__SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 )
else:
__SCREAMING_SNAKE_CASE = None
# Initialize our Trainer
__SCREAMING_SNAKE_CASE = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , )
# Training
if training_args.do_train:
__SCREAMING_SNAKE_CASE = None
if training_args.resume_from_checkpoint is not None:
__SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__SCREAMING_SNAKE_CASE = last_checkpoint
__SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = train_result.metrics
__SCREAMING_SNAKE_CASE = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __UpperCAmelCase )
trainer.save_metrics("""train""" , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics("""eval""" , __UpperCAmelCase )
trainer.save_metrics("""eval""" , __UpperCAmelCase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" )
__SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions
__SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 )
__SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(__UpperCAmelCase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
__SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> Any:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a = logging.get_logger(__name__)
@add_end_docstrings(_snake_case )
class __a ( _snake_case ):
def __init__( self : Union[str, Any] ,**lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
requires_backends(self ,"""vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return super().__call__(lowerCamelCase ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_image(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] )
]
return result
| 712 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 13 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a = logging.get_logger(__name__)
a = torch.device("cpu")
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__SCREAMING_SNAKE_CASE = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw )
return im
def __magic_name__ ( __UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = dct.pop(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = val
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
for k in state_dict.keys():
__SCREAMING_SNAKE_CASE = k
if ".pwconv" in k:
__SCREAMING_SNAKE_CASE = k_new.replace(""".pwconv""" , """.point_wise_conv""" )
if ".dwconv" in k:
__SCREAMING_SNAKE_CASE = k_new.replace(""".dwconv""" , """.depth_wise_conv""" )
if ".Proj." in k:
__SCREAMING_SNAKE_CASE = k_new.replace(""".Proj.""" , """.proj.""" )
if "patch_embed" in k_new:
__SCREAMING_SNAKE_CASE = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" )
if "network" in k_new:
__SCREAMING_SNAKE_CASE = k_new.split(""".""" )
if ls[2].isdigit():
__SCREAMING_SNAKE_CASE = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
__SCREAMING_SNAKE_CASE = k_new.replace("""network""" , """swiftformer.encoder.network""" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__SCREAMING_SNAKE_CASE = 1000
__SCREAMING_SNAKE_CASE = """huggingface/label-files"""
__SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json"""
__SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) )
__SCREAMING_SNAKE_CASE = {int(__UpperCAmelCase ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE = idalabel
__SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__SCREAMING_SNAKE_CASE = [3, 3, 6, 4]
__SCREAMING_SNAKE_CASE = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__SCREAMING_SNAKE_CASE = [3, 3, 9, 6]
__SCREAMING_SNAKE_CASE = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__SCREAMING_SNAKE_CASE = [4, 3, 10, 5]
__SCREAMING_SNAKE_CASE = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__SCREAMING_SNAKE_CASE = [4, 4, 12, 6]
__SCREAMING_SNAKE_CASE = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("""https""" ):
__SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location="""cpu""" , check_hash=__UpperCAmelCase )
else:
__SCREAMING_SNAKE_CASE = torch.load(__UpperCAmelCase , map_location="""cpu""" )
__SCREAMING_SNAKE_CASE = checkpoint
__SCREAMING_SNAKE_CASE = create_rename_keys(__UpperCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# load HuggingFace model
__SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__UpperCAmelCase ).eval()
hf_model.load_state_dict(__UpperCAmelCase )
# prepare test inputs
__SCREAMING_SNAKE_CASE = prepare_img()
__SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained("""preprocessor_config""" )
__SCREAMING_SNAKE_CASE = processor(images=__UpperCAmelCase , return_tensors="""pt""" )
# compare outputs from both models
__SCREAMING_SNAKE_CASE = get_expected_output(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = hf_model(inputs["""pixel_values"""] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , __UpperCAmelCase , atol=1e-3 )
Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(__UpperCAmelCase )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
a = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 713 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" )
__SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
__SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
a = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 13 | 0 |
from __future__ import annotations
from collections.abc import Callable
a = list[list[float | int]]
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __UpperCAmelCase ):
for row in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(__UpperCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase )
]
def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase )
def interpolated_func(__UpperCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__UpperCAmelCase ) )
return interpolated_func
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ):
x_val += 1
ret += poly(__UpperCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 714 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json",
"umberto-commoncrawl-cased-v1": (
"https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"
),
"umberto-wikipedia-uncased-v1": (
"https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"
),
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'camembert'
def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = position_embedding_type
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = classifier_dropout
class __a ( _snake_case ):
@property
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 13 | 0 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __magic_name__ ( __UpperCAmelCase ) -> str:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
__SCREAMING_SNAKE_CASE = precision
__SCREAMING_SNAKE_CASE = ceil(precision / 14 )
__SCREAMING_SNAKE_CASE = 426880 * Decimal(10005 ).sqrt()
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 13591409
__SCREAMING_SNAKE_CASE = Decimal(__UpperCAmelCase )
for k in range(1 , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCAmelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
a = 50
print(F'''The first {n} digits of pi is: {pi(n)}''')
| 715 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __a ( unittest.TestCase ):
def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE = num_patches + 1
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,)
return config, pixel_values
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
__SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size)
__SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) )
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.type_sequence_label_size
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase )
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
__SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
@jax.jit
def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ):
return model(pixel_values=lowerCamelCase ,**lowerCamelCase )
with self.subTest("""JIT Enabled""" ):
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ):
self.assertEqual(jitted_output.shape ,output.shape )
@slow
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
__SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase )
| 13 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Dict = 1
__SCREAMING_SNAKE_CASE : Tuple = 0
for divide_by_number in range(__UpperCAmelCase , digit + 1 ):
__SCREAMING_SNAKE_CASE : List[str] = []
__SCREAMING_SNAKE_CASE : List[Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE : Dict = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE : Optional[int] = divide_by_number
else:
has_been_divided.append(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE : str = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 716 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'sew'
def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,):
'''simple docstring'''
super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase )
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = feat_extract_norm
__SCREAMING_SNAKE_CASE = feat_extract_activation
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = conv_bias
__SCREAMING_SNAKE_CASE = num_conv_pos_embeddings
__SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups
__SCREAMING_SNAKE_CASE = len(self.conv_dim )
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = squeeze_factor
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = feat_proj_dropout
__SCREAMING_SNAKE_CASE = final_dropout
__SCREAMING_SNAKE_CASE = layerdrop
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__SCREAMING_SNAKE_CASE = apply_spec_augment
__SCREAMING_SNAKE_CASE = mask_time_prob
__SCREAMING_SNAKE_CASE = mask_time_length
__SCREAMING_SNAKE_CASE = mask_time_min_masks
__SCREAMING_SNAKE_CASE = mask_feature_prob
__SCREAMING_SNAKE_CASE = mask_feature_length
__SCREAMING_SNAKE_CASE = mask_feature_min_masks
# ctc loss
__SCREAMING_SNAKE_CASE = ctc_loss_reduction
__SCREAMING_SNAKE_CASE = ctc_zero_infinity
# sequence classification
__SCREAMING_SNAKE_CASE = use_weighted_layer_sum
__SCREAMING_SNAKE_CASE = classifier_proj_size
@property
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul ,self.conv_stride ,1 )
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 717 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 0
for divide_by_number in range(__UpperCAmelCase , digit + 1 ):
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = divide_by_number
else:
has_been_divided.append(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
a = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
a = TaTokenizerFast
a = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
a = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast},
module_spec=__spec__,
)
| 718 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224}
__SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_center_crop
__SCREAMING_SNAKE_CASE = crop_size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_convert_rgb
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) )
else:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 )
image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs]
if torchify:
__SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase )
__SCREAMING_SNAKE_CASE = 3
@property
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a = {
"configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
"tokenization_convbert": ["ConvBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["ConvBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvBertForMaskedLM",
"ConvBertForMultipleChoice",
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFConvBertForMaskedLM",
"TFConvBertForMultipleChoice",
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 719 |
'''simple docstring'''
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = timeit.default_timer()
__SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime
return delta
__SCREAMING_SNAKE_CASE = func.__name__
return wrapper
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = seq_shapes or {}
for i in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(__UpperCAmelCase , _ArrayXD ):
__SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(__UpperCAmelCase , datasets.Value ):
if v.dtype == "string":
__SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged."""
else:
__SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(__UpperCAmelCase , datasets.Sequence ):
while isinstance(__UpperCAmelCase , datasets.Sequence ):
__SCREAMING_SNAKE_CASE = v.feature
__SCREAMING_SNAKE_CASE = seq_shapes[k]
__SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype )
__SCREAMING_SNAKE_CASE = data
dummy_data.append((i, example) )
return dummy_data
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase )
with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer:
for key, record in dummy_data:
__SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase )
writer.write(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
__SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) )
return dataset
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a = (3, 9, -11, 0, 7, 5, 1, -1)
a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __a :
__UpperCamelCase : int
__UpperCamelCase : Node | None
class __a :
def __init__( self : Optional[Any] ,lowerCamelCase : Iterable[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = None
for i in sorted(lowerCamelCase ,reverse=lowerCamelCase ):
__SCREAMING_SNAKE_CASE = Node(lowerCamelCase ,self.head )
def __iter__( self : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.head
while node:
yield node.data
__SCREAMING_SNAKE_CASE = node.next_node
def __len__( self : Optional[int] ):
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self : List[Any] ):
'''simple docstring'''
return " -> ".join([str(lowerCamelCase ) for node in self] )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> SortedLinkedList:
'''simple docstring'''
return SortedLinkedList(list(__UpperCAmelCase ) + list(__UpperCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 720 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
a = "__DUMMY_TRANSFORMERS_USER__"
a = "Dummy User"
a = "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"
a = "https://hub-ci.huggingface.co"
a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
a = Path("~/.huggingface/hub_ci_token").expanduser()
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(__UpperCAmelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def __magic_name__ ( ) -> Optional[Any]:
'''simple docstring'''
return HfApi(endpoint=__UpperCAmelCase )
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = HfFolder.get_token()
HfFolder.save_token(__UpperCAmelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(__UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
def _cleanup_repo(__UpperCAmelCase ):
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
@contextmanager
def _temporary_repo(__UpperCAmelCase ):
try:
yield repo_id
finally:
cleanup_repo(__UpperCAmelCase )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 13 | 0 |
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class __a ( _snake_case ):
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
__SCREAMING_SNAKE_CASE = 8
# DPR tok
__SCREAMING_SNAKE_CASE = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" )
os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase )
__SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
# BART tok
__SCREAMING_SNAKE_CASE = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__SCREAMING_SNAKE_CASE = dict(zip(lowerCamelCase ,range(len(lowerCamelCase ) ) ) )
__SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""}
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""bart_tokenizer""" )
os.makedirs(lowerCamelCase ,exist_ok=lowerCamelCase )
__SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,BART_VOCAB_FILES_NAMES["""vocab_file"""] )
__SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase ,BART_VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCamelCase ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCamelCase ) )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) )
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) )
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""text""": ["""foo""", """bar"""],
"""title""": ["""Foo""", """Bar"""],
"""embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_dataset()
__SCREAMING_SNAKE_CASE = RagConfig(
retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,)
with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset:
__SCREAMING_SNAKE_CASE = dataset
__SCREAMING_SNAKE_CASE = RagRetriever(
lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,)
return retriever
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : bool ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_dataset()
__SCREAMING_SNAKE_CASE = RagConfig(
retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""custom""" ,)
if from_disk:
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""dataset""" )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""index.faiss""" )
dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname ,"""index.faiss""" ) )
dataset.drop_index("""embeddings""" )
dataset.save_to_disk(os.path.join(self.tmpdirname ,"""dataset""" ) )
del dataset
__SCREAMING_SNAKE_CASE = RagRetriever(
lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,)
else:
__SCREAMING_SNAKE_CASE = RagRetriever(
lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,lowerCamelCase ) ,)
return retriever
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""text""": ["""foo""", """bar"""],
"""title""": ["""Foo""", """Bar"""],
"""embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""hf_bert_base.hnswSQ8_correct_phi_128.c_index""" )
dataset.save_faiss_index("""embeddings""" ,index_file_name + """.index.dpr""" )
pickle.dump(dataset["""id"""] ,open(index_file_name + """.index_meta.dpr""" ,"""wb""" ) )
__SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,"""psgs_w100.tsv.pkl""" )
__SCREAMING_SNAKE_CASE = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset}
pickle.dump(lowerCamelCase ,open(lowerCamelCase ,"""wb""" ) )
__SCREAMING_SNAKE_CASE = RagConfig(
retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""legacy""" ,index_path=self.tmpdirname ,)
__SCREAMING_SNAKE_CASE = RagRetriever(
lowerCamelCase ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever()
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCamelCase )
self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset:
__SCREAMING_SNAKE_CASE = self.get_dummy_dataset()
retriever.save_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 )
self.assertTrue(out is not None )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase )
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCamelCase )
self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 )
self.assertTrue(out is not None )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase )
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCamelCase )
self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 )
self.assertTrue(out is not None )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = self.get_dummy_legacy_index_retriever()
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=lowerCamelCase )
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCamelCase ) ,2 )
self.assertEqual(sorted(doc_dicts[0] ) ,["""text""", """title"""] )
self.assertEqual(len(doc_dicts[0]["""text"""] ) ,lowerCamelCase )
self.assertEqual(doc_dicts[0]["""text"""][0] ,"""bar""" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["""text"""][0] ,"""foo""" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() ,[[1], [0]] )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(lowerCamelCase )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = retriever.retrieve(lowerCamelCase ,n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
import torch
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = self.get_dummy_canonical_hf_index_retriever()
__SCREAMING_SNAKE_CASE = [[5, 7], [10, 11]]
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = retriever(lowerCamelCase ,lowerCamelCase ,prefix=retriever.config.generator.prefix ,n_docs=lowerCamelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
out["""context_input_ids"""],
out["""context_attention_mask"""],
out["""retrieved_doc_embeds"""],
)
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
self.assertIsInstance(lowerCamelCase ,lowerCamelCase )
self.assertIsInstance(lowerCamelCase ,np.ndarray )
__SCREAMING_SNAKE_CASE = retriever(
lowerCamelCase ,lowerCamelCase ,prefix=retriever.config.generator.prefix ,n_docs=lowerCamelCase ,return_tensors="""pt""" ,)
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( # noqa: F841
out["""context_input_ids"""],
out["""context_attention_mask"""],
out["""retrieved_doc_embeds"""],
out["""doc_ids"""],
)
self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.get_dpr_ctx_encoder_tokenizer()
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase )
retriever.set_ctx_encoder_tokenizer(lowerCamelCase )
__SCREAMING_SNAKE_CASE = [[5, 7], [10, 11]]
__SCREAMING_SNAKE_CASE = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa )
__SCREAMING_SNAKE_CASE = retriever(lowerCamelCase ,lowerCamelCase ,prefix=retriever.config.generator.prefix ,n_docs=lowerCamelCase )
self.assertEqual(
len(lowerCamelCase ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) ,lowerCamelCase ) # check for doc token related keys in dictionary.
| 721 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a = logging.get_logger(__name__)
a = {
"ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json",
}
class __a ( _snake_case ):
__UpperCamelCase : Dict = 'deta'
__UpperCamelCase : List[str] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,):
'''simple docstring'''
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
__SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] )
else:
if isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" )
__SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type]
__SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase )
__SCREAMING_SNAKE_CASE = backbone_config
__SCREAMING_SNAKE_CASE = num_queries
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = d_model
__SCREAMING_SNAKE_CASE = encoder_ffn_dim
__SCREAMING_SNAKE_CASE = encoder_layers
__SCREAMING_SNAKE_CASE = encoder_attention_heads
__SCREAMING_SNAKE_CASE = decoder_ffn_dim
__SCREAMING_SNAKE_CASE = decoder_layers
__SCREAMING_SNAKE_CASE = decoder_attention_heads
__SCREAMING_SNAKE_CASE = dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = init_std
__SCREAMING_SNAKE_CASE = init_xavier_std
__SCREAMING_SNAKE_CASE = encoder_layerdrop
__SCREAMING_SNAKE_CASE = auxiliary_loss
__SCREAMING_SNAKE_CASE = position_embedding_type
# deformable attributes
__SCREAMING_SNAKE_CASE = num_feature_levels
__SCREAMING_SNAKE_CASE = encoder_n_points
__SCREAMING_SNAKE_CASE = decoder_n_points
__SCREAMING_SNAKE_CASE = two_stage
__SCREAMING_SNAKE_CASE = two_stage_num_proposals
__SCREAMING_SNAKE_CASE = with_box_refine
__SCREAMING_SNAKE_CASE = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
__SCREAMING_SNAKE_CASE = class_cost
__SCREAMING_SNAKE_CASE = bbox_cost
__SCREAMING_SNAKE_CASE = giou_cost
# Loss coefficients
__SCREAMING_SNAKE_CASE = mask_loss_coefficient
__SCREAMING_SNAKE_CASE = dice_loss_coefficient
__SCREAMING_SNAKE_CASE = bbox_loss_coefficient
__SCREAMING_SNAKE_CASE = giou_loss_coefficient
__SCREAMING_SNAKE_CASE = eos_coefficient
__SCREAMING_SNAKE_CASE = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.d_model
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
__SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
__SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
| 13 | 0 |
from __future__ import annotations
from collections.abc import Iterator
class __a :
def __init__( self : Optional[int] ,lowerCamelCase : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = value
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
class __a :
def __init__( self : int ,lowerCamelCase : Node ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = tree
def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Node | None ):
'''simple docstring'''
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : List[str] ):
'''simple docstring'''
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700 |
'''simple docstring'''
import flax.linen as nn
import jax
import jax.numpy as jnp
class __a ( nn.Module ):
__UpperCamelCase : int
__UpperCamelCase : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self : List[Any] ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hidden_states.shape
__SCREAMING_SNAKE_CASE = jax.image.resize(
lowerCamelCase ,shape=(batch, height * 2, width * 2, channels) ,method="""nearest""" ,)
__SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase )
return hidden_states
class __a ( nn.Module ):
__UpperCamelCase : int
__UpperCamelCase : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = nn.Conv(
self.out_channels ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.conv(lowerCamelCase )
return hidden_states
class __a ( nn.Module ):
__UpperCamelCase : int
__UpperCamelCase : int = None
__UpperCamelCase : float = 0.0
__UpperCamelCase : bool = None
__UpperCamelCase : jnp.dtype = jnp.floataa
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.in_channels if self.out_channels is None else self.out_channels
__SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
__SCREAMING_SNAKE_CASE = nn.Conv(
lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__SCREAMING_SNAKE_CASE = nn.Dense(lowerCamelCase ,dtype=self.dtype )
__SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 ,epsilon=1E-5 )
__SCREAMING_SNAKE_CASE = nn.Dropout(self.dropout_prob )
__SCREAMING_SNAKE_CASE = nn.Conv(
lowerCamelCase ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,)
__SCREAMING_SNAKE_CASE = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__SCREAMING_SNAKE_CASE = None
if use_nin_shortcut:
__SCREAMING_SNAKE_CASE = nn.Conv(
lowerCamelCase ,kernel_size=(1, 1) ,strides=(1, 1) ,padding="""VALID""" ,dtype=self.dtype ,)
def __call__( self : List[str] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Tuple ,lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = hidden_states
__SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase )
__SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.time_emb_proj(nn.swish(lowerCamelCase ) )
__SCREAMING_SNAKE_CASE = jnp.expand_dims(jnp.expand_dims(lowerCamelCase ,1 ) ,1 )
__SCREAMING_SNAKE_CASE = hidden_states + temb
__SCREAMING_SNAKE_CASE = self.norma(lowerCamelCase )
__SCREAMING_SNAKE_CASE = nn.swish(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.dropout(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.conva(lowerCamelCase )
if self.conv_shortcut is not None:
__SCREAMING_SNAKE_CASE = self.conv_shortcut(lowerCamelCase )
return hidden_states + residual
| 13 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class __a( _snake_case ):
__UpperCamelCase : List[str] = 'xlm-roberta'
def __init__( self : Union[str, Any] ,lowerCamelCase : Dict=3_0522 ,lowerCamelCase : Optional[int]=768 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : List[Any]=12 ,lowerCamelCase : List[Any]=3072 ,lowerCamelCase : str="gelu" ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : int=512 ,lowerCamelCase : Optional[int]=2 ,lowerCamelCase : str=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : int=1 ,lowerCamelCase : Union[str, Any]=0 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Optional[int]="absolute" ,lowerCamelCase : Tuple=True ,lowerCamelCase : List[Any]=None ,**lowerCamelCase : List[str] ,):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = position_embedding_type
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = classifier_dropout
class __a( _snake_case ):
@property
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
if self.task == "multiple-choice":
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 701 |
'''simple docstring'''
import sys
from collections import defaultdict
class __a :
def __init__( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.node_position[vertex]
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : str ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = pos
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Any ):
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__SCREAMING_SNAKE_CASE = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__SCREAMING_SNAKE_CASE = 2 * start + 1
else:
__SCREAMING_SNAKE_CASE = 2 * start + 2
if heap[smallest_child] < heap[start]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = heap[smallest_child], positions[smallest_child]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
heap[start],
positions[start],
)
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = temp, tempa
__SCREAMING_SNAKE_CASE = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] ,self.get_position(positions[start] ) )
self.set_position(positions[start] ,lowerCamelCase )
self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = position[index]
while index != 0:
__SCREAMING_SNAKE_CASE = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__SCREAMING_SNAKE_CASE = heap[parent]
__SCREAMING_SNAKE_CASE = position[parent]
self.set_position(position[parent] ,lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE = val
__SCREAMING_SNAKE_CASE = temp
self.set_position(lowerCamelCase ,lowerCamelCase )
break
__SCREAMING_SNAKE_CASE = parent
else:
__SCREAMING_SNAKE_CASE = val
__SCREAMING_SNAKE_CASE = temp
self.set_position(lowerCamelCase ,0 )
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(lowerCamelCase ) // 2 - 1
for i in range(lowerCamelCase ,-1 ,-1 ):
self.top_to_bottom(lowerCamelCase ,lowerCamelCase ,len(lowerCamelCase ) ,lowerCamelCase )
def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = positions[0]
__SCREAMING_SNAKE_CASE = sys.maxsize
self.top_to_bottom(lowerCamelCase ,0 ,len(lowerCamelCase ) ,lowerCamelCase )
return temp
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Heap()
__SCREAMING_SNAKE_CASE = [0] * len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [-1] * len(__UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__SCREAMING_SNAKE_CASE = [] # Heap of Distance of vertices from their neighboring vertex
__SCREAMING_SNAKE_CASE = []
for vertex in range(len(__UpperCAmelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(__UpperCAmelCase )
heap.node_position.append(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = distance
heap.heapify(__UpperCAmelCase , __UpperCAmelCase )
for _ in range(1 , len(__UpperCAmelCase ) ):
__SCREAMING_SNAKE_CASE = heap.delete_minimum(__UpperCAmelCase , __UpperCAmelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__SCREAMING_SNAKE_CASE = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__UpperCAmelCase )]
):
__SCREAMING_SNAKE_CASE = distance
heap.bottom_to_top(
__UpperCAmelCase , heap.get_position(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
a = int(input("Enter number of edges: ").strip())
a = defaultdict(list)
for _ in range(edges_number):
a = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 | 0 |
'''simple docstring'''
import sys
a = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
for digit in s:
product *= int(__UpperCAmelCase )
return product
def __magic_name__ ( __UpperCAmelCase = N ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = -sys.maxsize - 1
__SCREAMING_SNAKE_CASE = n[:13]
__SCREAMING_SNAKE_CASE = 13
while cur_index < len(__UpperCAmelCase ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
__SCREAMING_SNAKE_CASE = substr[1:] + n[cur_index]
cur_index += 1
else:
__SCREAMING_SNAKE_CASE = max(__UpperCAmelCase , str_eval(__UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 702 |
'''simple docstring'''
import os
import string
import sys
a = 1 << 8
a = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
a = KEYMAP["up"]
a = KEYMAP["left"]
if sys.platform == "win32":
a = []
a = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
a = ord(str(i))
def __magic_name__ ( ) -> Union[str, Any]:
'''simple docstring'''
if os.name == "nt":
import msvcrt
__SCREAMING_SNAKE_CASE = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__UpperCAmelCase ) == 0:
# Read the keystroke
__SCREAMING_SNAKE_CASE = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
__SCREAMING_SNAKE_CASE = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
__SCREAMING_SNAKE_CASE = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(__UpperCAmelCase )
if ord(__UpperCAmelCase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
__SCREAMING_SNAKE_CASE = chr(KEYMAP["""esc"""] )
except KeyError:
__SCREAMING_SNAKE_CASE = cha[1]
else:
__SCREAMING_SNAKE_CASE = ch.decode(__UpperCAmelCase )
else:
__SCREAMING_SNAKE_CASE = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
__SCREAMING_SNAKE_CASE = sys.stdin.fileno()
__SCREAMING_SNAKE_CASE = termios.tcgetattr(__UpperCAmelCase )
try:
tty.setraw(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = sys.stdin.read(1 )
finally:
termios.tcsetattr(__UpperCAmelCase , termios.TCSADRAIN , __UpperCAmelCase )
return ch
def __magic_name__ ( ) -> List[str]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = get_raw_chars()
if ord(__UpperCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__UpperCAmelCase ) == KEYMAP["esc"]:
__SCREAMING_SNAKE_CASE = get_raw_chars()
if ord(__UpperCAmelCase ) == KEYMAP["mod_int"]:
__SCREAMING_SNAKE_CASE = get_raw_chars()
if ord(__UpperCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__UpperCAmelCase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 13 | 0 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def __magic_name__ ( __UpperCAmelCase ) -> bytes:
'''simple docstring'''
if len(__UpperCAmelCase ) != 32:
raise ValueError("""Input must be of length 32""" )
__SCREAMING_SNAKE_CASE = b""""""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def __magic_name__ ( __UpperCAmelCase ) -> bytes:
'''simple docstring'''
if i < 0:
raise ValueError("""Input must be non-negative""" )
__SCREAMING_SNAKE_CASE = format(__UpperCAmelCase , """08x""" )[-8:]
__SCREAMING_SNAKE_CASE = b""""""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" )
return little_endian_hex
def __magic_name__ ( __UpperCAmelCase ) -> bytes:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = b""""""
for char in message:
bit_string += format(__UpperCAmelCase , """08b""" ).encode("""utf-8""" )
__SCREAMING_SNAKE_CASE = format(len(__UpperCAmelCase ) , """064b""" ).encode("""utf-8""" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__UpperCAmelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def __magic_name__ ( __UpperCAmelCase ) -> Generator[list[int], None, None]:
'''simple docstring'''
if len(__UpperCAmelCase ) % 512 != 0:
raise ValueError("""Input must have length that's a multiple of 512""" )
for pos in range(0 , len(__UpperCAmelCase ) , 512 ):
__SCREAMING_SNAKE_CASE = bit_string[pos : pos + 512]
__SCREAMING_SNAKE_CASE = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
if i < 0:
raise ValueError("""Input must be non-negative""" )
__SCREAMING_SNAKE_CASE = format(__UpperCAmelCase , """032b""" )
__SCREAMING_SNAKE_CASE = """"""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__UpperCAmelCase , 2 )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
return (a + b) % 2**32
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
if i < 0:
raise ValueError("""Input must be non-negative""" )
if shift < 0:
raise ValueError("""Shift must be non-negative""" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def __magic_name__ ( __UpperCAmelCase ) -> bytes:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = preprocess(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__SCREAMING_SNAKE_CASE = 0X6745_2301
__SCREAMING_SNAKE_CASE = 0XEFCD_AB89
__SCREAMING_SNAKE_CASE = 0X98BA_DCFE
__SCREAMING_SNAKE_CASE = 0X1032_5476
__SCREAMING_SNAKE_CASE = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = aa
__SCREAMING_SNAKE_CASE = ba
__SCREAMING_SNAKE_CASE = ca
__SCREAMING_SNAKE_CASE = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__SCREAMING_SNAKE_CASE = d ^ (b & (c ^ d))
__SCREAMING_SNAKE_CASE = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__SCREAMING_SNAKE_CASE = c ^ (d & (b ^ c))
__SCREAMING_SNAKE_CASE = (5 * i + 1) % 16
elif i <= 47:
__SCREAMING_SNAKE_CASE = b ^ c ^ d
__SCREAMING_SNAKE_CASE = (3 * i + 5) % 16
else:
__SCREAMING_SNAKE_CASE = c ^ (b | not_aa(__UpperCAmelCase ))
__SCREAMING_SNAKE_CASE = (7 * i) % 16
__SCREAMING_SNAKE_CASE = (f + a + added_consts[i] + block_words[g]) % 2**32
__SCREAMING_SNAKE_CASE = d
__SCREAMING_SNAKE_CASE = c
__SCREAMING_SNAKE_CASE = b
__SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , left_rotate_aa(__UpperCAmelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
__SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = sum_aa(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase ) + reformat_hex(__UpperCAmelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
'''simple docstring'''
from __future__ import annotations
import bisect
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
if hi < 0:
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
while lo < hi:
__SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__SCREAMING_SNAKE_CASE = mid + 1
else:
__SCREAMING_SNAKE_CASE = mid
return lo
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
if hi < 0:
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
while lo < hi:
__SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__SCREAMING_SNAKE_CASE = mid + 1
else:
__SCREAMING_SNAKE_CASE = mid
return lo
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None:
'''simple docstring'''
sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1
while left <= right:
__SCREAMING_SNAKE_CASE = left + (right - left) // 2
__SCREAMING_SNAKE_CASE = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__SCREAMING_SNAKE_CASE = midpoint - 1
else:
__SCREAMING_SNAKE_CASE = midpoint + 1
return None
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase )
if index != len(__UpperCAmelCase ) and sorted_collection[index] == item:
return index
return None
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None:
'''simple docstring'''
if right < left:
return None
__SCREAMING_SNAKE_CASE = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 )
else:
return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase )
if __name__ == "__main__":
a = input("Enter numbers separated by comma:\n").strip()
a = sorted(int(item) for item in user_input.split(","))
a = int(input("Enter a single number to be found in the list:\n"))
a = binary_search(collection, target)
if result is None:
print(F'''{target} was not found in {collection}.''')
else:
print(F'''{target} was found at position {result} in {collection}.''')
| 13 | 0 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
a = ["bert-base-uncased", "bert-base-cased"]
a = "hf-internal-testing/tiny-bert-tf-only"
if is_tf_available():
class __a ( tf.keras.Model ):
def __init__( self : Union[str, Any] ,lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__()
__SCREAMING_SNAKE_CASE = tokenizer
__SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = TFAutoModel.from_config(lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.bert(**lowerCamelCase )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
super().setUp()
__SCREAMING_SNAKE_CASE = [
BertTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__SCREAMING_SNAKE_CASE = [TFBertTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(lowerCamelCase ,use_fast_bert_tokenizer=lowerCamelCase )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__SCREAMING_SNAKE_CASE = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
__SCREAMING_SNAKE_CASE = list(zip(self.test_sentences ,self.test_sentences[::-1] ) )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase ,return_tensors="""tf""" ,padding="""longest""" )
__SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) )
@slow
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__SCREAMING_SNAKE_CASE = tf_tokenizer(self.paired_sentences )
__SCREAMING_SNAKE_CASE = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,)
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) )
@slow
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__SCREAMING_SNAKE_CASE = tf.function(lowerCamelCase )
for test_inputs in (self.test_sentences, self.paired_sentences):
__SCREAMING_SNAKE_CASE = tf.constant(lowerCamelCase )
__SCREAMING_SNAKE_CASE = compiled_tokenizer(lowerCamelCase )
__SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__SCREAMING_SNAKE_CASE = ModelToSave(tokenizer=lowerCamelCase )
__SCREAMING_SNAKE_CASE = tf.convert_to_tensor(self.test_sentences )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """saved.model"""
model.save(lowerCamelCase )
__SCREAMING_SNAKE_CASE = tf.keras.models.load_model(lowerCamelCase )
__SCREAMING_SNAKE_CASE = loaded_model(lowerCamelCase )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1E-5 )
| 704 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
a = logging.get_logger(__name__)
class __a ( _snake_case ):
__UpperCamelCase : int = 'linear'
__UpperCamelCase : Tuple = 'cosine'
__UpperCamelCase : Tuple = 'cosine_with_restarts'
__UpperCamelCase : List[Any] = 'polynomial'
__UpperCamelCase : Optional[Any] = 'constant'
__UpperCamelCase : Optional[int] = 'constant_with_warmup'
__UpperCamelCase : List[Any] = 'piecewise_constant'
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) )
return 1.0
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" )
__SCREAMING_SNAKE_CASE = int(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = float(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = value
__SCREAMING_SNAKE_CASE = float(rule_list[-1] )
def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ):
def rule_func(__UpperCAmelCase ) -> float:
__SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__UpperCAmelCase ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple:
'''simple docstring'''
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) )
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(__UpperCAmelCase ):
if current_step < num_warmup_steps:
return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__SCREAMING_SNAKE_CASE = lr_init - lr_end
__SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps
__SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps
__SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , )
return schedule_func(
__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
| 13 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __a :
'''simple docstring'''
@staticmethod
def UpperCAmelCase__ ( *lowerCamelCase : Optional[Any] ,**lowerCamelCase : str ):
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __a ( unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=lowerCamelCase ,image_processor=lowerCamelCase )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ,threshold=0.0 )
self.assertGreater(len(lowerCamelCase ) ,0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase ,{
"""score""": ANY(lowerCamelCase ),
"""label""": ANY(lowerCamelCase ),
"""box""": {"""xmin""": ANY(lowerCamelCase ), """ymin""": ANY(lowerCamelCase ), """xmax""": ANY(lowerCamelCase ), """ymax""": ANY(lowerCamelCase )},
} ,)
import datasets
__SCREAMING_SNAKE_CASE = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" )
__SCREAMING_SNAKE_CASE = [
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
]
__SCREAMING_SNAKE_CASE = object_detector(lowerCamelCase ,threshold=0.0 )
self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) )
for outputs in batch_outputs:
self.assertGreater(len(lowerCamelCase ) ,0 )
for detected_object in outputs:
self.assertEqual(
lowerCamelCase ,{
"""score""": ANY(lowerCamelCase ),
"""label""": ANY(lowerCamelCase ),
"""box""": {"""xmin""": ANY(lowerCamelCase ), """ymin""": ANY(lowerCamelCase ), """xmax""": ANY(lowerCamelCase ), """ymax""": ANY(lowerCamelCase )},
} ,)
@require_tf
@unittest.skip("""Object detection not implemented in TF""" )
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
pass
@require_torch
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-detr-mobilenetsv3"""
__SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=lowerCamelCase ,feature_extractor=lowerCamelCase )
__SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=0.0 )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
] ,)
__SCREAMING_SNAKE_CASE = object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] ,threshold=0.0 ,)
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
[
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
],
[
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
{"""score""": 0.3_376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}},
],
] ,)
@require_torch
@slow
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50"""
__SCREAMING_SNAKE_CASE = AutoModelForObjectDetection.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(lowerCamelCase )
__SCREAMING_SNAKE_CASE = ObjectDetectionPipeline(model=lowerCamelCase ,feature_extractor=lowerCamelCase )
__SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
] ,)
__SCREAMING_SNAKE_CASE = object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
] ,)
@require_torch
@slow
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50"""
__SCREAMING_SNAKE_CASE = pipeline("""object-detection""" ,model=lowerCamelCase )
__SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
] ,)
__SCREAMING_SNAKE_CASE = object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
[
{"""score""": 0.9_982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}},
{"""score""": 0.9_960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}},
{"""score""": 0.9_955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}},
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
],
] ,)
@require_torch
@slow
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 0.9_985
__SCREAMING_SNAKE_CASE = """facebook/detr-resnet-50"""
__SCREAMING_SNAKE_CASE = pipeline("""object-detection""" ,model=lowerCamelCase )
__SCREAMING_SNAKE_CASE = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=lowerCamelCase )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
{"""score""": 0.9_988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}},
{"""score""": 0.9_987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}},
] ,)
@require_torch
@require_pytesseract
@slow
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = """Narsil/layoutlmv3-finetuned-funsd"""
__SCREAMING_SNAKE_CASE = 0.9_993
__SCREAMING_SNAKE_CASE = pipeline("""object-detection""" ,model=lowerCamelCase ,threshold=lowerCamelCase )
__SCREAMING_SNAKE_CASE = object_detector(
"""https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" )
self.assertEqual(
nested_simplify(lowerCamelCase ,decimals=4 ) ,[
{"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}},
{"""score""": 0.9_993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}},
] ,)
| 705 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
"SEWForCTC",
"SEWForSequenceClassification",
"SEWModel",
"SEWPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 13 | 0 |
'''simple docstring'''
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class __a ( _snake_case, _snake_case, _snake_case ):
__UpperCamelCase : List[Any] = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias']
@register_to_config
def __init__( self : List[str] ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : int = 5_0257 ,lowerCamelCase : int = 1024 ,lowerCamelCase : int = 768 ,lowerCamelCase : int = 12 ,lowerCamelCase : int = 12 ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : str = "gelu_new" ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 0.1 ,lowerCamelCase : float = 1E-5 ,lowerCamelCase : float = 0.02 ,lowerCamelCase : bool = True ,lowerCamelCase : bool = True ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,):
'''simple docstring'''
super().__init__()
__SCREAMING_SNAKE_CASE = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and"""
f""" `n_embd`: {n_embd} are not equal.""" )
__SCREAMING_SNAKE_CASE = prefix_inner_dim
__SCREAMING_SNAKE_CASE = prefix_hidden_dim
__SCREAMING_SNAKE_CASE = (
nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
__SCREAMING_SNAKE_CASE = (
nn.Linear(self.prefix_hidden_dim ,lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity()
)
__SCREAMING_SNAKE_CASE = GPTaConfig(
vocab_size=lowerCamelCase ,n_positions=lowerCamelCase ,n_embd=lowerCamelCase ,n_layer=lowerCamelCase ,n_head=lowerCamelCase ,n_inner=lowerCamelCase ,activation_function=lowerCamelCase ,resid_pdrop=lowerCamelCase ,embd_pdrop=lowerCamelCase ,attn_pdrop=lowerCamelCase ,layer_norm_epsilon=lowerCamelCase ,initializer_range=lowerCamelCase ,scale_attn_weights=lowerCamelCase ,use_cache=lowerCamelCase ,scale_attn_by_inverse_layer_idx=lowerCamelCase ,reorder_and_upcast_attn=lowerCamelCase ,)
__SCREAMING_SNAKE_CASE = GPTaLMHeadModel(lowerCamelCase )
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : torch.Tensor ,lowerCamelCase : torch.Tensor ,lowerCamelCase : Optional[torch.Tensor] = None ,lowerCamelCase : Optional[torch.Tensor] = None ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.encode_prefix(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.decode_prefix(lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.cat((prefix_embeds, embedding_text) ,dim=1 )
if labels is not None:
__SCREAMING_SNAKE_CASE = self.get_dummy_token(input_ids.shape[0] ,input_ids.device )
__SCREAMING_SNAKE_CASE = torch.cat((dummy_token, input_ids) ,dim=1 )
__SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=lowerCamelCase ,labels=lowerCamelCase ,attention_mask=lowerCamelCase )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def UpperCAmelCase__ ( self : int ,lowerCamelCase : int ,lowerCamelCase : torch.device ):
'''simple docstring'''
return torch.zeros(lowerCamelCase ,self.prefix_length ,dtype=torch.intaa ,device=lowerCamelCase )
def UpperCAmelCase__ ( self : str ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.encode_prefix(lowerCamelCase )
@torch.no_grad()
def UpperCAmelCase__ ( self : Any ,lowerCamelCase : int ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch.split(lowerCamelCase ,1 ,dim=0 )
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
for feature in features:
__SCREAMING_SNAKE_CASE = self.decode_prefix(feature.to(lowerCamelCase ) ) # back to the clip feature
# Only support beam search for now
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.generate_beam(
input_embeds=lowerCamelCase ,device=lowerCamelCase ,eos_token_id=lowerCamelCase )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
__SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase )
__SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def UpperCAmelCase__ ( self : str ,lowerCamelCase : int=None ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : List[str]=None ,lowerCamelCase : int = 5 ,lowerCamelCase : int = 67 ,lowerCamelCase : float = 1.0 ,lowerCamelCase : Optional[int] = None ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = eos_token_id
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = None
__SCREAMING_SNAKE_CASE = torch.ones(lowerCamelCase ,device=lowerCamelCase ,dtype=torch.int )
__SCREAMING_SNAKE_CASE = torch.zeros(lowerCamelCase ,device=lowerCamelCase ,dtype=torch.bool )
if input_embeds is not None:
__SCREAMING_SNAKE_CASE = input_embeds
else:
__SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(lowerCamelCase )
for i in range(lowerCamelCase ):
__SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=lowerCamelCase )
__SCREAMING_SNAKE_CASE = outputs.logits
__SCREAMING_SNAKE_CASE = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
__SCREAMING_SNAKE_CASE = logits.softmax(-1 ).log()
if scores is None:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = logits.topk(lowerCamelCase ,-1 )
__SCREAMING_SNAKE_CASE = generated.expand(lowerCamelCase ,*generated.shape[1:] )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_tokens.permute(1 ,0 ), scores.squeeze(0 )
if tokens is None:
__SCREAMING_SNAKE_CASE = next_tokens
else:
__SCREAMING_SNAKE_CASE = tokens.expand(lowerCamelCase ,*tokens.shape[1:] )
__SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) ,dim=1 )
else:
__SCREAMING_SNAKE_CASE = -float(np.inf )
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
__SCREAMING_SNAKE_CASE = scores_sum / seq_lengths[:, None]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = scores_sum_average.view(-1 ).topk(lowerCamelCase ,-1 )
__SCREAMING_SNAKE_CASE = next_tokens // scores_sum.shape[1]
__SCREAMING_SNAKE_CASE = seq_lengths[next_tokens_source]
__SCREAMING_SNAKE_CASE = next_tokens % scores_sum.shape[1]
__SCREAMING_SNAKE_CASE = next_tokens.unsqueeze(1 )
__SCREAMING_SNAKE_CASE = tokens[next_tokens_source]
__SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) ,dim=1 )
__SCREAMING_SNAKE_CASE = generated[next_tokens_source]
__SCREAMING_SNAKE_CASE = scores_sum_average * seq_lengths
__SCREAMING_SNAKE_CASE = is_stopped[next_tokens_source]
__SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 )
__SCREAMING_SNAKE_CASE = torch.cat((generated, next_token_embed) ,dim=1 )
__SCREAMING_SNAKE_CASE = is_stopped + next_tokens.eq(lowerCamelCase ).squeeze()
if is_stopped.all():
break
__SCREAMING_SNAKE_CASE = scores / seq_lengths
__SCREAMING_SNAKE_CASE = scores.argsort(descending=lowerCamelCase )
# tokens tensors are already padded to max_seq_length
__SCREAMING_SNAKE_CASE = [tokens[i] for i in order]
__SCREAMING_SNAKE_CASE = torch.stack(lowerCamelCase ,dim=0 )
__SCREAMING_SNAKE_CASE = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 706 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __magic_name__ ( __UpperCAmelCase = "AAPL" ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
__SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase ).text , """html.parser""" )
__SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""" , class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 707 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> bool:
'''simple docstring'''
if num < 0:
return False
__SCREAMING_SNAKE_CASE = num
__SCREAMING_SNAKE_CASE = 0
while num > 0:
__SCREAMING_SNAKE_CASE = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
a = logging.get_logger(__name__)
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = downstream_dict["""projector.weight"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""projector.bias"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.weight"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.post_net.linear.bias"""]
return model
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.weight"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.linear.bias"""]
return model
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = downstream_dict["""connector.weight"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""connector.bias"""]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__SCREAMING_SNAKE_CASE = downstream_dict[
f"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
__SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""]
__SCREAMING_SNAKE_CASE = downstream_dict["""objective.W"""]
return model
@torch.no_grad()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch.load(__UpperCAmelCase , map_location="""cpu""" )
__SCREAMING_SNAKE_CASE = checkpoint["""Downstream"""]
__SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(
__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , do_normalize=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = hf_config.architectures[0]
if arch.endswith("""ForSequenceClassification""" ):
__SCREAMING_SNAKE_CASE = convert_classification(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
elif arch.endswith("""ForAudioFrameClassification""" ):
__SCREAMING_SNAKE_CASE = convert_diarization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
elif arch.endswith("""ForXVector""" ):
__SCREAMING_SNAKE_CASE = convert_xvector(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
__SCREAMING_SNAKE_CASE = checkpoint["""Featurizer"""]["""weights"""]
hf_feature_extractor.save_pretrained(__UpperCAmelCase )
hf_model.save_pretrained(__UpperCAmelCase )
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
a = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 708 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
a = list[list[float | int]]
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Matrix:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(size + 1 )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for row in range(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = matrix[row][col]
__SCREAMING_SNAKE_CASE = vector[row][0]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
while row < size and col < size:
# pivoting
__SCREAMING_SNAKE_CASE = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[rowa][col] / augmented[row][col]
__SCREAMING_SNAKE_CASE = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __UpperCAmelCase ):
for row in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = augmented[row][col] / augmented[col][col]
for cola in range(__UpperCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__UpperCAmelCase )
]
def __magic_name__ ( __UpperCAmelCase ) -> Callable[[int], int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = [[0 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = [[0] for _ in range(__UpperCAmelCase )]
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for x_val, y_val in enumerate(__UpperCAmelCase ):
for col in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = (x_val + 1) ** (size - col - 1)
__SCREAMING_SNAKE_CASE = y_val
__SCREAMING_SNAKE_CASE = solve(__UpperCAmelCase , __UpperCAmelCase )
def interpolated_func(__UpperCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__UpperCAmelCase ) )
return interpolated_func
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def __magic_name__ ( __UpperCAmelCase = question_function , __UpperCAmelCase = 10 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [func(__UpperCAmelCase ) for x_val in range(1 , order + 1 )]
__SCREAMING_SNAKE_CASE = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
for poly in polynomials:
__SCREAMING_SNAKE_CASE = 1
while func(__UpperCAmelCase ) == poly(__UpperCAmelCase ):
x_val += 1
ret += poly(__UpperCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 13 | 0 |
'''simple docstring'''
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class __a ( _snake_case ):
__UpperCamelCase : Optional[Any] = 'EncodecFeatureExtractor'
__UpperCamelCase : Dict = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self : Any ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.feature_extractor
__SCREAMING_SNAKE_CASE = False
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : Dict=None ,lowerCamelCase : int=None ,lowerCamelCase : str=True ):
'''simple docstring'''
return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase ,language=lowerCamelCase ,no_timestamps=lowerCamelCase )
def __call__( self : Any ,*lowerCamelCase : Tuple ,**lowerCamelCase : List[str] ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop("""audio""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop("""sampling_rate""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop("""text""" ,lowerCamelCase )
if len(lowerCamelCase ) > 0:
__SCREAMING_SNAKE_CASE = args[0]
__SCREAMING_SNAKE_CASE = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if text is not None:
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,**lowerCamelCase )
if audio is not None:
__SCREAMING_SNAKE_CASE = self.feature_extractor(lowerCamelCase ,*lowerCamelCase ,sampling_rate=lowerCamelCase ,**lowerCamelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
__SCREAMING_SNAKE_CASE = audio_inputs["""input_values"""]
if "padding_mask" in audio_inputs:
__SCREAMING_SNAKE_CASE = audio_inputs["""padding_mask"""]
return inputs
def UpperCAmelCase__ ( self : Optional[int] ,*lowerCamelCase : str ,**lowerCamelCase : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = kwargs.pop("""audio""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = kwargs.pop("""padding_mask""" ,lowerCamelCase )
if len(lowerCamelCase ) > 0:
__SCREAMING_SNAKE_CASE = args[0]
__SCREAMING_SNAKE_CASE = args[1:]
if audio_values is not None:
return self._decode_audio(lowerCamelCase ,padding_mask=lowerCamelCase )
else:
return self.tokenizer.batch_decode(*lowerCamelCase ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Any ,*lowerCamelCase : Any ,**lowerCamelCase : Dict ):
'''simple docstring'''
return self.tokenizer.decode(*lowerCamelCase ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : Optional = None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = to_numpy(lowerCamelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = audio_values.shape
if padding_mask is None:
return list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = to_numpy(lowerCamelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
__SCREAMING_SNAKE_CASE = seq_len - padding_mask.shape[-1]
__SCREAMING_SNAKE_CASE = 1 - self.feature_extractor.padding_value
__SCREAMING_SNAKE_CASE = np.pad(lowerCamelCase ,((0, 0), (0, difference)) ,"""constant""" ,constant_values=lowerCamelCase )
__SCREAMING_SNAKE_CASE = audio_values.tolist()
for i in range(lowerCamelCase ):
__SCREAMING_SNAKE_CASE = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
__SCREAMING_SNAKE_CASE = sliced_audio.reshape(lowerCamelCase ,-1 )
return audio_values
| 709 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a = logging.get_logger(__name__)
@add_end_docstrings(_snake_case )
class __a ( _snake_case ):
def __init__( self : Union[str, Any] ,**lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**lowerCamelCase )
requires_backends(self ,"""vision""" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return super().__call__(lowerCamelCase ,**lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""]
if "hypothesis_template" in kwargs:
__SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""]
return preprocess_params, {}, {}
def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = load_image(lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework )
__SCREAMING_SNAKE_CASE = candidate_labels
__SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels]
__SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase )
__SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
__SCREAMING_SNAKE_CASE = text_inputs[0][0]
__SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = {
"""candidate_labels""": candidate_labels,
"""logits""": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" )
__SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0]
if self.framework == "pt":
__SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 )
__SCREAMING_SNAKE_CASE = probs.tolist()
if not isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = [scores]
elif self.framework == "tf":
__SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 )
__SCREAMING_SNAKE_CASE = probs.numpy().tolist()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
__SCREAMING_SNAKE_CASE = [
{"""score""": score, """label""": candidate_label}
for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] )
]
return result
| 13 | 0 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=1000 ) -> Any:
'''simple docstring'''
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
__SCREAMING_SNAKE_CASE = n - 1
__SCREAMING_SNAKE_CASE = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
__SCREAMING_SNAKE_CASE = 0
while count < prec:
__SCREAMING_SNAKE_CASE = random.randint(2 , n - 1 )
__SCREAMING_SNAKE_CASE = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if b != 1:
__SCREAMING_SNAKE_CASE = True
for _ in range(__UpperCAmelCase ):
if b == n - 1:
__SCREAMING_SNAKE_CASE = False
break
__SCREAMING_SNAKE_CASE = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
a = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 710 |
'''simple docstring'''
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
a = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
require_version(deps[pkg] , __UpperCAmelCase )
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a = {
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 711 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a = logging.getLogger(__name__)
@dataclass
class __a :
__UpperCamelCase : Optional[str] = field(
default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
__UpperCamelCase : Optional[str] = field(
default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, )
__UpperCamelCase : int = field(
default=1024, metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[int] = field(
default=_snake_case, metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
}, )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} )
__UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __a :
__UpperCamelCase : str = field(
default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__UpperCamelCase : Optional[str] = field(
default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, )
__UpperCamelCase : str = field(
default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
}, )
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__SCREAMING_SNAKE_CASE = training_args.get_process_log_level()
logger.setLevel(__UpperCAmelCase )
datasets.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.set_verbosity(__UpperCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1]
__SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__SCREAMING_SNAKE_CASE = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , )
__SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__SCREAMING_SNAKE_CASE = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__SCREAMING_SNAKE_CASE = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1}
__SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
__SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__UpperCAmelCase ):
# Tokenize the texts
def _convert_table_text_to_pandas(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__SCREAMING_SNAKE_CASE = examples["""statement"""]
__SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__SCREAMING_SNAKE_CASE = raw_datasets.map(
__UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__SCREAMING_SNAKE_CASE = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions
__SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__SCREAMING_SNAKE_CASE = default_data_collator
elif training_args.fpaa:
__SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 )
else:
__SCREAMING_SNAKE_CASE = None
# Initialize our Trainer
__SCREAMING_SNAKE_CASE = Trainer(
model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , )
# Training
if training_args.do_train:
__SCREAMING_SNAKE_CASE = None
if training_args.resume_from_checkpoint is not None:
__SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__SCREAMING_SNAKE_CASE = last_checkpoint
__SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = train_result.metrics
__SCREAMING_SNAKE_CASE = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase )
)
__SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __UpperCAmelCase )
trainer.save_metrics("""train""" , __UpperCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) )
trainer.log_metrics("""eval""" , __UpperCAmelCase )
trainer.save_metrics("""eval""" , __UpperCAmelCase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" )
__SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions
__SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 )
__SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(__UpperCAmelCase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
__SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**__UpperCAmelCase )
else:
trainer.create_model_card(**__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> Any:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 13 | 0 |
'''simple docstring'''
import collections
import importlib.util
import os
import re
from pathlib import Path
a = "src/transformers"
# Matches is_xxx_available()
a = re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
a = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
a = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
a = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
a = re.compile("^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
a = re.compile("^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
a = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
a = re.compile(r"^\s*try:")
# Catches a line with else:
a = re.compile(r"^\s*else:")
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if _re_test_backend.search(__UpperCAmelCase ) is None:
return None
__SCREAMING_SNAKE_CASE = [b[0] for b in _re_backend.findall(__UpperCAmelCase )]
backends.sort()
return "_and_".join(__UpperCAmelCase )
def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
with open(__UpperCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
__SCREAMING_SNAKE_CASE = f.readlines()
__SCREAMING_SNAKE_CASE = 0
while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(__UpperCAmelCase ):
return None
# First grab the objects without a specific backend in _import_structure
__SCREAMING_SNAKE_CASE = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
__SCREAMING_SNAKE_CASE = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0]
__SCREAMING_SNAKE_CASE = re.findall("""\[([^\]]+)\]""" , __UpperCAmelCase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
__SCREAMING_SNAKE_CASE = _re_import_struct_key_value.search(__UpperCAmelCase )
if single_line_import_search is not None:
__SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__UpperCAmelCase ) > 0]
objects.extend(__UpperCAmelCase )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
__SCREAMING_SNAKE_CASE = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
__SCREAMING_SNAKE_CASE = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__SCREAMING_SNAKE_CASE = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__SCREAMING_SNAKE_CASE = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
__SCREAMING_SNAKE_CASE = lines[line_index]
if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None:
objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] )
elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None:
__SCREAMING_SNAKE_CASE = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(""", """ )
__SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0]
objects.extend(__UpperCAmelCase )
elif _re_between_brackets.search(__UpperCAmelCase ) is not None:
__SCREAMING_SNAKE_CASE = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(""", """ )
__SCREAMING_SNAKE_CASE = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0]
objects.extend(__UpperCAmelCase )
elif _re_quote_object.search(__UpperCAmelCase ) is not None:
objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
__SCREAMING_SNAKE_CASE = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__SCREAMING_SNAKE_CASE = []
while (
line_index < len(__UpperCAmelCase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
__SCREAMING_SNAKE_CASE = lines[line_index]
__SCREAMING_SNAKE_CASE = _re_import.search(__UpperCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
__SCREAMING_SNAKE_CASE = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(__UpperCAmelCase ):
# If the line is an if is_backend_available, we grab all objects associated.
__SCREAMING_SNAKE_CASE = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__SCREAMING_SNAKE_CASE = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__SCREAMING_SNAKE_CASE = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
__SCREAMING_SNAKE_CASE = lines[line_index]
__SCREAMING_SNAKE_CASE = _re_import.search(__UpperCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
__SCREAMING_SNAKE_CASE = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
def find_duplicates(__UpperCAmelCase ):
return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__SCREAMING_SNAKE_CASE = []
for key in import_dict_objects.keys():
__SCREAMING_SNAKE_CASE = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__SCREAMING_SNAKE_CASE = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__SCREAMING_SNAKE_CASE = """base imports""" if key == """none""" else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
for root, _, files in os.walk(__UpperCAmelCase ):
if "__init__.py" in files:
__SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , """__init__.py""" )
__SCREAMING_SNAKE_CASE = parse_init(__UpperCAmelCase )
if objects is not None:
__SCREAMING_SNAKE_CASE = analyze_results(*__UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
__SCREAMING_SNAKE_CASE = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("""\n""".join(__UpperCAmelCase ) )
if len(__UpperCAmelCase ) > 0:
raise ValueError("""\n\n""".join(__UpperCAmelCase ) )
def __magic_name__ ( ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
for path, directories, files in os.walk(__UpperCAmelCase ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(__UpperCAmelCase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(__UpperCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0:
continue
__SCREAMING_SNAKE_CASE = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = short_path.replace(os.path.sep , """.""" )
submodules.append(__UpperCAmelCase )
for fname in files:
if fname == "__init__.py":
continue
__SCREAMING_SNAKE_CASE = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(__UpperCAmelCase )
return submodules
a = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
]
def __magic_name__ ( ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = importlib.util.spec_from_file_location(
"""transformers""" , os.path.join(__UpperCAmelCase , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__SCREAMING_SNAKE_CASE = spec.loader.load_module()
__SCREAMING_SNAKE_CASE = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(__UpperCAmelCase ) > 0:
__SCREAMING_SNAKE_CASE = """\n""".join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registered in the main init of Transformers:\n"""
f"""{list_of_modules}\n"""
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 712 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 13 | 0 |
'''simple docstring'''
from collections.abc import Sequence
from queue import Queue
class __a :
def __init__( self : str ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int]=None ,lowerCamelCase : List[str]=None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = start
__SCREAMING_SNAKE_CASE = end
__SCREAMING_SNAKE_CASE = val
__SCREAMING_SNAKE_CASE = (start + end) // 2
__SCREAMING_SNAKE_CASE = left
__SCREAMING_SNAKE_CASE = right
def __repr__( self : List[str] ):
'''simple docstring'''
return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"""
class __a :
def __init__( self : int ,lowerCamelCase : Sequence ,lowerCamelCase : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = collection
__SCREAMING_SNAKE_CASE = function
if self.collection:
__SCREAMING_SNAKE_CASE = self._build_tree(0 ,len(lowerCamelCase ) - 1 )
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Tuple ,lowerCamelCase : int ):
'''simple docstring'''
self._update_tree(self.root ,lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[Any] ,lowerCamelCase : List[Any] ):
'''simple docstring'''
return self._query_range(self.root ,lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : str ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(lowerCamelCase ,lowerCamelCase ,self.collection[start] )
__SCREAMING_SNAKE_CASE = (start + end) // 2
__SCREAMING_SNAKE_CASE = self._build_tree(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self._build_tree(mid + 1 ,lowerCamelCase )
return SegmentTreeNode(lowerCamelCase ,lowerCamelCase ,self.fn(left.val ,right.val ) ,lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : str ,lowerCamelCase : str ):
'''simple docstring'''
if node.start == i and node.end == i:
__SCREAMING_SNAKE_CASE = val
return
if i <= node.mid:
self._update_tree(node.left ,lowerCamelCase ,lowerCamelCase )
else:
self._update_tree(node.right ,lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.fn(node.left.val ,node.right.val )
def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : str ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left ,lowerCamelCase ,lowerCamelCase )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left ,lowerCamelCase ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,lowerCamelCase ) ,)
else:
# range in right child tree
return self._query_range(node.right ,lowerCamelCase ,lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
if self.root is not None:
__SCREAMING_SNAKE_CASE = Queue()
queue.put(self.root )
while not queue.empty():
__SCREAMING_SNAKE_CASE = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("*" * 50)
a = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 713 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(__UpperCAmelCase , params=__UpperCAmelCase ).content , """html.parser""" )
__SCREAMING_SNAKE_CASE = soup.find("""div""" , attrs={"""class""": """gs_ri"""} )
__SCREAMING_SNAKE_CASE = div.find("""div""" , attrs={"""class""": """gs_fl"""} ).find_all("""a""" )
return anchors[2].get_text()
if __name__ == "__main__":
a = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 30,
"pages": "3979-3990",
"year": 2018,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 13 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
a = logging.get_logger(__name__)
a = {"vocab_file": "vocab.txt"}
a = {
"vocab_file": {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt",
}
}
a = {
"YituTech/conv-bert-base": 512,
"YituTech/conv-bert-medium-small": 512,
"YituTech/conv-bert-small": 512,
}
a = {
"YituTech/conv-bert-base": {"do_lower_case": True},
"YituTech/conv-bert-medium-small": {"do_lower_case": True},
"YituTech/conv-bert-small": {"do_lower_case": True},
}
class __a ( _snake_case ):
__UpperCamelCase : List[Any] = VOCAB_FILES_NAMES
__UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : List[Any] = ConvBertTokenizer
def __init__( self : List[Any] ,lowerCamelCase : Dict=None ,lowerCamelCase : str=None ,lowerCamelCase : str=True ,lowerCamelCase : Any="[UNK]" ,lowerCamelCase : List[str]="[SEP]" ,lowerCamelCase : Union[str, Any]="[PAD]" ,lowerCamelCase : List[str]="[CLS]" ,lowerCamelCase : Union[str, Any]="[MASK]" ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Dict=None ,**lowerCamelCase : Union[str, Any] ,):
'''simple docstring'''
super().__init__(
lowerCamelCase ,tokenizer_file=lowerCamelCase ,do_lower_case=lowerCamelCase ,unk_token=lowerCamelCase ,sep_token=lowerCamelCase ,pad_token=lowerCamelCase ,cls_token=lowerCamelCase ,mask_token=lowerCamelCase ,tokenize_chinese_chars=lowerCamelCase ,strip_accents=lowerCamelCase ,**lowerCamelCase ,)
__SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,lowerCamelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,lowerCamelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,lowerCamelCase ) != tokenize_chinese_chars
):
__SCREAMING_SNAKE_CASE = getattr(lowerCamelCase ,normalizer_state.pop("""type""" ) )
__SCREAMING_SNAKE_CASE = do_lower_case
__SCREAMING_SNAKE_CASE = strip_accents
__SCREAMING_SNAKE_CASE = tokenize_chinese_chars
__SCREAMING_SNAKE_CASE = normalizer_class(**lowerCamelCase )
__SCREAMING_SNAKE_CASE = do_lower_case
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : List[Any]=None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : List[int] ,lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = [self.sep_token_id]
__SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self : Any ,lowerCamelCase : str ,lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCamelCase ,name=lowerCamelCase )
return tuple(lowerCamelCase )
| 714 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json",
"umberto-commoncrawl-cased-v1": (
"https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"
),
"umberto-wikipedia-uncased-v1": (
"https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"
),
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'camembert'
def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE = vocab_size
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = type_vocab_size
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = position_embedding_type
__SCREAMING_SNAKE_CASE = use_cache
__SCREAMING_SNAKE_CASE = classifier_dropout
class __a ( _snake_case ):
@property
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 13 | 0 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 715 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __a ( unittest.TestCase ):
def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = patch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = is_training
__SCREAMING_SNAKE_CASE = use_labels
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = hidden_dropout_prob
__SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE = type_sequence_label_size
__SCREAMING_SNAKE_CASE = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
__SCREAMING_SNAKE_CASE = num_patches + 1
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,)
return config, pixel_values
def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
__SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size)
__SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) )
def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.type_sequence_label_size
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase )
__SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__SCREAMING_SNAKE_CASE = model(lowerCamelCase )
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) = config_and_inputs
__SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = FlaxViTModelTester(self )
__SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
__SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
__SCREAMING_SNAKE_CASE = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase )
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = model_class(lowerCamelCase )
@jax.jit
def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ):
return model(pixel_values=lowerCamelCase ,**lowerCamelCase )
with self.subTest("""JIT Enabled""" ):
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ):
self.assertEqual(jitted_output.shape ,output.shape )
@slow
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
__SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase )
| 13 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json",
"umberto-commoncrawl-cased-v1": (
"https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"
),
"umberto-wikipedia-uncased-v1": (
"https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"
),
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'camembert'
def __init__( self : int ,lowerCamelCase : List[Any]=3_0522 ,lowerCamelCase : List[Any]=768 ,lowerCamelCase : str=12 ,lowerCamelCase : List[str]=12 ,lowerCamelCase : Optional[Any]=3072 ,lowerCamelCase : Tuple="gelu" ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=512 ,lowerCamelCase : Dict=2 ,lowerCamelCase : Tuple=0.02 ,lowerCamelCase : List[Any]=1E-1_2 ,lowerCamelCase : Union[str, Any]=1 ,lowerCamelCase : Optional[Any]=0 ,lowerCamelCase : List[Any]=2 ,lowerCamelCase : List[str]="absolute" ,lowerCamelCase : int=True ,lowerCamelCase : Any=None ,**lowerCamelCase : Optional[Any] ,):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
__SCREAMING_SNAKE_CASE : Optional[int] = vocab_size
__SCREAMING_SNAKE_CASE : Tuple = hidden_size
__SCREAMING_SNAKE_CASE : int = num_hidden_layers
__SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
__SCREAMING_SNAKE_CASE : Any = hidden_act
__SCREAMING_SNAKE_CASE : List[str] = intermediate_size
__SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Dict = max_position_embeddings
__SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size
__SCREAMING_SNAKE_CASE : List[str] = initializer_range
__SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps
__SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type
__SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
__SCREAMING_SNAKE_CASE : List[str] = classifier_dropout
class __a ( _snake_case ):
@property
def UpperCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
__SCREAMING_SNAKE_CASE : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__SCREAMING_SNAKE_CASE : List[str] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 716 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class __a ( _snake_case ):
__UpperCamelCase : Tuple = 'sew'
def __init__( self : str ,lowerCamelCase : Any=32 ,lowerCamelCase : str=768 ,lowerCamelCase : str=12 ,lowerCamelCase : Union[str, Any]=12 ,lowerCamelCase : Union[str, Any]=3072 ,lowerCamelCase : int=2 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.1 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : List[str]=1E-5 ,lowerCamelCase : Tuple="group" ,lowerCamelCase : Optional[Any]="gelu" ,lowerCamelCase : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) ,lowerCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) ,lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Dict=128 ,lowerCamelCase : Union[str, Any]=16 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : List[Any]=0.05 ,lowerCamelCase : Optional[int]=10 ,lowerCamelCase : Any=2 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Tuple=10 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple="mean" ,lowerCamelCase : int=False ,lowerCamelCase : Dict=False ,lowerCamelCase : Optional[int]=256 ,lowerCamelCase : str=0 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : Tuple=2 ,**lowerCamelCase : Union[str, Any] ,):
'''simple docstring'''
super().__init__(**lowerCamelCase ,pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase )
__SCREAMING_SNAKE_CASE = hidden_size
__SCREAMING_SNAKE_CASE = feat_extract_norm
__SCREAMING_SNAKE_CASE = feat_extract_activation
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = list(lowerCamelCase )
__SCREAMING_SNAKE_CASE = conv_bias
__SCREAMING_SNAKE_CASE = num_conv_pos_embeddings
__SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups
__SCREAMING_SNAKE_CASE = len(self.conv_dim )
__SCREAMING_SNAKE_CASE = num_hidden_layers
__SCREAMING_SNAKE_CASE = intermediate_size
__SCREAMING_SNAKE_CASE = squeeze_factor
__SCREAMING_SNAKE_CASE = hidden_act
__SCREAMING_SNAKE_CASE = num_attention_heads
__SCREAMING_SNAKE_CASE = hidden_dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = feat_proj_dropout
__SCREAMING_SNAKE_CASE = final_dropout
__SCREAMING_SNAKE_CASE = layerdrop
__SCREAMING_SNAKE_CASE = layer_norm_eps
__SCREAMING_SNAKE_CASE = initializer_range
__SCREAMING_SNAKE_CASE = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__SCREAMING_SNAKE_CASE = apply_spec_augment
__SCREAMING_SNAKE_CASE = mask_time_prob
__SCREAMING_SNAKE_CASE = mask_time_length
__SCREAMING_SNAKE_CASE = mask_time_min_masks
__SCREAMING_SNAKE_CASE = mask_feature_prob
__SCREAMING_SNAKE_CASE = mask_feature_length
__SCREAMING_SNAKE_CASE = mask_feature_min_masks
# ctc loss
__SCREAMING_SNAKE_CASE = ctc_loss_reduction
__SCREAMING_SNAKE_CASE = ctc_zero_infinity
# sequence classification
__SCREAMING_SNAKE_CASE = use_weighted_layer_sum
__SCREAMING_SNAKE_CASE = classifier_proj_size
@property
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul ,self.conv_stride ,1 )
| 13 | 0 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
a = tuple[int, int]
class __a :
def __init__( self : List[Any] ,lowerCamelCase : set[int] ,lowerCamelCase : Mapping[EdgeT, int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = vertices
__SCREAMING_SNAKE_CASE = {
(min(lowerCamelCase ), max(lowerCamelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : EdgeT ,lowerCamelCase : int ):
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
__SCREAMING_SNAKE_CASE = weight
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = Graph({min(self.vertices )} ,{} )
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
while len(subgraph.vertices ) < len(self.vertices ):
__SCREAMING_SNAKE_CASE = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
__SCREAMING_SNAKE_CASE = edge
__SCREAMING_SNAKE_CASE = weight
subgraph.add_edge(lowerCamelCase ,lowerCamelCase )
return subgraph
def __magic_name__ ( __UpperCAmelCase = "p107_network.txt" ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__UpperCAmelCase ) )
__SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
__SCREAMING_SNAKE_CASE = 42
with open(__UpperCAmelCase ) as f:
__SCREAMING_SNAKE_CASE = f.read().strip().split("""\n""" )
__SCREAMING_SNAKE_CASE = [line.split(""",""" ) for line in data]
for edgea in range(1 , len(__UpperCAmelCase ) ):
for edgea in range(__UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
__SCREAMING_SNAKE_CASE = int(adjaceny_matrix[edgea][edgea] )
__SCREAMING_SNAKE_CASE = Graph(set(range(len(__UpperCAmelCase ) ) ) , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = graph.prims_algorithm()
__SCREAMING_SNAKE_CASE = sum(graph.edges.values() )
__SCREAMING_SNAKE_CASE = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F'''{solution() = }''')
| 717 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase = 1 , __UpperCAmelCase = 1000 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 0
for divide_by_number in range(__UpperCAmelCase , digit + 1 ):
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = len(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = divide_by_number
else:
has_been_divided.append(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 0 |
'''simple docstring'''
from math import pi, sqrt, tan
def __magic_name__ ( __UpperCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError("""surface_area_cube() only accepts non-negative values""" )
return 6 * side_length**2
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or breadth < 0 or height < 0:
raise ValueError("""surface_area_cuboid() only accepts non-negative values""" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def __magic_name__ ( __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("""surface_area_sphere() only accepts non-negative values""" )
return 4 * pi * radius**2
def __magic_name__ ( __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" )
return 3 * pi * radius**2
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError("""surface_area_cone() only accepts non-negative values""" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"""surface_area_conical_frustum() only accepts non-negative values""" )
__SCREAMING_SNAKE_CASE = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0 or height < 0:
raise ValueError("""surface_area_cylinder() only accepts non-negative values""" )
return 2 * pi * radius * (height + radius)
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if torus_radius < 0 or tube_radius < 0:
raise ValueError("""surface_area_torus() only accepts non-negative values""" )
if torus_radius < tube_radius:
raise ValueError(
"""surface_area_torus() does not support spindle or self intersecting tori""" )
return 4 * pow(__UpperCAmelCase , 2 ) * torus_radius * tube_radius
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if length < 0 or width < 0:
raise ValueError("""area_rectangle() only accepts non-negative values""" )
return length * width
def __magic_name__ ( __UpperCAmelCase ) -> float:
'''simple docstring'''
if side_length < 0:
raise ValueError("""area_square() only accepts non-negative values""" )
return side_length**2
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError("""area_triangle() only accepts non-negative values""" )
return (base * height) / 2
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("""Given three sides do not form a triangle""" )
__SCREAMING_SNAKE_CASE = (sidea + sidea + sidea) / 2
__SCREAMING_SNAKE_CASE = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if base < 0 or height < 0:
raise ValueError("""area_parallelogram() only accepts non-negative values""" )
return base * height
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if basea < 0 or basea < 0 or height < 0:
raise ValueError("""area_trapezium() only accepts non-negative values""" )
return 1 / 2 * (basea + basea) * height
def __magic_name__ ( __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius < 0:
raise ValueError("""area_circle() only accepts non-negative values""" )
return pi * radius**2
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if radius_x < 0 or radius_y < 0:
raise ValueError("""area_ellipse() only accepts non-negative values""" )
return pi * radius_x * radius_y
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("""area_rhombus() only accepts non-negative values""" )
return 1 / 2 * diagonal_a * diagonal_a
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float:
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or sides < 3:
raise ValueError(
"""area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides""" )
elif length < 0:
raise ValueError(
"""area_reg_polygon() only accepts non-negative values as \
length of a side""" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(F'''Rectangle: {area_rectangle(10, 20) = }''')
print(F'''Square: {area_square(10) = }''')
print(F'''Triangle: {area_triangle(10, 10) = }''')
print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''')
print(F'''Parallelogram: {area_parallelogram(10, 20) = }''')
print(F'''Rhombus: {area_rhombus(10, 20) = }''')
print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''')
print(F'''Circle: {area_circle(20) = }''')
print(F'''Ellipse: {area_ellipse(10, 20) = }''')
print("\nSurface Areas of various geometric shapes: \n")
print(F'''Cube: {surface_area_cube(20) = }''')
print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''')
print(F'''Sphere: {surface_area_sphere(20) = }''')
print(F'''Hemisphere: {surface_area_hemisphere(20) = }''')
print(F'''Cone: {surface_area_cone(10, 20) = }''')
print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''')
print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''')
print(F'''Torus: {surface_area_torus(20, 10) = }''')
print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''')
print(F'''Square: {area_reg_polygon(4, 10) = }''')
print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
| 718 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class __a ( unittest.TestCase ):
def __init__( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : List[str]=7 ,lowerCamelCase : List[str]=3 ,lowerCamelCase : List[str]=18 ,lowerCamelCase : Any=30 ,lowerCamelCase : Optional[Any]=400 ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=None ,lowerCamelCase : str=True ,lowerCamelCase : Dict=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,lowerCamelCase : List[str]=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,lowerCamelCase : Tuple=True ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 224, """width""": 224}
__SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
__SCREAMING_SNAKE_CASE = parent
__SCREAMING_SNAKE_CASE = batch_size
__SCREAMING_SNAKE_CASE = num_channels
__SCREAMING_SNAKE_CASE = image_size
__SCREAMING_SNAKE_CASE = min_resolution
__SCREAMING_SNAKE_CASE = max_resolution
__SCREAMING_SNAKE_CASE = do_resize
__SCREAMING_SNAKE_CASE = size
__SCREAMING_SNAKE_CASE = do_center_crop
__SCREAMING_SNAKE_CASE = crop_size
__SCREAMING_SNAKE_CASE = do_normalize
__SCREAMING_SNAKE_CASE = image_mean
__SCREAMING_SNAKE_CASE = image_std
__SCREAMING_SNAKE_CASE = do_convert_rgb
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any]=False ,lowerCamelCase : str=False ,lowerCamelCase : str=False ):
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
255 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) )
else:
__SCREAMING_SNAKE_CASE = []
for i in range(self.batch_size ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 )
image_inputs.append(np.random.randint(255 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase ,0 ,-1 ) ) for x in image_inputs]
if torchify:
__SCREAMING_SNAKE_CASE = [torch.from_numpy(lowerCamelCase ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,do_center_crop=lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"""height""": 224, """width""": 224} )
self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} )
__SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} )
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : List[str] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,numpify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,np.ndarray )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
def UpperCAmelCase__ ( self : str ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ,torchify=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,torch.Tensor )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
@require_torch
@require_vision
class __a ( _snake_case, unittest.TestCase ):
__UpperCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=lowerCamelCase )
__SCREAMING_SNAKE_CASE = 3
@property
def UpperCAmelCase__ ( self : Dict ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : int ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase ,"""do_resize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""size""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""center_crop""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_normalize""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_mean""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""image_std""" ) )
self.assertTrue(hasattr(lowerCamelCase ,"""do_convert_rgb""" ) )
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
pass
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__SCREAMING_SNAKE_CASE = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase ,Image.Image )
# Test not batched input
__SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
# Test batched
__SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase ,return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) ,)
| 13 | 0 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
a = 8
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=BITS ) -> List[str]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = x.device
__SCREAMING_SNAKE_CASE = (x * 255).int().clamp(0 , 255 )
__SCREAMING_SNAKE_CASE = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """d -> d 1 1""" )
__SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """b c h w -> b c 1 h w""" )
__SCREAMING_SNAKE_CASE = ((x & mask) != 0).float()
__SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """b c d h w -> b (c d) h w""" )
__SCREAMING_SNAKE_CASE = bits * 2 - 1
return bits
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=BITS ) -> Optional[int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = x.device
__SCREAMING_SNAKE_CASE = (x > 0).int()
__SCREAMING_SNAKE_CASE = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__UpperCAmelCase , dtype=torch.intaa )
__SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """d -> d 1 1""" )
__SCREAMING_SNAKE_CASE = rearrange(__UpperCAmelCase , """b (c d) h w -> b c d h w""" , d=8 )
__SCREAMING_SNAKE_CASE = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 , __UpperCAmelCase = True , __UpperCAmelCase=None , __UpperCAmelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
__SCREAMING_SNAKE_CASE = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[timestep]
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
__SCREAMING_SNAKE_CASE = self.bit_scale
if self.config.clip_sample:
__SCREAMING_SNAKE_CASE = torch.clamp(__UpperCAmelCase , -scale , __UpperCAmelCase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
__SCREAMING_SNAKE_CASE = self._get_variance(__UpperCAmelCase , __UpperCAmelCase )
__SCREAMING_SNAKE_CASE = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
__SCREAMING_SNAKE_CASE = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__SCREAMING_SNAKE_CASE = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
__SCREAMING_SNAKE_CASE = model_output.device if torch.is_tensor(__UpperCAmelCase ) else """cpu"""
__SCREAMING_SNAKE_CASE = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase ).to(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = self._get_variance(__UpperCAmelCase , __UpperCAmelCase ) ** 0.5 * eta * noise
__SCREAMING_SNAKE_CASE = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase )
def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="epsilon" , __UpperCAmelCase=None , __UpperCAmelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 )
else:
__SCREAMING_SNAKE_CASE = None
# 1. compute alphas, betas
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[t]
__SCREAMING_SNAKE_CASE = self.alphas_cumprod[t - 1] if t > 0 else self.one
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t
__SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
__SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
__SCREAMING_SNAKE_CASE = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
__SCREAMING_SNAKE_CASE = self.bit_scale
if self.config.clip_sample:
__SCREAMING_SNAKE_CASE = torch.clamp(__UpperCAmelCase , -scale , __UpperCAmelCase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
__SCREAMING_SNAKE_CASE = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__SCREAMING_SNAKE_CASE = 0
if t > 0:
__SCREAMING_SNAKE_CASE = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__UpperCAmelCase ).to(model_output.device )
__SCREAMING_SNAKE_CASE = (self._get_variance(__UpperCAmelCase , predicted_variance=__UpperCAmelCase ) ** 0.5) * noise
__SCREAMING_SNAKE_CASE = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase )
class __a ( _snake_case ):
def __init__( self : Optional[Any] ,lowerCamelCase : UNetaDConditionModel ,lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] ,lowerCamelCase : Optional[float] = 1.0 ,):
'''simple docstring'''
super().__init__()
__SCREAMING_SNAKE_CASE = bit_scale
__SCREAMING_SNAKE_CASE = (
ddim_bit_scheduler_step if isinstance(lowerCamelCase ,lowerCamelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=lowerCamelCase ,scheduler=lowerCamelCase )
@torch.no_grad()
def __call__( self : Optional[Any] ,lowerCamelCase : Optional[int] = 256 ,lowerCamelCase : Optional[int] = 256 ,lowerCamelCase : Optional[int] = 50 ,lowerCamelCase : Optional[torch.Generator] = None ,lowerCamelCase : Optional[int] = 1 ,lowerCamelCase : Optional[str] = "pil" ,lowerCamelCase : bool = True ,**lowerCamelCase : List[Any] ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) ,generator=lowerCamelCase ,)
__SCREAMING_SNAKE_CASE = decimal_to_bits(lowerCamelCase ) * self.bit_scale
__SCREAMING_SNAKE_CASE = latents.to(self.device )
self.scheduler.set_timesteps(lowerCamelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
__SCREAMING_SNAKE_CASE = self.unet(lowerCamelCase ,lowerCamelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
__SCREAMING_SNAKE_CASE = self.scheduler.step(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ).prev_sample
__SCREAMING_SNAKE_CASE = bits_to_decimal(lowerCamelCase )
if output_type == "pil":
__SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCamelCase )
| 719 |
'''simple docstring'''
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __magic_name__ ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
def wrapper(*__UpperCAmelCase , **__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = timeit.default_timer()
__SCREAMING_SNAKE_CASE = func(*__UpperCAmelCase , **__UpperCAmelCase )
__SCREAMING_SNAKE_CASE = timeit.default_timer() - starttime
return delta
__SCREAMING_SNAKE_CASE = func.__name__
return wrapper
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> Optional[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = seq_shapes or {}
for i in range(__UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(__UpperCAmelCase , _ArrayXD ):
__SCREAMING_SNAKE_CASE = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(__UpperCAmelCase , datasets.Value ):
if v.dtype == "string":
__SCREAMING_SNAKE_CASE = """The small grey turtle was surprisingly fast when challenged."""
else:
__SCREAMING_SNAKE_CASE = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(__UpperCAmelCase , datasets.Sequence ):
while isinstance(__UpperCAmelCase , datasets.Sequence ):
__SCREAMING_SNAKE_CASE = v.feature
__SCREAMING_SNAKE_CASE = seq_shapes[k]
__SCREAMING_SNAKE_CASE = np.random.rand(*__UpperCAmelCase ).astype(v.dtype )
__SCREAMING_SNAKE_CASE = data
dummy_data.append((i, example) )
return dummy_data
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=None ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = generate_examples(__UpperCAmelCase , num_examples=__UpperCAmelCase , seq_shapes=__UpperCAmelCase )
with ArrowWriter(features=__UpperCAmelCase , path=__UpperCAmelCase ) as writer:
for key, record in dummy_data:
__SCREAMING_SNAKE_CASE = features.encode_example(__UpperCAmelCase )
writer.write(__UpperCAmelCase )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
__SCREAMING_SNAKE_CASE = datasets.Dataset.from_file(filename=__UpperCAmelCase , info=datasets.DatasetInfo(features=__UpperCAmelCase ) )
return dataset
| 13 | 0 |
'''simple docstring'''
from collections import defaultdict
from math import ceil, sqrt
def __magic_name__ ( __UpperCAmelCase = 1000000 , __UpperCAmelCase = 10 ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = defaultdict(__UpperCAmelCase )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
__SCREAMING_SNAKE_CASE = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
__SCREAMING_SNAKE_CASE = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(__UpperCAmelCase , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 720 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
a = "__DUMMY_TRANSFORMERS_USER__"
a = "Dummy User"
a = "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"
a = "https://hub-ci.huggingface.co"
a = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
a = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}"
a = Path("~/.huggingface/hub_ci_token").expanduser()
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
HfFolder.save_token(__UpperCAmelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def __magic_name__ ( ) -> Optional[Any]:
'''simple docstring'''
return HfApi(endpoint=__UpperCAmelCase )
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = HfFolder.get_token()
HfFolder.save_token(__UpperCAmelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(__UpperCAmelCase )
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> Dict:
'''simple docstring'''
def _cleanup_repo(__UpperCAmelCase ):
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def __magic_name__ ( __UpperCAmelCase ) -> int:
'''simple docstring'''
@contextmanager
def _temporary_repo(__UpperCAmelCase ):
try:
yield repo_id
finally:
cleanup_repo(__UpperCAmelCase )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_txt_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}"""
__SCREAMING_SNAKE_CASE = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase )
hf_api.upload_file(
token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 13 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["SpeechEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ["FlaxSpeechEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 721 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a = logging.get_logger(__name__)
a = {
"ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json",
}
class __a ( _snake_case ):
__UpperCamelCase : Dict = 'deta'
__UpperCamelCase : List[str] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,):
'''simple docstring'''
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
__SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] )
else:
if isinstance(lowerCamelCase ,lowerCamelCase ):
__SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" )
__SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type]
__SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase )
__SCREAMING_SNAKE_CASE = backbone_config
__SCREAMING_SNAKE_CASE = num_queries
__SCREAMING_SNAKE_CASE = max_position_embeddings
__SCREAMING_SNAKE_CASE = d_model
__SCREAMING_SNAKE_CASE = encoder_ffn_dim
__SCREAMING_SNAKE_CASE = encoder_layers
__SCREAMING_SNAKE_CASE = encoder_attention_heads
__SCREAMING_SNAKE_CASE = decoder_ffn_dim
__SCREAMING_SNAKE_CASE = decoder_layers
__SCREAMING_SNAKE_CASE = decoder_attention_heads
__SCREAMING_SNAKE_CASE = dropout
__SCREAMING_SNAKE_CASE = attention_dropout
__SCREAMING_SNAKE_CASE = activation_dropout
__SCREAMING_SNAKE_CASE = activation_function
__SCREAMING_SNAKE_CASE = init_std
__SCREAMING_SNAKE_CASE = init_xavier_std
__SCREAMING_SNAKE_CASE = encoder_layerdrop
__SCREAMING_SNAKE_CASE = auxiliary_loss
__SCREAMING_SNAKE_CASE = position_embedding_type
# deformable attributes
__SCREAMING_SNAKE_CASE = num_feature_levels
__SCREAMING_SNAKE_CASE = encoder_n_points
__SCREAMING_SNAKE_CASE = decoder_n_points
__SCREAMING_SNAKE_CASE = two_stage
__SCREAMING_SNAKE_CASE = two_stage_num_proposals
__SCREAMING_SNAKE_CASE = with_box_refine
__SCREAMING_SNAKE_CASE = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
__SCREAMING_SNAKE_CASE = class_cost
__SCREAMING_SNAKE_CASE = bbox_cost
__SCREAMING_SNAKE_CASE = giou_cost
# Loss coefficients
__SCREAMING_SNAKE_CASE = mask_loss_coefficient
__SCREAMING_SNAKE_CASE = dice_loss_coefficient
__SCREAMING_SNAKE_CASE = bbox_loss_coefficient
__SCREAMING_SNAKE_CASE = giou_loss_coefficient
__SCREAMING_SNAKE_CASE = eos_coefficient
__SCREAMING_SNAKE_CASE = focal_alpha
super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase )
@property
def UpperCAmelCase__ ( self : Any ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
return self.d_model
def UpperCAmelCase__ ( self : Tuple ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
__SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
__SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
| 13 | 0 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
lowerCamelCase = """Usage of script: script_name <size_of_canvas:int>"""
lowerCamelCase = [0] * 100 + [1] * 10
random.shuffle(choice)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = [[False for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )]
return canvas
def a__ ( lowerCAmelCase__ ):
for i, row in enumerate(lowerCAmelCase__ ):
for j, _ in enumerate(lowerCAmelCase__ ):
UpperCAmelCase_ = bool(random.getrandbits(1 ) )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = np.array(lowerCAmelCase__ )
UpperCAmelCase_ = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(lowerCAmelCase__ ):
for c, pt in enumerate(lowerCAmelCase__ ):
UpperCAmelCase_ = __judge_point(
lowerCAmelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
UpperCAmelCase_ = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
UpperCAmelCase_ = current_canvas.tolist()
return return_canvas
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
UpperCAmelCase_ = pt
if pt:
if alive < 2:
UpperCAmelCase_ = False
elif alive == 2 or alive == 3:
UpperCAmelCase_ = True
elif alive > 3:
UpperCAmelCase_ = False
else:
if alive == 3:
UpperCAmelCase_ = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
lowerCamelCase = int(sys.argv[1])
# main working structure of this module.
lowerCamelCase = create_canvas(canvas_size)
seed(c)
lowerCamelCase , lowerCamelCase = plt.subplots()
fig.show()
lowerCamelCase = ListedColormap(["""w""", """k"""])
try:
while True:
lowerCamelCase = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
lowerCamelCase = """."""
if __name__ == "__main__":
lowerCamelCase = os.path.join(REPO_PATH, """utils/documentation_tests.txt""")
lowerCamelCase = []
lowerCamelCase = []
with open(doctest_file_path) as fp:
for line in fp:
lowerCamelCase = line.strip()
lowerCamelCase = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
lowerCamelCase = """\n""".join(non_existent_paths)
raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}")
if all_paths != sorted(all_paths):
raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowercase__ :
'''simple docstring'''
UpperCamelCase = LEDConfig
UpperCamelCase = {}
UpperCamelCase = '''gelu'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=99 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=20 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[int]=4 , ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = seq_length
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = eos_token_id
UpperCAmelCase_ = pad_token_id
UpperCAmelCase_ = bos_token_id
UpperCAmelCase_ = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
UpperCAmelCase_ = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
UpperCAmelCase_ = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
UpperCAmelCase_ = prepare_led_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = tf.concat(
[tf.zeros_like(_UpperCAmelCase )[:, :-1], tf.ones_like(_UpperCAmelCase )[:, -1:]] , axis=-1 , )
UpperCAmelCase_ = global_attention_mask
return config, inputs_dict
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any ) -> str:
'''simple docstring'''
UpperCAmelCase_ = TFLEDModel(config=_UpperCAmelCase ).get_decoder()
UpperCAmelCase_ = inputs_dict["input_ids"]
UpperCAmelCase_ = input_ids[:1, :]
UpperCAmelCase_ = inputs_dict["attention_mask"][:1, :]
UpperCAmelCase_ = 1
# first forward pass
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
UpperCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase_ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ):
if attention_mask is None:
UpperCAmelCase_ = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase_ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase = (
{
'''conversational''': TFLEDForConditionalGeneration,
'''feature-extraction''': TFLEDModel,
'''summarization''': TFLEDForConditionalGeneration,
'''text2text-generation''': TFLEDForConditionalGeneration,
'''translation''': TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = TFLEDModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ = tf.zeros_like(inputs_dict["attention_mask"] )
UpperCAmelCase_ = 2
UpperCAmelCase_ = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
UpperCAmelCase_ = True
UpperCAmelCase_ = self.model_tester.seq_length
UpperCAmelCase_ = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(_UpperCAmelCase : Optional[int] ):
UpperCAmelCase_ = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : List[str] ):
UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions]
UpperCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
UpperCAmelCase_ = True
UpperCAmelCase_ = True
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
pass
def a__ ( lowerCAmelCase__ ):
return tf.constant(lowerCAmelCase__ , dtype=tf.intaa )
lowerCamelCase = 1e-4
@slow
@require_tf
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase_ = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = model(**_UpperCAmelCase )[0]
UpperCAmelCase_ = (1, 1024, 768)
self.assertEqual(output.shape , _UpperCAmelCase )
# change to expected output here
UpperCAmelCase_ = tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-3 )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
UpperCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
UpperCAmelCase_ = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = model(**_UpperCAmelCase )[0]
UpperCAmelCase_ = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , _UpperCAmelCase )
# change to expected output here
UpperCAmelCase_ = tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-3 , rtol=1e-3 )
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
UpperCAmelCase_ = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(lowerCAmelCase__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
lowerCamelCase = numpy.array([0, 0])
lowerCamelCase = numpy.array([0.5, 0.8_660_254])
lowerCamelCase = numpy.array([1, 0])
lowerCamelCase = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = initial_vectors
for _ in range(lowerCAmelCase__ ):
UpperCAmelCase_ = iteration_step(lowerCAmelCase__ )
return vectors
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCAmelCase_ = vectors[i + 1]
new_vectors.append(lowerCAmelCase__ )
UpperCAmelCase_ = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = numpy.radians(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ )
UpperCAmelCase_ = numpy.array(((c, -s), (s, c)) )
return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = plt.gca()
axes.set_aspect("equal" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCAmelCase_ , UpperCAmelCase_ = zip(*lowerCAmelCase__ )
plt.plot(lowerCAmelCase__ , lowerCAmelCase__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""",
"""Salesforce/blip-vqa-capfit-large""": (
"""https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-base""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"""
),
"""Salesforce/blip-image-captioning-large""": (
"""https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"""
),
"""Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""",
"""Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""",
"""Salesforce/blip-itm-large-flikr""": (
"""https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"""
),
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''blip_text_model'''
def __init__( self : Optional[int] , _UpperCAmelCase : Dict=30524 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : int=30522 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : str=102 , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=True , **_UpperCAmelCase : List[str] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , sep_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = encoder_hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = is_decoder
UpperCAmelCase_ = use_cache
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''blip_vision_model'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Dict=3072 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : List[str]=384 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Union[str, Any]=1e-10 , **_UpperCAmelCase : Optional[Any] , ) -> List[str]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = hidden_act
@classmethod
def lowercase__ ( cls : str , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''blip'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=512 , _UpperCAmelCase : Dict=2.6592 , _UpperCAmelCase : int=256 , **_UpperCAmelCase : str , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." )
UpperCAmelCase_ = BlipTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = BlipVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = self.vision_config.hidden_size
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = 1.0
UpperCAmelCase_ = 0.02
UpperCAmelCase_ = image_text_hidden_size
@classmethod
def lowercase__ ( cls : List[Any] , _UpperCAmelCase : BlipTextConfig , _UpperCAmelCase : BlipVisionConfig , **_UpperCAmelCase : Any ) -> Tuple:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
| 14 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 | 1 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLMProphetNetTokenizer
UpperCamelCase = False
UpperCamelCase = True
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "[PAD]"
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "[PAD]" )
self.assertEqual(vocab_keys[1] , "[CLS]" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCAmelCase ) , 1012 )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = [35389, 6672, 49, 2]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
| 14 | 1 |
"""simple docstring"""
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
UpperCAmelCase_ = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ = int(shortest_edge / crop_pct )
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
lowerCamelCase = [
"""cross_validation.py""",
"""gradient_accumulation.py""",
"""local_sgd.py""",
"""multi_process_metrics.py""",
"""memory.py""",
"""automatic_gradient_accumulation.py""",
"""fsdp_with_peak_mem_tracking.py""",
"""deepspeed_with_config_support.py""",
"""megatron_lm_gpt_pretraining.py""",
]
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str = None , _UpperCAmelCase : list = None ) -> str:
'''simple docstring'''
UpperCAmelCase_ = None
UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) )
UpperCAmelCase_ = os.path.abspath("examples" )
for item in os.listdir(_UpperCAmelCase ):
if item not in EXCLUDE_EXAMPLES:
UpperCAmelCase_ = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
if os.path.isfile(_UpperCAmelCase ) and ".py" in item_path:
with self.subTest(
tested_script=_UpperCAmelCase , feature_script=_UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ):
UpperCAmelCase_ = compare_against_test(
os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = "\n".join(_UpperCAmelCase )
if special_strings is not None:
for string in special_strings:
UpperCAmelCase_ = diff.replace(_UpperCAmelCase , "" )
self.assertEqual(_UpperCAmelCase , "" )
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
self.one_complete_example("complete_nlp_example.py" , _UpperCAmelCase )
self.one_complete_example("complete_nlp_example.py" , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) )
UpperCAmelCase_ = [
" " * 16 + "{\n\n",
" " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n",
" " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n",
" " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n",
" " * 20 + "\"epoch\": epoch,\n\n",
" " * 16 + "},\n\n",
" " * 16 + "step=epoch,\n",
" " * 12,
" " * 8 + "for step, batch in enumerate(active_dataloader):\n",
]
self.one_complete_example("complete_cv_example.py" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.one_complete_example("complete_cv_example.py" , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = False
@classmethod
def lowercase__ ( cls : Tuple ) -> str:
'''simple docstring'''
super().setUpClass()
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = os.path.join(cls._tmpdir , "default_config.yml" )
write_basic_config(save_location=cls.configPath )
UpperCAmelCase_ = ["accelerate", "launch", "--config_file", cls.configPath]
@classmethod
def lowercase__ ( cls : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = F"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = F"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
UpperCAmelCase_ = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = F"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase )
self.assertNotIn("epoch 0:" , _UpperCAmelCase )
self.assertIn("epoch 1:" , _UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = F"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase )
if torch.cuda.is_available():
UpperCAmelCase_ = torch.cuda.device_count()
else:
UpperCAmelCase_ = 1
if num_processes > 1:
self.assertNotIn("epoch 0:" , _UpperCAmelCase )
self.assertIn("epoch 1:" , _UpperCAmelCase )
else:
self.assertIn("epoch 0:" , _UpperCAmelCase )
self.assertIn("epoch 1:" , _UpperCAmelCase )
@slow
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split()
with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ):
UpperCAmelCase_ = run_command(self._launch_args + testargs , return_stdout=_UpperCAmelCase )
UpperCAmelCase_ = re.findall("({.+})" , _UpperCAmelCase )
UpperCAmelCase_ = [r for r in results if "accuracy" in r][-1]
UpperCAmelCase_ = ast.literal_eval(_UpperCAmelCase )
self.assertGreaterEqual(results["accuracy"] , 0.75 )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = ["examples/by_feature/multi_process_metrics.py"]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} )
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
UpperCAmelCase_ = F"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , "tracking" ) ) )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = ["examples/by_feature/gradient_accumulation.py"]
run_command(self._launch_args + testargs )
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = ["examples/by_feature/local_sgd.py"]
run_command(self._launch_args + testargs )
| 14 |
"""simple docstring"""
import string
def a__ ( lowerCAmelCase__ ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase_ = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ )
UpperCAmelCase_ = num - key
if num < 0:
UpperCAmelCase_ = num + len(string.ascii_uppercase )
UpperCAmelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def a__ ( ):
UpperCAmelCase_ = input("Encrypted message: " )
UpperCAmelCase_ = message.upper()
decrypt(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 )
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = width_multiplier
UpperCAmelCase_ = ffn_dropout
UpperCAmelCase_ = attn_dropout
def lowercase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModelTester(self )
UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCAmelCase_ = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits
# verify the logits
UpperCAmelCase_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits.detach().cpu()
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
UpperCAmelCase_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def a__ ( lowerCAmelCase__ = 3 ):
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(lowerCAmelCase__ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
UpperCAmelCase_ = QuantumRegister(lowerCAmelCase__ , "qr" )
UpperCAmelCase_ = ClassicalRegister(lowerCAmelCase__ , "cr" )
UpperCAmelCase_ = QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = number_of_qubits
for i in range(lowerCAmelCase__ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(lowerCAmelCase__ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase__ , lowerCAmelCase__ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(lowerCAmelCase__ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(lowerCAmelCase__ , lowerCAmelCase__ )
# simulate with 10000 shots
UpperCAmelCase_ = Aer.get_backend("qasm_simulator" )
UpperCAmelCase_ = execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10000 )
return job.result().get_counts(lowerCAmelCase__ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = KandinskyInpaintPipeline
UpperCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''']
UpperCamelCase = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
'''mask_image''',
]
UpperCamelCase = [
'''generator''',
'''height''',
'''width''',
'''latents''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase = False
@property
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
return 32
@property
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
return 32
@property
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim
@property
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
return 100
@property
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def lowercase__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
UpperCAmelCase_ = MultilingualCLIP(_UpperCAmelCase )
UpperCAmelCase_ = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ = UNetaDConditionModel(**_UpperCAmelCase )
return model
@property
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.dummy_text_encoder
UpperCAmelCase_ = self.dummy_tokenizer
UpperCAmelCase_ = self.dummy_unet
UpperCAmelCase_ = self.dummy_movq
UpperCAmelCase_ = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_UpperCAmelCase , )
UpperCAmelCase_ = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowercase__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : int=0 ) -> str:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
UpperCAmelCase_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_UpperCAmelCase )
# create init_image
UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((256, 256) )
# create mask
UpperCAmelCase_ = np.ones((64, 64) , dtype=np.floataa )
UpperCAmelCase_ = 0
if str(_UpperCAmelCase ).startswith("mps" ):
UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCAmelCase_ = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = "cpu"
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = self.pipeline_class(**_UpperCAmelCase )
UpperCAmelCase_ = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
UpperCAmelCase_ = output.images
UpperCAmelCase_ = pipe(
**self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0]
UpperCAmelCase_ = image[0, -3:, -3:, -1]
UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
print(F"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ = np.array(
[0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
UpperCAmelCase_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ = np.ones((768, 768) , dtype=np.floataa )
UpperCAmelCase_ = 0
UpperCAmelCase_ = "a hat"
UpperCAmelCase_ = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_UpperCAmelCase )
UpperCAmelCase_ = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
UpperCAmelCase_ = pipeline.to(_UpperCAmelCase )
pipeline.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior(
_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ = pipeline(
_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , )
UpperCAmelCase_ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 14 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
import os
import sys
import unittest
lowerCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowerCamelCase = os.path.join(git_repo_path, """src""", """diffusers""")
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = find_backend(" if not is_torch_available():" )
self.assertEqual(_UpperCAmelCase , "torch" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
UpperCAmelCase_ = find_backend(" if not (is_torch_available() and is_transformers_available()):" )
self.assertEqual(_UpperCAmelCase , "torch_and_transformers" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
UpperCAmelCase_ = find_backend(
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" )
self.assertEqual(_UpperCAmelCase , "torch_and_transformers_and_onnx" )
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch" , _UpperCAmelCase )
self.assertIn("torch_and_transformers" , _UpperCAmelCase )
self.assertIn("flax_and_transformers" , _UpperCAmelCase )
self.assertIn("torch_and_transformers_and_onnx" , _UpperCAmelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn("UNet2DModel" , objects["torch"] )
self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] )
self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] )
self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] )
self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] )
self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] )
def lowercase__ ( self : str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = create_dummy_object("CONSTANT" , "'torch'" )
self.assertEqual(_UpperCAmelCase , "\nCONSTANT = None\n" )
UpperCAmelCase_ = create_dummy_object("function" , "'torch'" )
self.assertEqual(
_UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
UpperCAmelCase_ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n"
UpperCAmelCase_ = create_dummy_object("FakeClass" , "'torch'" )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n"
UpperCAmelCase_ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"] , _UpperCAmelCase )
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''detr'''
UpperCamelCase = ['''past_key_values''']
UpperCamelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : Optional[Any] , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : List[str]=100 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : List[str]=2048 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : Union[str, Any]=6 , _UpperCAmelCase : List[Any]=2048 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : str="relu" , _UpperCAmelCase : Union[str, Any]=256 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any="sine" , _UpperCAmelCase : Union[str, Any]="resnet50" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : int=1 , _UpperCAmelCase : str=5 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Dict=0.1 , **_UpperCAmelCase : int , ) -> Any:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase_ = backbone_config.get("model_type" )
UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ = config_class.from_dict(_UpperCAmelCase )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None, None, None
UpperCAmelCase_ = use_timm_backbone
UpperCAmelCase_ = backbone_config
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = num_queries
UpperCAmelCase_ = d_model
UpperCAmelCase_ = encoder_ffn_dim
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = encoder_attention_heads
UpperCAmelCase_ = decoder_ffn_dim
UpperCAmelCase_ = decoder_layers
UpperCAmelCase_ = decoder_attention_heads
UpperCAmelCase_ = dropout
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = activation_dropout
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = init_std
UpperCAmelCase_ = init_xavier_std
UpperCAmelCase_ = encoder_layerdrop
UpperCAmelCase_ = decoder_layerdrop
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = auxiliary_loss
UpperCAmelCase_ = position_embedding_type
UpperCAmelCase_ = backbone
UpperCAmelCase_ = use_pretrained_backbone
UpperCAmelCase_ = dilation
# Hungarian matcher
UpperCAmelCase_ = class_cost
UpperCAmelCase_ = bbox_cost
UpperCAmelCase_ = giou_cost
# Loss coefficients
UpperCAmelCase_ = mask_loss_coefficient
UpperCAmelCase_ = dice_loss_coefficient
UpperCAmelCase_ = bbox_loss_coefficient
UpperCAmelCase_ = giou_loss_coefficient
UpperCAmelCase_ = eos_coefficient
super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return self.d_model
@classmethod
def lowercase__ ( cls : Optional[int] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[Any] ) -> str:
'''simple docstring'''
return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> Dict[str, any]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ = self.backbone_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def lowercase__ ( self : Union[str, Any] ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
return 12
| 14 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 | 1 |
"""simple docstring"""
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = f"""{sampling_rate}"""
UpperCAmelCase_ = "1"
UpperCAmelCase_ = "f32le"
UpperCAmelCase_ = [
"ffmpeg",
"-i",
"pipe:0",
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
try:
with subprocess.Popen(lowerCAmelCase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
UpperCAmelCase_ = ffmpeg_process.communicate(lowerCAmelCase__ )
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error
UpperCAmelCase_ = output_stream[0]
UpperCAmelCase_ = np.frombuffer(lowerCAmelCase__ , np.floataa )
if audio.shape[0] == 0:
raise ValueError("Malformed soundfile" )
return audio
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = "f32le" , ):
UpperCAmelCase_ = f"""{sampling_rate}"""
UpperCAmelCase_ = "1"
if format_for_conversion == "s16le":
UpperCAmelCase_ = 2
elif format_for_conversion == "f32le":
UpperCAmelCase_ = 4
else:
raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" )
UpperCAmelCase_ = platform.system()
if system == "Linux":
UpperCAmelCase_ = "alsa"
UpperCAmelCase_ = "default"
elif system == "Darwin":
UpperCAmelCase_ = "avfoundation"
UpperCAmelCase_ = ":0"
elif system == "Windows":
UpperCAmelCase_ = "dshow"
UpperCAmelCase_ = "default"
UpperCAmelCase_ = [
"ffmpeg",
"-f",
format_,
"-i",
input_,
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-fflags",
"nobuffer",
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
UpperCAmelCase_ = _ffmpeg_stream(lowerCAmelCase__ , lowerCAmelCase__ )
for item in iterator:
yield item
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "f32le" , ):
if stream_chunk_s is not None:
UpperCAmelCase_ = stream_chunk_s
else:
UpperCAmelCase_ = chunk_length_s
UpperCAmelCase_ = ffmpeg_microphone(lowerCAmelCase__ , lowerCAmelCase__ , format_for_conversion=lowerCAmelCase__ )
if format_for_conversion == "s16le":
UpperCAmelCase_ = np.intaa
UpperCAmelCase_ = 2
elif format_for_conversion == "f32le":
UpperCAmelCase_ = np.floataa
UpperCAmelCase_ = 4
else:
raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" )
if stride_length_s is None:
UpperCAmelCase_ = chunk_length_s / 6
UpperCAmelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(lowerCAmelCase__ , (int, float) ):
UpperCAmelCase_ = [stride_length_s, stride_length_s]
UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
UpperCAmelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
UpperCAmelCase_ = datetime.datetime.now()
UpperCAmelCase_ = datetime.timedelta(seconds=lowerCAmelCase__ )
for item in chunk_bytes_iter(lowerCAmelCase__ , lowerCAmelCase__ , stride=(stride_left, stride_right) , stream=lowerCAmelCase__ ):
# Put everything back in numpy scale
UpperCAmelCase_ = np.frombuffer(item["raw"] , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = (
item["stride"][0] // size_of_sample,
item["stride"][1] // size_of_sample,
)
UpperCAmelCase_ = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = b""
UpperCAmelCase_ , UpperCAmelCase_ = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" )
UpperCAmelCase_ = 0
for raw in iterator:
acc += raw
if stream and len(lowerCAmelCase__ ) < chunk_len:
UpperCAmelCase_ = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(lowerCAmelCase__ ) >= chunk_len:
# We are flushing the accumulator
UpperCAmelCase_ = (_stride_left, stride_right)
UpperCAmelCase_ = {"raw": acc[:chunk_len], "stride": stride}
if stream:
UpperCAmelCase_ = False
yield item
UpperCAmelCase_ = stride_left
UpperCAmelCase_ = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(lowerCAmelCase__ ) > stride_left:
UpperCAmelCase_ = {"raw": acc, "stride": (_stride_left, 0)}
if stream:
UpperCAmelCase_ = False
yield item
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = 2**24 # 16Mo
try:
with subprocess.Popen(lowerCAmelCase__ , stdout=subprocess.PIPE , bufsize=lowerCAmelCase__ ) as ffmpeg_process:
while True:
UpperCAmelCase_ = ffmpeg_process.stdout.read(lowerCAmelCase__ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
| 14 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase = {
"""configuration_mobilebert""": [
"""MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""MobileBertConfig""",
"""MobileBertOnnxConfig""",
],
"""tokenization_mobilebert""": ["""MobileBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""MobileBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MobileBertForMaskedLM""",
"""MobileBertForMultipleChoice""",
"""MobileBertForNextSentencePrediction""",
"""MobileBertForPreTraining""",
"""MobileBertForQuestionAnswering""",
"""MobileBertForSequenceClassification""",
"""MobileBertForTokenClassification""",
"""MobileBertLayer""",
"""MobileBertModel""",
"""MobileBertPreTrainedModel""",
"""load_tf_weights_in_mobilebert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFMobileBertForMaskedLM""",
"""TFMobileBertForMultipleChoice""",
"""TFMobileBertForNextSentencePrediction""",
"""TFMobileBertForPreTraining""",
"""TFMobileBertForQuestionAnswering""",
"""TFMobileBertForSequenceClassification""",
"""TFMobileBertForTokenClassification""",
"""TFMobileBertMainLayer""",
"""TFMobileBertModel""",
"""TFMobileBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = x
UpperCAmelCase_ = y
for step in range(lowerCAmelCase__ ): # noqa: B007
UpperCAmelCase_ = a * a - b * b + x
UpperCAmelCase_ = 2 * a * b + y
UpperCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def a__ ( lowerCAmelCase__ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowerCAmelCase__ , 1 , 1 ) )
def a__ ( lowerCAmelCase__ = 800 , lowerCAmelCase__ = 600 , lowerCAmelCase__ = -0.6 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 3.2 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = True , ):
UpperCAmelCase_ = Image.new("RGB" , (image_width, image_height) )
UpperCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(lowerCAmelCase__ ):
for image_y in range(lowerCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase_ = figure_width / image_width * image_height
UpperCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase_ = get_distance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase_ = get_color_coded_rgb(lowerCAmelCase__ )
else:
UpperCAmelCase_ = get_black_and_white_rgb(lowerCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowerCamelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 | 1 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCamelCase = logging.get_logger(__name__)
# TODO: upload to AWS
lowerCamelCase = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''retribert'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : int=30522 , _UpperCAmelCase : int=768 , _UpperCAmelCase : int=8 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[Any]=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : int=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : List[Any] , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = share_encoders
UpperCAmelCase_ = projection_dim
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase = {
"""configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Swinv2ForImageClassification""",
"""Swinv2ForMaskedImageModeling""",
"""Swinv2Model""",
"""Swinv2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="attention" ):
UpperCAmelCase_ = UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] )
UpperCAmelCase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] )
UpperCAmelCase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] )
UpperCAmelCase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
UpperCAmelCase_ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] )
UpperCAmelCase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
if split_mlp_wi:
UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :]
UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :]
UpperCAmelCase_ = (wi_a, wi_a)
else:
UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :]
UpperCAmelCase_ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :]
return wi, wo
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i]
def a__ ( lowerCAmelCase__ , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = traverse_util.flatten_dict(variables["target"] )
UpperCAmelCase_ = {"/".join(lowerCAmelCase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCAmelCase_ = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" , lowerCAmelCase__ )
UpperCAmelCase_ = collections.OrderedDict()
# Shared embeddings.
UpperCAmelCase_ = old["token_embedder/embedding"]
# Encoder.
for i in range(lowerCAmelCase__ ):
# Block i, layer 0 (Self Attention).
UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , "pre_attention_layer_norm" )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , "attention" )
UpperCAmelCase_ = layer_norm
UpperCAmelCase_ = k.T
UpperCAmelCase_ = o.T
UpperCAmelCase_ = q.T
UpperCAmelCase_ = v.T
# Block i, layer 1 (MLP).
UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , "pre_mlp_layer_norm" )
UpperCAmelCase_ , UpperCAmelCase_ = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "encoder" , lowerCAmelCase__ )
UpperCAmelCase_ = layer_norm
if split_mlp_wi:
UpperCAmelCase_ = wi[0].T
UpperCAmelCase_ = wi[1].T
else:
UpperCAmelCase_ = wi.T
UpperCAmelCase_ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCAmelCase_ = tax_relpos_bias_lookup(
lowerCAmelCase__ , lowerCAmelCase__ , "encoder" ).T
UpperCAmelCase_ = old["encoder/encoder_norm/scale"]
if not scalable_attention:
UpperCAmelCase_ = tax_relpos_bias_lookup(
lowerCAmelCase__ , 0 , "encoder" ).T
UpperCAmelCase_ = tax_relpos_bias_lookup(
lowerCAmelCase__ , 0 , "decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(lowerCAmelCase__ ):
# Block i, layer 0 (Self Attention).
UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "pre_self_attention_layer_norm" )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "self_attention" )
UpperCAmelCase_ = layer_norm
UpperCAmelCase_ = k.T
UpperCAmelCase_ = o.T
UpperCAmelCase_ = q.T
UpperCAmelCase_ = v.T
# Block i, layer 1 (Cross Attention).
UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "pre_cross_attention_layer_norm" )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "encoder_decoder_attention" )
UpperCAmelCase_ = layer_norm
UpperCAmelCase_ = k.T
UpperCAmelCase_ = o.T
UpperCAmelCase_ = q.T
UpperCAmelCase_ = v.T
# Block i, layer 2 (MLP).
UpperCAmelCase_ = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , "pre_mlp_layer_norm" )
UpperCAmelCase_ , UpperCAmelCase_ = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" , lowerCAmelCase__ )
UpperCAmelCase_ = layer_norm
if split_mlp_wi:
UpperCAmelCase_ = wi[0].T
UpperCAmelCase_ = wi[1].T
else:
UpperCAmelCase_ = wi.T
UpperCAmelCase_ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
UpperCAmelCase_ = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , "decoder" ).T
UpperCAmelCase_ = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCAmelCase_ = old["decoder/logits_dense/kernel"].T
return new
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCAmelCase_ = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCAmelCase_ = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
UpperCAmelCase_ = state_dict["shared.weight"]
return state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = checkpoints.load_tax_checkpoint(lowerCAmelCase__ )
UpperCAmelCase_ = convert_tax_to_pytorch(
lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ )
UpperCAmelCase_ = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ):
UpperCAmelCase_ = MTaConfig.from_json_file(lowerCAmelCase__ )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCAmelCase_ = UMTaEncoderModel(lowerCAmelCase__ )
else:
UpperCAmelCase_ = UMTaForConditionalGeneration(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(lowerCAmelCase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowerCAmelCase__ )
print("Done" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
lowerCamelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 14 |
"""simple docstring"""
from __future__ import annotations
import math
def a__ ( lowerCAmelCase__ ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)]
def a__ ( lowerCAmelCase__ ):
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
UpperCAmelCase_ = []
for num in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ = 0
while 2 * i * i <= odd_composites[num]:
UpperCAmelCase_ = odd_composites[num] - 2 * i * i
if is_prime(lowerCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(lowerCAmelCase__ ) == n:
return list_nums
return []
def a__ ( ):
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
from cmath import sqrt
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
UpperCAmelCase_ = b * b - 4 * a * c
UpperCAmelCase_ = (-b + sqrt(lowerCAmelCase__ )) / (2 * a)
UpperCAmelCase_ = (-b - sqrt(lowerCAmelCase__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def a__ ( ):
UpperCAmelCase_ , UpperCAmelCase_ = quadratic_roots(a=5 , b=6 , c=1 )
print(f"""The solutions are: {solutiona} and {solutiona}""" )
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""",
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''convbert'''
def __init__( self : Any , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-12 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = embedding_size
UpperCAmelCase_ = head_ratio
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = num_groups
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 14 | 1 |
"""simple docstring"""
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
lowerCamelCase = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
state_dict.pop("pixel_mean" , lowerCAmelCase__ )
state_dict.pop("pixel_std" , lowerCAmelCase__ )
UpperCAmelCase_ = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(2 ) )
if layer_nb == 0:
UpperCAmelCase_ = key.replace("layers.0" , "proj_in" )
elif layer_nb == 1:
UpperCAmelCase_ = key.replace("layers.1" , "layers.0" )
elif layer_nb == 2:
UpperCAmelCase_ = key.replace("layers.2" , "proj_out" )
UpperCAmelCase_ = value
UpperCAmelCase_ = model_state_dict[
"prompt_encoder.shared_embedding.positional_embedding"
]
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="ybelkada/segment-anything" ):
UpperCAmelCase_ = hf_hub_download(lowerCAmelCase__ , f"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
UpperCAmelCase_ = SamConfig()
elif "sam_vit_l" in model_name:
UpperCAmelCase_ = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
UpperCAmelCase_ = SamConfig(
vision_config=lowerCAmelCase__ , )
elif "sam_vit_h" in model_name:
UpperCAmelCase_ = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
UpperCAmelCase_ = SamConfig(
vision_config=lowerCAmelCase__ , )
UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )
UpperCAmelCase_ = replace_keys(lowerCAmelCase__ )
UpperCAmelCase_ = SamImageProcessor()
UpperCAmelCase_ = SamProcessor(image_processor=lowerCAmelCase__ )
UpperCAmelCase_ = SamModel(lowerCAmelCase__ )
hf_model.load_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = hf_model.to("cuda" )
UpperCAmelCase_ = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
UpperCAmelCase_ = [[[400, 650]]]
UpperCAmelCase_ = [[1]]
UpperCAmelCase_ = processor(images=np.array(lowerCAmelCase__ ) , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
UpperCAmelCase_ = hf_model(**lowerCAmelCase__ )
UpperCAmelCase_ = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579890251159668
UpperCAmelCase_ = processor(
images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
UpperCAmelCase_ = hf_model(**lowerCAmelCase__ )
UpperCAmelCase_ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712603092193604
UpperCAmelCase_ = ((75, 275, 1725, 850),)
UpperCAmelCase_ = processor(images=np.array(lowerCAmelCase__ ) , input_boxes=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
UpperCAmelCase_ = hf_model(**lowerCAmelCase__ )
UpperCAmelCase_ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686015605926514
# Test with 2 points and 1 image.
UpperCAmelCase_ = [[[400, 650], [800, 650]]]
UpperCAmelCase_ = [[1, 1]]
UpperCAmelCase_ = processor(
images=np.array(lowerCAmelCase__ ) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
UpperCAmelCase_ = hf_model(**lowerCAmelCase__ )
UpperCAmelCase_ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936047792434692
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
lowerCamelCase = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
lowerCamelCase = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 14 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''mobilenet_v1'''
def __init__( self : Tuple , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[Any]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[Any]=0.001 , **_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = depth_multiplier
UpperCAmelCase_ = min_depth
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = tf_padding
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = version.parse('''1.11''' )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def lowercase__ ( self : Tuple ) -> float:
'''simple docstring'''
return 1e-4
| 14 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = LDMTextToImagePipeline
UpperCamelCase = TEXT_TO_IMAGE_PARAMS - {
'''negative_prompt''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
'''prompt_embeds''',
}
UpperCamelCase = PipelineTesterMixin.required_optional_params - {
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase = False
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
UpperCAmelCase_ = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , )
torch.manual_seed(0 )
UpperCAmelCase_ = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , )
torch.manual_seed(0 )
UpperCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
UpperCAmelCase_ = CLIPTextModel(_UpperCAmelCase )
UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
UpperCAmelCase_ = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any]=0 ) -> List[Any]:
'''simple docstring'''
if str(_UpperCAmelCase ).startswith("mps" ):
UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCAmelCase_ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ = self.get_dummy_components()
UpperCAmelCase_ = LDMTextToImagePipeline(**_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images
UpperCAmelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
UpperCAmelCase_ = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str=torch.floataa , _UpperCAmelCase : str=0 ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase )
UpperCAmelCase_ = np.random.RandomState(_UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
UpperCAmelCase_ = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
UpperCAmelCase_ = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def lowercase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = self.get_inputs(_UpperCAmelCase )
UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images
UpperCAmelCase_ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase_ = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
UpperCAmelCase_ = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=torch.floataa , _UpperCAmelCase : Dict=0 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase )
UpperCAmelCase_ = np.random.RandomState(_UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
UpperCAmelCase_ = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase , dtype=_UpperCAmelCase )
UpperCAmelCase_ = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase_ = self.get_inputs(_UpperCAmelCase )
UpperCAmelCase_ = pipe(**_UpperCAmelCase ).images[0]
UpperCAmelCase_ = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
UpperCAmelCase_ = np.abs(expected_image - image ).max()
assert max_diff < 1e-3
| 14 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = (DPMSolverSinglestepScheduler,)
UpperCamelCase = (('''num_inference_steps''', 25),)
def lowercase__ ( self : int , **_UpperCAmelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**_UpperCAmelCase )
return config
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = dict(self.forward_default_kwargs )
UpperCAmelCase_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase )
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase_ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ , UpperCAmelCase_ = sample, sample
for t in range(_UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ):
UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase_ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
pass
def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any]=0 , **_UpperCAmelCase : Any ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = dict(self.forward_default_kwargs )
UpperCAmelCase_ = kwargs.pop("num_inference_steps" , _UpperCAmelCase )
UpperCAmelCase_ = self.dummy_sample
UpperCAmelCase_ = 0.1 * sample
UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase_ = self.get_scheduler_config()
UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase_ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase_ = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def lowercase__ ( self : str , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : int ) -> Dict:
'''simple docstring'''
if scheduler is None:
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
UpperCAmelCase_ = 50
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2574 ) < 1e-3
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
UpperCAmelCase_ = self.full_loop(scheduler=_UpperCAmelCase )
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1e-3
UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config )
UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
UpperCAmelCase_ = self.full_loop(scheduler=_UpperCAmelCase )
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1e-3
def lowercase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
self.check_over_configs(thresholding=_UpperCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , algorithm_type="dpmsolver++" , solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , )
UpperCAmelCase_ = self.full_loop(
solver_order=_UpperCAmelCase , solver_type=_UpperCAmelCase , prediction_type=_UpperCAmelCase , algorithm_type=_UpperCAmelCase , )
assert not torch.isnan(_UpperCAmelCase ).any(), "Samples have nan numbers"
def lowercase__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
self.check_over_configs(lower_order_final=_UpperCAmelCase )
self.check_over_configs(lower_order_final=_UpperCAmelCase )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
self.check_over_configs(variance_type=_UpperCAmelCase )
self.check_over_configs(variance_type="learned_range" )
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=0 )
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.full_loop()
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2791 ) < 1e-3
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_UpperCAmelCase )
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2248 ) < 1e-3
def lowercase__ ( self : str ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.full_loop(prediction_type="v_prediction" )
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.1453 ) < 1e-3
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=_UpperCAmelCase )
UpperCAmelCase_ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 0.0649 ) < 1e-3
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.scheduler_classes[0]
UpperCAmelCase_ = self.get_scheduler_config(thresholding=_UpperCAmelCase , dynamic_thresholding_ratio=0 )
UpperCAmelCase_ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.dummy_model()
UpperCAmelCase_ = self.dummy_sample_deter.half()
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase_ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) == 0:
return []
UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ )
UpperCAmelCase_ = int(max_value - min_value ) + 1
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for i in my_list:
buckets[int(i - min_value )].append(lowerCAmelCase__ )
return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 14 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''image_processor''', '''tokenizer''']
UpperCamelCase = '''LayoutLMv2ImageProcessor'''
UpperCamelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''')
def __init__( self : Any , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[int] ) -> Any:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _UpperCAmelCase , )
UpperCAmelCase_ = kwargs.pop("feature_extractor" )
UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
UpperCAmelCase_ = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension)
UpperCAmelCase_ = features["words"]
UpperCAmelCase_ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
UpperCAmelCase_ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
UpperCAmelCase_ = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
UpperCAmelCase_ = images
return encoded_inputs
def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def lowercase__ ( self : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , )
return self.image_processor
| 14 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""PerceiverFeatureExtractor"""]
lowerCamelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
lowerCamelCase = """."""
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
lowerCamelCase = [
"""Assert""",
"""AssignVariableOp""",
"""EmptyTensorList""",
"""MergeV2Checkpoints""",
"""ReadVariableOp""",
"""ResourceGather""",
"""RestoreV2""",
"""SaveV2""",
"""ShardedFilename""",
"""StatefulPartitionedCall""",
"""StaticRegexFullMatch""",
"""VarHandleOp""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = SavedModel()
UpperCAmelCase_ = []
with open(os.path.join(lowerCAmelCase__ , "utils" , "tf_ops" , "onnx.json" ) ) as f:
UpperCAmelCase_ = json.load(lowerCAmelCase__ )["opsets"]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(lowerCAmelCase__ )] )
with open(lowerCAmelCase__ , "rb" ) as f:
saved_model.ParseFromString(f.read() )
UpperCAmelCase_ = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
UpperCAmelCase_ = sorted(lowerCAmelCase__ )
UpperCAmelCase_ = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(lowerCAmelCase__ )
if strict and len(lowerCAmelCase__ ) > 0:
raise Exception(f"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops )
elif len(lowerCAmelCase__ ) > 0:
print(f"""Found the following incompatible ops for the opset {opset}:""" )
print(*lowerCAmelCase__ , sep="\n" )
else:
print(f"""The saved model {saved_model_path} can properly be converted with ONNX.""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""")
parser.add_argument(
"""--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested."""
)
parser.add_argument(
"""--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model."""
)
parser.add_argument(
"""--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)"""
)
lowerCamelCase = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 14 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowerCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowerCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = create_model(
"HTSAT-tiny" , "roberta" , lowerCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = {}
UpperCAmelCase_ = r".*sequential.(\d+).*"
UpperCAmelCase_ = r".*_projection.(\d+).*"
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase_ = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase_ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase_ = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase_ = 1 if projecton_layer == 0 else 2
UpperCAmelCase_ = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase_ = value
UpperCAmelCase_ = mixed_qkv.size(0 ) // 3
UpperCAmelCase_ = mixed_qkv[:qkv_dim]
UpperCAmelCase_ = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase_ = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase_ = query_layer
UpperCAmelCase_ = key_layer
UpperCAmelCase_ = value_layer
else:
UpperCAmelCase_ = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ , UpperCAmelCase_ = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase_ = clap_model.state_dict()
UpperCAmelCase_ = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase_ = ClapConfig()
UpperCAmelCase_ = enable_fusion
UpperCAmelCase_ = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowerCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 14 | 1 |
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
lowerCamelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""]
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=1 ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = tokenizer
UpperCAmelCase_ = dataset
UpperCAmelCase_ = len(_UpperCAmelCase ) if n_tasks is None else n_tasks
UpperCAmelCase_ = n_copies
def __iter__( self : Tuple ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = start_length
UpperCAmelCase_ = eof_strings
UpperCAmelCase_ = tokenizer
def __call__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
UpperCAmelCase_ = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(_UpperCAmelCase )
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = re.split("(%s)" % "|".join(lowerCAmelCase__ ) , lowerCAmelCase__ )
# last string should be ""
return "".join(string_list[:-2] )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=20 , **lowerCAmelCase__ ):
UpperCAmelCase_ = defaultdict(lowerCAmelCase__ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(lowerCAmelCase__ ) ):
with torch.no_grad():
UpperCAmelCase_ = batch["ids"].shape[-1]
UpperCAmelCase_ = accelerator.unwrap_model(lowerCAmelCase__ ).generate(
input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=lowerCAmelCase__ , **lowerCAmelCase__ )
# each task is generated batch_size times
UpperCAmelCase_ = batch["task_id"].repeat(lowerCAmelCase__ )
UpperCAmelCase_ = accelerator.pad_across_processes(
lowerCAmelCase__ , dim=1 , pad_index=tokenizer.pad_token_id )
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((generated_tokens, generated_tasks) )
UpperCAmelCase_ = generated_tokens.cpu().numpy()
UpperCAmelCase_ = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
gen_token_dict[task].append(lowerCAmelCase__ )
UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
UpperCAmelCase_ = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )
code_gens[task].append(remove_last_block(lowerCAmelCase__ ) )
return code_gens
def a__ ( ):
# Setup configuration
UpperCAmelCase_ = HfArgumentParser(lowerCAmelCase__ )
UpperCAmelCase_ = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
UpperCAmelCase_ = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
UpperCAmelCase_ = "false"
if args.num_workers is None:
UpperCAmelCase_ = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
UpperCAmelCase_ = Accelerator()
set_seed(args.seed , device_specific=lowerCAmelCase__ )
# Load model and tokenizer
UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt )
UpperCAmelCase_ = tokenizer.eos_token
UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
UpperCAmelCase_ = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCAmelCase__ , lowerCAmelCase__ )] ),
}
# Load evaluation dataset and metric
UpperCAmelCase_ = load_dataset("openai_humaneval" )
UpperCAmelCase_ = load_metric("code_eval" )
UpperCAmelCase_ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
UpperCAmelCase_ = args.n_samples // args.batch_size
UpperCAmelCase_ = TokenizedDataset(lowerCAmelCase__ , human_eval["test"] , n_copies=lowerCAmelCase__ , n_tasks=lowerCAmelCase__ )
# do not confuse args.batch_size, which is actually the num_return_sequences
UpperCAmelCase_ = DataLoader(lowerCAmelCase__ , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
UpperCAmelCase_ = code_eval_metric.compute(references=[""] , predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = complete_code(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , n_tasks=lowerCAmelCase__ , batch_size=args.batch_size , **lowerCAmelCase__ , )
if accelerator.is_main_process:
UpperCAmelCase_ = []
for task in tqdm(range(lowerCAmelCase__ ) ):
UpperCAmelCase_ = human_eval["test"][task]["test"]
UpperCAmelCase_ = f"""check({human_eval['test'][task]['entry_point']})"""
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
UpperCAmelCase_ , UpperCAmelCase_ = code_eval_metric.compute(
references=lowerCAmelCase__ , predictions=lowerCAmelCase__ , num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file , "w" ) as fp:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 14 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if not head:
return True
# split the list to two parts
UpperCAmelCase_ , UpperCAmelCase_ = head.next, head
while fast and fast.next:
UpperCAmelCase_ = fast.next.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = slow.next
UpperCAmelCase_ = None # Don't forget here! But forget still works!
# reverse the second part
UpperCAmelCase_ = None
while second:
UpperCAmelCase_ = second.next
UpperCAmelCase_ = node
UpperCAmelCase_ = second
UpperCAmelCase_ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
UpperCAmelCase_ = node.next
UpperCAmelCase_ = head.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head
while fast and fast.next:
UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next
# 2. Push the second half into the stack
UpperCAmelCase_ = [slow.val]
while slow.next:
UpperCAmelCase_ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
UpperCAmelCase_ = cur.next
return True
def a__ ( lowerCAmelCase__ ):
if not head or not head.next:
return True
UpperCAmelCase_ = {}
UpperCAmelCase_ = 0
while head:
if head.val in d:
d[head.val].append(lowerCAmelCase__ )
else:
UpperCAmelCase_ = [pos]
UpperCAmelCase_ = head.next
pos += 1
UpperCAmelCase_ = pos - 1
UpperCAmelCase_ = 0
for v in d.values():
if len(lowerCAmelCase__ ) % 2 != 0:
middle += 1
else:
UpperCAmelCase_ = 0
for i in range(0 , len(lowerCAmelCase__ ) ):
if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
if n_term == "":
return []
UpperCAmelCase_ = []
for temp in range(int(lowerCAmelCase__ ) ):
series.append(f"""1/{temp + 1}""" if series else "1" )
return series
if __name__ == "__main__":
lowerCamelCase = input("""Enter the last number (nth term) of the Harmonic Series""")
print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""")
print(harmonic_series(nth_term))
| 14 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
UpperCAmelCase_ = MaskFormerConfig(backbone_config=lowerCAmelCase__ )
UpperCAmelCase_ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
UpperCAmelCase_ = 847
UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
UpperCAmelCase_ = 171
UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
UpperCAmelCase_ = 133
UpperCAmelCase_ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
UpperCAmelCase_ = 65
UpperCAmelCase_ = "mapillary-vistas-id2label.json"
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
return config
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") )
rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") )
rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") )
rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") )
# cross-attention out projection
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") )
# MLP 1
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") )
# MLP 2
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") )
# layernorm 3 (final layernorm)
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") )
rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") )
# fmt: on
return rename_keys
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = dct.pop(lowerCAmelCase__ )
UpperCAmelCase_ = val
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[:dim, :]
UpperCAmelCase_ = in_proj_bias[: dim]
UpperCAmelCase_ = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ = in_proj_bias[-dim :]
# fmt: on
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# fmt: off
UpperCAmelCase_ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" )
UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ = in_proj_weight[: hidden_size, :]
UpperCAmelCase_ = in_proj_bias[:config.hidden_size]
UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :]
UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ = in_proj_weight[-hidden_size :, :]
UpperCAmelCase_ = in_proj_bias[-hidden_size :]
# fmt: on
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return im
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ):
UpperCAmelCase_ = get_maskformer_config(lowerCAmelCase__ )
# load original state_dict
with open(lowerCAmelCase__ , "rb" ) as f:
UpperCAmelCase_ = pickle.load(lowerCAmelCase__ )
UpperCAmelCase_ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ )
for src, dest in rename_keys:
rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config )
read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# update to torch tensors
for key, value in state_dict.items():
UpperCAmelCase_ = torch.from_numpy(lowerCAmelCase__ )
# load 🤗 model
UpperCAmelCase_ = MaskFormerForInstanceSegmentation(lowerCAmelCase__ )
model.eval()
for name, param in model.named_parameters():
print(lowerCAmelCase__ , param.shape )
UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowerCAmelCase__ ) == 0, f"""Unexpected keys: {unexpected_keys}"""
# verify results
UpperCAmelCase_ = prepare_img()
if "vistas" in model_name:
UpperCAmelCase_ = 65
elif "cityscapes" in model_name:
UpperCAmelCase_ = 65535
else:
UpperCAmelCase_ = 255
UpperCAmelCase_ = True if "ade" in model_name else False
UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ )
UpperCAmelCase_ = image_processor(lowerCAmelCase__ , return_tensors="pt" )
UpperCAmelCase_ = model(**lowerCAmelCase__ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
UpperCAmelCase_ = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(f"""nielsr/{model_name}""" )
image_processor.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""maskformer-swin-tiny-ade""",
type=str,
help=("""Name of the MaskFormer model you'd like to convert""",),
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""",
type=str,
help="""Path to the original state dict (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 14 | 1 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue_model_parallelism.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
] )
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=_UpperCAmelCase , )
assert hasattr(self , "env" )
def lowercase__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = {
"enabled": True,
"processes_per_host": 8,
}
UpperCAmelCase_ = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
UpperCAmelCase_ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
UpperCAmelCase_ = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 500,
} , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version="py36" , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : Any ) -> str:
'''simple docstring'''
TrainingJobAnalytics(_UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def lowercase__ ( self : str , _UpperCAmelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.create_estimator(_UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
UpperCAmelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
UpperCAmelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase_ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _UpperCAmelCase )
| 14 |
"""simple docstring"""
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCamelCase = 50_003
lowerCamelCase = 50_002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = PLBartTokenizer
UpperCamelCase = None
UpperCamelCase = False
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="base" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 4 , _UpperCAmelCase )]
self.assertListEqual(_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer(_UpperCAmelCase , language_codes="multi" , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = [tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) for x in range(end - 7 , _UpperCAmelCase )]
self.assertListEqual(
_UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
UpperCAmelCase_ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
UpperCAmelCase_ = tokenizer(_UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) , _UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = '''uclanlp/plbart-python-en_XX'''
UpperCamelCase = [
'''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''',
'''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''',
]
UpperCamelCase = [
'''Returns the maximum value of a b c.''',
'''Sums the values of a b c.''',
]
UpperCamelCase = [
1_34,
54_52,
3_34_60,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
9_88,
20,
3_34_56,
19,
3_34_56,
7_71,
39,
42_58,
8_89,
33_18,
3_34_41,
3_34_63,
3_34_65,
3_34_63,
3_34_49,
24_71,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : int ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
UpperCAmelCase_ = 1
return cls
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def lowercase__ ( self : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
UpperCAmelCase_ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , _UpperCAmelCase )
UpperCAmelCase_ = 10
UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , _UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = tempfile.mkdtemp()
UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase_ = PLBartTokenizer.from_pretrained(_UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , _UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
UpperCAmelCase_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" )
UpperCAmelCase_ = self.tokenizer(
text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" )
UpperCAmelCase_ = targets["input_ids"]
UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(_UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
# Return True if there is node that has not iterated.
UpperCAmelCase_ = [False] * len(lowerCAmelCase__ )
UpperCAmelCase_ = []
queue.append(lowerCAmelCase__ )
UpperCAmelCase_ = True
while queue:
UpperCAmelCase_ = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(lowerCAmelCase__ )
UpperCAmelCase_ = True
UpperCAmelCase_ = u
return visited[t]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
# This array is filled by BFS and to store path
UpperCAmelCase_ = [-1] * (len(lowerCAmelCase__ ))
UpperCAmelCase_ = 0
while bfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = float("Inf" )
UpperCAmelCase_ = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase_ = min(lowerCAmelCase__ , graph[parent[s]][s] )
UpperCAmelCase_ = parent[s]
max_flow += path_flow
UpperCAmelCase_ = sink
while v != source:
UpperCAmelCase_ = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase_ = parent[v]
return max_flow
lowerCamelCase = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
lowerCamelCase , lowerCamelCase = 0, 5
print(ford_fulkerson(graph, source, sink))
| 14 |
"""simple docstring"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""",
"""google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""",
"""google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""",
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_text_model'''
def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit_vision_model'''
def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = initializer_factor
@classmethod
def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
UpperCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''owlvit'''
UpperCamelCase = True
def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if text_config is None:
UpperCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase )
UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase )
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = logit_scale_init_value
UpperCAmelCase_ = return_dict
UpperCAmelCase_ = 1.0
@classmethod
def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = {}
UpperCAmelCase_ = text_config
UpperCAmelCase_ = vision_config
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-4
def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase )
UpperCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
return 14
| 14 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ):
UpperCAmelCase_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
UpperCAmelCase_ = "segformer.encoder." + key
if key.startswith("backbone" ):
UpperCAmelCase_ = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
UpperCAmelCase_ = key[key.find("patch_embed" ) + len("patch_embed" )]
UpperCAmelCase_ = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(lowerCAmelCase__ )-1}""" )
if "norm" in key:
UpperCAmelCase_ = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
UpperCAmelCase_ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
UpperCAmelCase_ = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(lowerCAmelCase__ )-1}""" )
if "layer_norm1" in key:
UpperCAmelCase_ = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
UpperCAmelCase_ = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
UpperCAmelCase_ = key[key.find("block" ) + len("block" )]
UpperCAmelCase_ = key.replace(f"""block{idx}""" , f"""block.{int(lowerCAmelCase__ )-1}""" )
if "attn.q" in key:
UpperCAmelCase_ = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
UpperCAmelCase_ = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
UpperCAmelCase_ = key.replace("attn" , "attention.self" )
if "fc1" in key:
UpperCAmelCase_ = key.replace("fc1" , "dense1" )
if "fc2" in key:
UpperCAmelCase_ = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
UpperCAmelCase_ = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
UpperCAmelCase_ = key.replace("linear_fuse.conv" , "linear_fuse" )
UpperCAmelCase_ = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
UpperCAmelCase_ = key[key.find("linear_c" ) + len("linear_c" )]
UpperCAmelCase_ = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(lowerCAmelCase__ )-1}""" )
if key.startswith("head" ):
UpperCAmelCase_ = key.replace("head" , "classifier" )
UpperCAmelCase_ = value
return new_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
UpperCAmelCase_ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
UpperCAmelCase_ = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
UpperCAmelCase_ = kv_weight[
: config.hidden_sizes[i], :
]
UpperCAmelCase_ = kv_bias[: config.hidden_sizes[i]]
UpperCAmelCase_ = kv_weight[
config.hidden_sizes[i] :, :
]
UpperCAmelCase_ = kv_bias[
config.hidden_sizes[i] :
]
def a__ ( ):
UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return image
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = SegformerConfig()
UpperCAmelCase_ = False
# set attributes based on model_name
UpperCAmelCase_ = "huggingface/label-files"
if "segformer" in model_name:
UpperCAmelCase_ = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
UpperCAmelCase_ = 150
UpperCAmelCase_ = "ade20k-id2label.json"
UpperCAmelCase_ = (1, 150, 128, 128)
elif "city" in model_name:
UpperCAmelCase_ = 19
UpperCAmelCase_ = "cityscapes-id2label.json"
UpperCAmelCase_ = (1, 19, 128, 128)
else:
raise ValueError(f"""Model {model_name} not supported""" )
elif "mit" in model_name:
UpperCAmelCase_ = True
UpperCAmelCase_ = model_name[4:6]
UpperCAmelCase_ = 1000
UpperCAmelCase_ = "imagenet-1k-id2label.json"
UpperCAmelCase_ = (1, 1000)
else:
raise ValueError(f"""Model {model_name} not supported""" )
# set config attributes
UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) )
UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ = idalabel
UpperCAmelCase_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
UpperCAmelCase_ = [64, 128, 320, 512]
UpperCAmelCase_ = 256
elif size == "b2":
UpperCAmelCase_ = [64, 128, 320, 512]
UpperCAmelCase_ = 768
UpperCAmelCase_ = [3, 4, 6, 3]
elif size == "b3":
UpperCAmelCase_ = [64, 128, 320, 512]
UpperCAmelCase_ = 768
UpperCAmelCase_ = [3, 4, 18, 3]
elif size == "b4":
UpperCAmelCase_ = [64, 128, 320, 512]
UpperCAmelCase_ = 768
UpperCAmelCase_ = [3, 8, 27, 3]
elif size == "b5":
UpperCAmelCase_ = [64, 128, 320, 512]
UpperCAmelCase_ = 768
UpperCAmelCase_ = [3, 6, 40, 3]
else:
raise ValueError(f"""Size {size} not supported""" )
# load image processor (only resize + normalize)
UpperCAmelCase_ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ )
# prepare image
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).pixel_values
logger.info(f"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=torch.device("cpu" ) )
else:
UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
UpperCAmelCase_ = rename_keys(lowerCAmelCase__ , encoder_only=lowerCAmelCase__ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ )
# create HuggingFace model and load state dict
if encoder_only:
UpperCAmelCase_ = False
UpperCAmelCase_ = SegformerForImageClassification(lowerCAmelCase__ )
else:
UpperCAmelCase_ = SegformerForSemanticSegmentation(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
model.eval()
# forward pass
UpperCAmelCase_ = model(lowerCAmelCase__ )
UpperCAmelCase_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]],
[[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]],
[[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]],
[[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]],
[[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]],
[[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]],
[[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]],
[[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]],
[[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]],
[[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]],
[[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]],
[[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]],
[[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]],
[[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]],
[[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]],
[[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]],
[[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[
[-1.1372e01, -1.2787e01, -1.3477e01],
[-1.2536e01, -1.4194e01, -1.4409e01],
[-1.3217e01, -1.4888e01, -1.5327e01],
],
[
[-1.4791e01, -1.7122e01, -1.8277e01],
[-1.7163e01, -1.9192e01, -1.9533e01],
[-1.7897e01, -1.9991e01, -2.0315e01],
],
[
[7.6723e-01, 4.1921e-01, -7.7878e-02],
[4.7772e-01, 9.5557e-03, -2.8082e-01],
[3.6032e-01, -2.4826e-01, -5.1168e-01],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]],
[[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]],
[[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]],
[[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]],
[[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]],
[[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]],
[[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]],
[[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]],
[[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]],
[[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]],
[[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
UpperCAmelCase_ = torch.tensor(
[
[[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]],
[[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]],
[[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]],
] )
else:
UpperCAmelCase_ = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-2 )
# finally, save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
image_processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""segformer.b0.512x512.ade.160k""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
lowerCamelCase = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 14 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = XLMProphetNetTokenizer
UpperCamelCase = False
UpperCamelCase = True
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "[PAD]"
UpperCAmelCase_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "[PAD]" )
self.assertEqual(vocab_keys[1] , "[CLS]" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCAmelCase ) , 1012 )
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] , )
@cached_property
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = "Hello World!"
UpperCAmelCase_ = [35389, 6672, 49, 2]
self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
lowerCamelCase = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
if weight_type is not None:
UpperCAmelCase_ = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "inv_freq":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ = fairseq_model.state_dict()
UpperCAmelCase_ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ = False
if "conv_layers" in name:
load_conv_layer(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , )
UpperCAmelCase_ = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(lowerCAmelCase__ )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , lowerCAmelCase__ )
if "pos_bias_u" in name:
UpperCAmelCase_ = None
elif "pos_bias_v" in name:
UpperCAmelCase_ = None
elif "weight_g" in name:
UpperCAmelCase_ = "weight_g"
elif "weight_v" in name:
UpperCAmelCase_ = "weight_v"
elif "bias" in name:
UpperCAmelCase_ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ = "weight"
elif "running_mean" in name:
UpperCAmelCase_ = "running_mean"
elif "inv_freq" in name:
UpperCAmelCase_ = "inv_freq"
elif "running_var" in name:
UpperCAmelCase_ = "running_var"
elif "num_batches_tracked" in name:
UpperCAmelCase_ = "num_batches_tracked"
else:
UpperCAmelCase_ = None
set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
continue
if not is_used:
unused_weights.append(lowerCAmelCase__ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = full_name.split("conv_layers." )[-1]
UpperCAmelCase_ = name.split("." )
UpperCAmelCase_ = int(items[0] )
UpperCAmelCase_ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase_ = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowerCAmelCase__ )
@torch.no_grad()
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ):
if config_path is not None:
UpperCAmelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase__ , hidden_act="swish" )
else:
UpperCAmelCase_ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ = "rotary"
if is_finetuned:
if dict_path:
UpperCAmelCase_ = Dictionary.load(lowerCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ = target_dict.pad_index
UpperCAmelCase_ = target_dict.bos_index
UpperCAmelCase_ = target_dict.eos_index
UpperCAmelCase_ = len(target_dict.symbols )
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , "vocab.json" )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
UpperCAmelCase_ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ = 0
UpperCAmelCase_ = 1
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaCTCTokenizer(
lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , )
UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False
UpperCAmelCase_ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
processor.save_pretrained(lowerCAmelCase__ )
UpperCAmelCase_ = WavaVecaConformerForCTC(lowerCAmelCase__ )
else:
UpperCAmelCase_ = WavaVecaConformerForPreTraining(lowerCAmelCase__ )
if is_finetuned:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
UpperCAmelCase_ = argparse.Namespace(task="audio_pretraining" )
UpperCAmelCase_ = fairseq.tasks.setup_task(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ )
UpperCAmelCase_ = model[0].eval()
recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
lowerCamelCase = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ = crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : float , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
UpperCAmelCase_ = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ = int(shortest_edge / crop_pct )
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size=_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> Any:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : float = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , crop_pct=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowerCamelCase = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"""text-classification""",
"""language-modeling""",
"""summarization""",
"""token-classification""",
"""question-answering""",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase = logging.getLogger()
def a__ ( ):
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument("-f" )
UpperCAmelCase_ = parser.parse_args()
return args.f
def a__ ( lowerCAmelCase__ , lowerCAmelCase__="eval" ):
UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , f"""{split}_results.json""" )
if os.path.exists(lowerCAmelCase__ ):
with open(lowerCAmelCase__ , "r" ) as f:
return json.load(lowerCAmelCase__ )
raise ValueError(f"""can't find {path}""" )
lowerCamelCase = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_flax_glue.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
@slow
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_clm_flax.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertLess(result["eval_perplexity"] , 100 )
@slow
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_summarization_flax.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase , split="test" )
self.assertGreaterEqual(result["test_rouge1"] , 10 )
self.assertGreaterEqual(result["test_rouge2"] , 2 )
self.assertGreaterEqual(result["test_rougeL"] , 7 )
self.assertGreaterEqual(result["test_rougeLsum"] , 7 )
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_mlm_flax.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertLess(result["eval_perplexity"] , 42 )
@slow
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_ta_mlm_flax.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.42 )
@slow
def lowercase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = 7 if get_gpu_count() > 1 else 2
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_flax_ner.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
self.assertGreaterEqual(result["eval_f1"] , 0.3 )
@slow
def lowercase__ ( self : Tuple ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.get_auto_remove_tmp_dir()
UpperCAmelCase_ = F"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ):
run_qa.main()
UpperCAmelCase_ = get_results(_UpperCAmelCase )
self.assertGreaterEqual(result["eval_f1"] , 30 )
self.assertGreaterEqual(result["eval_exact"] , 30 )
| 14 |
"""simple docstring"""
import string
def a__ ( lowerCAmelCase__ ):
for key in range(len(string.ascii_uppercase ) ):
UpperCAmelCase_ = ""
for symbol in message:
if symbol in string.ascii_uppercase:
UpperCAmelCase_ = string.ascii_uppercase.find(lowerCAmelCase__ )
UpperCAmelCase_ = num - key
if num < 0:
UpperCAmelCase_ = num + len(string.ascii_uppercase )
UpperCAmelCase_ = translated + string.ascii_uppercase[num]
else:
UpperCAmelCase_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def a__ ( ):
UpperCAmelCase_ = input("Encrypted message: " )
UpperCAmelCase_ = message.upper()
decrypt(lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
"""simple docstring"""
from graphs.minimum_spanning_tree_kruskal import kruskal
def a__ ( ):
UpperCAmelCase_ = 9
UpperCAmelCase_ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
UpperCAmelCase_ = kruskal(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ )
| 14 |
"""simple docstring"""
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) )
class lowercase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 )
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = conv_kernel_size
UpperCAmelCase_ = output_stride
UpperCAmelCase_ = classifier_dropout_prob
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = num_labels
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = width_multiplier
UpperCAmelCase_ = ffn_dropout
UpperCAmelCase_ = attn_dropout
def lowercase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = self.num_labels
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaModelTester(self )
UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ):
UpperCAmelCase_ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase_ = outputs.hidden_states
UpperCAmelCase_ = 5
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
UpperCAmelCase_ = 2
for i in range(len(_UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits
# verify the logits
UpperCAmelCase_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
] , device=_UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = model.to(_UpperCAmelCase )
UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
UpperCAmelCase_ = outputs.logits.detach().cpu()
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] )
UpperCAmelCase_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase )
UpperCAmelCase_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase__ :
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : Optional[int]=30 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=2 , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = scope
UpperCAmelCase_ = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (image_size // patch_size) ** 2
UpperCAmelCase_ = num_patches + 1
def lowercase__ ( self : List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = None
if self.use_labels:
UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ = self.get_config()
return config, pixel_values, labels
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowercase__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = ViTModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> str:
'''simple docstring'''
UpperCAmelCase_ = ViTForMaskedImageModeling(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase_ = 1
UpperCAmelCase_ = ViTForMaskedImageModeling(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = self.type_sequence_label_size
UpperCAmelCase_ = ViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ = 1
UpperCAmelCase_ = ViTForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
UpperCamelCase = (
{'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase = True
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = False
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = ViTModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
pass
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def lowercase__ ( self : str ) -> str:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(_UpperCAmelCase )
UpperCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def lowercase__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase )
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ = ViTModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( ):
UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(_UpperCAmelCase )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(_UpperCAmelCase )
UpperCAmelCase_ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 )
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = inputs.pixel_values.to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase_ = model(_UpperCAmelCase , interpolate_pos_encoding=_UpperCAmelCase )
# verify the logits
UpperCAmelCase_ = torch.Size((1, 3601, 384) )
self.assertEqual(outputs.last_hidden_state.shape , _UpperCAmelCase )
UpperCAmelCase_ = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" )
UpperCAmelCase_ = self.default_image_processor
UpperCAmelCase_ = prepare_img()
UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" )
UpperCAmelCase_ = inputs.pixel_values.to(_UpperCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
UpperCAmelCase_ = model(_UpperCAmelCase )
| 14 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 | 1 |
"""simple docstring"""
from __future__ import annotations
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase_ = []
UpperCAmelCase_ , UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
UpperCAmelCase_ = result + left + right
return input_list
def a__ ( lowerCAmelCase__ ):
if len(lowerCAmelCase__ ) <= 1:
return input_list
UpperCAmelCase_ = list(lowerCAmelCase__ )
# iteration for two-way merging
UpperCAmelCase_ = 2
while p <= len(lowerCAmelCase__ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = i + p - 1
UpperCAmelCase_ = (low + high + 1) // 2
UpperCAmelCase_ = merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# final merge of last two parts
if p * 2 >= len(lowerCAmelCase__ ):
UpperCAmelCase_ = i
UpperCAmelCase_ = merge(lowerCAmelCase__ , 0 , lowerCAmelCase__ , len(lowerCAmelCase__ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
lowerCamelCase = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
lowerCamelCase = []
else:
lowerCamelCase = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 14 |
"""simple docstring"""
lowerCamelCase = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.355_818,
}
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
UpperCAmelCase_ = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(lowerCAmelCase__ )}"""
)
raise ValueError(lowerCAmelCase__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
"""simple docstring"""
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = abs(lowerCAmelCase__ )
UpperCAmelCase_ = 0
while n > 0:
res += n % 10
n //= 10
return res
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = abs(lowerCAmelCase__ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def a__ ( lowerCAmelCase__ ):
return sum(int(lowerCAmelCase__ ) for c in str(abs(lowerCAmelCase__ ) ) )
def a__ ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
UpperCAmelCase_ = f"""{func.__name__}({value})"""
UpperCAmelCase_ = timeit(f"""__main__.{call}""" , setup="import __main__" )
print(f"""{call:56} = {func(lowerCAmelCase__ )} -- {timing:.4f} seconds""" )
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(lowerCAmelCase__ , lowerCAmelCase__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 14 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ ):
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowerCAmelCase__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowerCAmelCase__ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"shortest_edge": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = do_center_crop
UpperCAmelCase_ = crop_size
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase_ = get_resize_output_image_size(_UpperCAmelCase , size["shortest_edge"] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase_ = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(_UpperCAmelCase , size=(size["height"], size["width"]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> List[str]:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase , param_name="crop_size" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
UpperCAmelCase_ = make_batched(_UpperCAmelCase )
UpperCAmelCase_ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase_ = {"pixel_values": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 14 | 1 |
"""simple docstring"""
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
lowerCamelCase = """bert-base-cased"""
lowerCamelCase = """fp16"""
lowerCamelCase = """bf16"""
lowerCamelCase = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ = dict(
ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , )
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(_UpperCAmelCase ):
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = F"""{i + 1}"""
UpperCAmelCase_ = strategy
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(_UpperCAmelCase ):
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = prefetch_policy
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(_UpperCAmelCase ):
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = state_dict_type
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ = AutoModel.from_pretrained(_UpperCAmelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = policy
if policy == "TRANSFORMER_BASED_WRAP":
UpperCAmelCase_ = "BertLayer"
elif policy == "SIZE_BASED_WRAP":
UpperCAmelCase_ = "2000"
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = "TRANSFORMER_BASED_WRAP"
UpperCAmelCase_ = "T5Layer"
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
with self.assertRaises(_UpperCAmelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase )
self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) )
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = "SIZE_BASED_WRAP"
UpperCAmelCase_ = "0"
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(_UpperCAmelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = mp_dtype
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = Accelerator()
if mp_dtype == "fp16":
UpperCAmelCase_ = torch.floataa
elif mp_dtype == "bf16":
UpperCAmelCase_ = torch.bfloataa
UpperCAmelCase_ = MixedPrecision(param_dtype=_UpperCAmelCase , reduce_dtype=_UpperCAmelCase , buffer_dtype=_UpperCAmelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _UpperCAmelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , _UpperCAmelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(_UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
UpperCAmelCase_ = self.dist_env.copy()
UpperCAmelCase_ = str(_UpperCAmelCase ).lower()
with mockenv_context(**_UpperCAmelCase ):
UpperCAmelCase_ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_UpperCAmelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ = 0.82
UpperCAmelCase_ = [
"fsdp_shard_grad_op_transformer_based_wrap",
"fsdp_full_shard_transformer_based_wrap",
]
UpperCAmelCase_ = {
"multi_gpu_fp16": 3200,
"fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000,
"fsdp_full_shard_transformer_based_wrap_fp16": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
UpperCAmelCase_ = 160
UpperCAmelCase_ = 160
UpperCAmelCase_ = inspect.getfile(accelerate.test_utils )
UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] )
def lowercase__ ( self : Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = os.path.join(self.test_scripts_folder , "test_performance.py" )
UpperCAmelCase_ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"]
for config in self.performance_configs:
UpperCAmelCase_ = cmd.copy()
for i, strategy in enumerate(_UpperCAmelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append("--mixed_precision=no" )
else:
cmd_config.append("--mixed_precision=fp16" )
if "cpu_offload" in config:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
def lowercase__ ( self : Any ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = os.path.join(self.test_scripts_folder , "test_checkpointing.py" )
UpperCAmelCase_ = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
"--use_fsdp",
"--mixed_precision=fp16",
"--fsdp_transformer_layer_cls_to_wrap=BertLayer",
]
for i, strategy in enumerate(_UpperCAmelCase ):
UpperCAmelCase_ = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
UpperCAmelCase_ = len(_UpperCAmelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
UpperCAmelCase_ = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
"--partial_train_epoch=1",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
UpperCAmelCase_ = cmd_config[:-1]
UpperCAmelCase_ = os.path.join(self.tmpdir , "epoch_0" )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
def lowercase__ ( self : Dict ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" )
UpperCAmelCase_ = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
UpperCAmelCase_ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["--mixed_precision=fp16"] )
else:
cmd_config.extend(["--mixed_precision=no"] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["--use_fsdp"] )
for i, strategy in enumerate(_UpperCAmelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
| 14 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def a__ ( lowerCAmelCase__ ):
UpperCAmelCase_ = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
UpperCAmelCase_ = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]]
UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0]
UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(lowerCAmelCase__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
UpperCAmelCase_ = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
UpperCAmelCase_ = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
UpperCAmelCase_ = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
UpperCAmelCase_ = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
UpperCAmelCase_ = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
UpperCAmelCase_ = array(lowerCAmelCase__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(lowerCAmelCase__ )
# Calculate the inverse of the matrix
return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 14 | 1 |
"""simple docstring"""
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def a__ ( lowerCAmelCase__ ):
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
lowerCamelCase = """
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
"""
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def lowercase__ ( _UpperCAmelCase : ArgumentParser ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = parser.add_parser(
"convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , )
train_parser.add_argument("--model_type" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Model's type." )
train_parser.add_argument(
"--tf_checkpoint" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="TensorFlow checkpoint path or folder." )
train_parser.add_argument(
"--pytorch_dump_output" , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to the PyTorch saved model output." )
train_parser.add_argument("--config" , type=_UpperCAmelCase , default="" , help="Configuration file path or folder." )
train_parser.add_argument(
"--finetuning_task_name" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , )
train_parser.set_defaults(func=_UpperCAmelCase )
def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , *_UpperCAmelCase : str , ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = logging.get_logger("transformers-cli/converting" )
self._logger.info(F"""Loading model {model_type}""" )
UpperCAmelCase_ = model_type
UpperCAmelCase_ = tf_checkpoint
UpperCAmelCase_ = pytorch_dump_output
UpperCAmelCase_ = config
UpperCAmelCase_ = finetuning_task_name
def lowercase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(_UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCAmelCase )
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase_ = self._tf_checkpoint
UpperCAmelCase_ = ""
else:
UpperCAmelCase_ = self._tf_checkpoint
UpperCAmelCase_ = ""
convert_transfo_xl_checkpoint_to_pytorch(
_UpperCAmelCase , self._config , self._pytorch_dump_output , _UpperCAmelCase )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCAmelCase )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_UpperCAmelCase )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
"--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
| 14 |
"""simple docstring"""
from heapq import heappop, heappush
import numpy as np
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
UpperCAmelCase_ , UpperCAmelCase_ = grid.shape
UpperCAmelCase_ = [-1, 1, 0, 0]
UpperCAmelCase_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
UpperCAmelCase_ , UpperCAmelCase_ = [(0, source)], set()
UpperCAmelCase_ = np.full((rows, cols) , np.inf )
UpperCAmelCase_ = 0
UpperCAmelCase_ = np.empty((rows, cols) , dtype=lowerCAmelCase__ )
UpperCAmelCase_ = None
while queue:
((UpperCAmelCase_) , (UpperCAmelCase_)) = heappop(lowerCAmelCase__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
UpperCAmelCase_ = []
while (x, y) != source:
path.append((x, y) )
UpperCAmelCase_ , UpperCAmelCase_ = predecessors[x, y]
path.append(lowerCAmelCase__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(lowerCAmelCase__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
UpperCAmelCase_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) )
UpperCAmelCase_ = dist + 1
UpperCAmelCase_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.